Microbiological and Technological Insights on Anaerobic Digestion of Animal Manure: A Review
Abstract
:1. Introduction
2. Anaerobic Digestion of Animal Manure
2.1. Characteristics of Animal Manure
Feedstock | Total Solid (TS, %) | Volatile Solid (VS, % of TS) | C/N Ratio | REQUIRED HRT a (d) | Methane Yield Potential (L/g-VS) | CH4 Content of Produced Biogas (%) | Degree of vs. Degradation (%) | Frequent Problems during the Anaerobic Digestion Process | Possible Solutions | References |
---|---|---|---|---|---|---|---|---|---|---|
Chicken/Duck manure | 20–45 | 70–85 | 3–12 | >30 | 0.20–0.40 | 60–80 | 40–70% | Ammonia inhibition; hydrogen sulfide; high solids content; sediments (sand); scum layers. | Long-term adaption; Addition of iron and other trace elements; ammonia removal; co-digestion with material with a higher C/N ratio and lower TS. | [35,36,37,38,39,40,41,42,43,44,45] |
Duck manure | 15–30 | 70–85 | 10–15 | >30 | 0.20–0.40 | 60–80 | 45–70% | Ammonia inhibition; hydrogen sulfide; High solids content; Sediments (sand); scum layers. | Long-term adaption; add iron and other trace elements; Removal ammonia; co-digestion with material with a higher C/N ratio and lower TS. | [46,47] |
Swine manure | 5–25 | 78–80 | 10–20 | 20–40 | 0.20–0.35 | 60–70 | 30–70% | Ammonia inhibition; Hydrogen sulfide; Scum layers; Sediments. | Long-term adaption; Addition of iron and other trace elements; Removal of ammonia; Co-digestion with material with higher C/N ratio. | [48,49,50,51,52,53] |
Cattle manure | 5–12 | 75–95 | 15–30 | 20–30 | 0.15–0.30 | 55–65 | 20–35% | Scum layers; Low hydrolysis; Low degradation; Poor biogas yield. | Increased operating temperature; Phase separation pretreatment. | [54,55,56] |
2.2. Common Anaerobic Bioreactors and Operating Parameters for Animal Manure
Digester Type | Temperature (°C) | Reactor Scale | TS (%) | OLR (g VS/(L·d)) | HRT (d) | TAN (g/L) | VFAs (g/L) | Methane Yield (L/g-VS) | References |
---|---|---|---|---|---|---|---|---|---|
Chicken manure | |||||||||
LBR | 36 | Lab-scale | 14.0–16.0 | / | / | 10.0 | 15.0 | 0.11 | [75] |
CSTR | 37 | Lab-scale | 20.0 | 7.1 | 20 | 8.5 | 25.2 | 0.02 | [34] |
CSTR | 35 | Lab-scale | 17.0 | 6.3 | 20 | 8.6 | 12.9 | 0.21 | [76] |
CSTR | 40 | Lab-scale | 15.0 | 6.0 | 40 | 6.9 | 9.3 | 0.27 | [77] |
CSTR | 37 | Lab-scale | 15.0 | 5.3 | 20 | 6.9 | 13.6 | 0.19 | [35] |
CSTR | 37 | Lab-scale | 15.0 | 5.3 | 20 | 6.8 | 21.9 | 0.19 | [78] |
CSTR | 37 | Lab-scale | 10.0 | 3.6 | 20 | 6.5 | 6.7 | 0.28 | [34] |
CSTR | 40 | Lab-scale | 15.0 | 3.5 | 35 | 6.9 | 8.2 | 0.19 | [79] |
CSTR | 35 | Lab-scale | 11.0 | 2.8 | 30 | 8.0 | 5.0 | 0.30 | [80] |
CSTR | 35 | Full-scale | 8.3 | 2.8 | 20 | 6.0 | ND | ND | [81] |
CSTR | 35 | Lab-scale | 8.0 | 2.7 | 30 | 5.0 | 2.0 | 0.20 | [44] |
CSTR | 37 | Lab-scale | 7.5 | 2.7 | 20 | 5.0 | 2.2 | 0.34 | [34] |
CSTR | 55 | Lab-scale | 8.0 | 2.7 | 30 | 3.7 | ND | 0.13 | [44] |
CSTR | 55 | Lab-scale | 10.0 | 2.7 | 30 | 3.7 | 4.0–6.0 | 0.14 | [43] |
CSTR | 37 | Full-scale | 9.0 | 2.3 | 33 | 6.2 | 2.1 | 0.30 | [36] |
CSTR | 37 | Lab-scale | 5.0 | 1.8 | 20 | 2.3 | 0.4 | 0.36 | [34] |
CSTR | 35 | Lab-scale | 13.5 | 1.8 | 23 | 5.9 | 7.6 | 0.26 | [82] |
CSTR | 37 | Lab-scale | 5.0 | 1.7 | 20 | 2.4 | 0.3 | 0.38 | [83] |
CSTR | 55 | Lab-scale | 5.0 | 1.7 | 20 | 2.4 | 0.3 | 0.33 | [83] |
CSTR | 37 | Lab-scale | 15.0 | 1.5 | 60 | 7.4 | 0.5 | 0.33 | [40] |
Swine manure | |||||||||
SBR | 24 | Farm-scale | 5.6 | 8.0 | 7 | 4.6 | ND | ND | [84] |
CSTR | 35 | Lab-scale | 23.6 | 5.2 | 41 | 4.0 | 3.5 | 0.20 | [85] |
CSTR | 37 | Lab-scale | 7.3 | 3.5 | 15 | 1.5 | 0.2 | 0.22 | [20] |
CSTR | 38 | Lab-scale | 7.6 | 3.0 | 21 | 4.7 | ND | 0.14 | [20] |
PFR | 38 | Pilot-scale | 20.0 | 2.4 | 60 | 4.3 | ND | ND | [86] |
USR | 36 | Full-scale | 3.3 | 1.8 | 15 | 1.4 | ND | 0.27 | [87] |
USR + PFR | 26 | Full-scale | 6.2 | 1.3 | 15 + 22 | 1.6 | ND | ND | [88] |
CSTR | 35 | Full-scale | 7.4 | 1.2 | 40 | 2.0 | ND | ND | [81] |
USR | 36 | Full-scale | 3.5 | 1.2 | 22 | 1.5–2.4 | ND | 0.43 | [87] |
PFR | 25 | Lab-scale | 5.8 | 0.9 | 67 | ND | 0.8 | 0.41 | [89] |
PFR | 25 | Pilot-scale | 5.4 | 0.6 | 67 | ND | 0.9 | 0.41 | [89] |
Cattle manure | |||||||||
CSTR (Cattle manure + energy crops) | 47 | Full-scale | 12.2 | 5.4 | 34 | 4.8 | 0.6 | 0.24 | [90] |
CSTR | 50 | Pilot-scale | 8.5 | 3.5 | 20 | 2.1 | 0.4 | 0.18 | [91] |
CSTR | 35 | Pilot-scale | 8.5 | 3.5 | 20 | 1.9 | 0.3 | 0.16 | [91] |
CSTR | 35 | Full-scale | 7.1 | 3.1 | 20 | 2.3 | 0.4 | 0.15 | [91] |
CSTR | 37 | Lab-scale | 6.6 | 3.0 | 27 | 5.2 a | 0.9 | 0.28 | [92] |
CSTR | 35 | Full-scale | 6.4 | 0.8 | 50 | 1.5 | ND | ND | [81] |
3. The Methane Production Pathways under Different Operating Parameters and Ammonia Stress
3.1. Hydrolysis and Acidogenesis Process
3.2. Acetogenesis Process
3.3. Acetoclastic Methanogenesis and the Impact of the Operating Parameter on Methanogenic Community Structure
Temperature (°C) | OLR (g VS/(L·d) | HRT (d) | TAN (g/L) | FAN (g/L) | Archaea (Genus) | Relative Abundance (% of Total Archaea) | Methane Yield (L-CH4/g VSadd) | Microbial Community Investigation | References |
---|---|---|---|---|---|---|---|---|---|
Chicken manure | |||||||||
37 | 1.7 | 20 | 2.4 | 0.7 | Methanoculleus | 94% | 0.38 | 16S rRNA gene amplicon sequencing | [83] |
55 | 1.7 | 20 | 2.0 | 1.1 | Methanothermobacter | 96% | 0.33 | 16S rRNA gene amplicon sequencing | [83] |
37 | 2.5 | 40 | 6.2 | 1.1 | Methanobrevibacter | 74% | 0.31 | 16S rRNA gene amplicon sequencing | [36] |
55 | 2.7 | 30 | 5.2 | 2.4 | Methanothermobacter | 95% | 0.08 | 16S rRNA gene cloning and sequencing | [44] |
37 | 2.7 | 20 | 5.0 | 1.4 | Methanoculleus | 99% | 0.34 | 16S rRNA gene amplicon sequencing | [34] |
55 | 2.7 | 30 | 5.2 | 1.7 | Methanothermobacter | 95% | 0.28 | 16S rDNA gene cloning and sequencing | [43] |
40 | 3.5 | 35 | 6.9 | 0.8 | Methanosarcina | 85% | 0.33 | Illumina sequencing, 454 pyrosequencing and T-RFLP analysis | [79] |
37 | 3.6 | 20 | 6.5 | 0.8 | Methanosarcina | 94% | 0.28 | 16S rRNA gene amplicon sequencing | [34] |
37 | 5.3 | 20 | 6.8 | 0.5 | Methanosarcina | 73% | 0.19 | 16S rDNA gene cloning and sequencing | [78] |
37 | 5.3 | 20 | 5.8 | 0.6 | Methanosarcina | 83% | 0.25 | 16S rDNA gene cloning and sequencing | [78] |
Swine manure | |||||||||
38 | 3 | 21 | 4.7 | 0.3 | Methanoculleus | 3% (percentage of total microbial) | 0.10 a | 16S rRNA gene amplicon sequencing | [20] |
37 | 3.5 | 15 | 1.5 | 0.07 | Methanosaeta | 76% | 0.14 b | 16S rDNA gene cloning and sequencing by PCR-DGGE analysis | [51] |
35 | 5.2 | 35 | 4.0 | 0.8 | Methanobrevibacter | 45% | 0.42 | 16s RNA amplification and Illumina Hiseq sequencing | [85] |
37 | NA | ND | ND | ND | Methanoculleus | 58% | 0.27 | 16s RNA amplification, Illumina sequencing | [116] |
35 | NA | ND | ND | ND | Methanosaeta | 23% | 0.54 a | 16S rRNA gene amplicon sequencing | [117] |
Cattle manure | |||||||||
37–40 | 2.7 | 25 | ND | ND | Methanosarcina | 49% | 0.21 | DNA extraction and Illumina sequencing | [104] |
37 | 2.8 | 25 | ND | ND | Methanosarcina | 98% | ND | 454 pyrosequencing of bacterial and archaeal 16S rRNA genes | [118] |
37 | 2.1 | 27 | 5.2 | 0.3 | Methanosarcina | 99% | 0.28 | 16S rRNA gene amplicon sequencing | [92] |
35 | 3.1 | 20 | 1.9 | 0.05 | Methanosarcina | 15% (percentage of the total reads) | 0.15 | 454 pyrosequencing of bacterial and archaeal 16S rRNA genes | [91] |
50 | 3.1 | 20 | 2.1 | 0.11 | Methanosarcina | 12% (percentage of the total reads) | 0.18 | 454 pyrosequencing of bacterial and archaeal 16S rRNA genes | [91] |
38 | 4.0 | 26 | ND | ND | Methanobacterium Methanosaeta | 28% 26% | 0.24 | 16S rRNA gene amplicon sequencing | [104] |
37 (WS: CM = 4:6) | ND | ND | ND | ND | Methanoculleus Methanosphaera | 21% 17% | 0.32 | High-throughput 16S rRNA gene sequencing | [119] |
35 (CS:CM = 3:1) | ND | ND | ND | ND | Methanosaeta | 68% | 0.17 | High-throughput 16S rRNA gene sequencing | [120] |
35–40 | ND | ND | ND | ND | Methanosarcina | 43% | 0.32 | 16s RNA gene amplification and DNA sequencing using Illumina HiSeq 2500 | [11] |
3.4. Microbial-Mediated Methane Production Pathways under Ammonia Stress
4. Operating Management with the Potential to Improve Anaerobic Treatment of Nitrogen-Rich Animal Manure
4.1. Methods to Remove Ammonia from an Anaerobic System
Operation Mode | Substrate | OLR (g VS/(L·d)) | HRT (d) | Ammonia Removed Methods | Findings | Reference |
---|---|---|---|---|---|---|
CSTR | Chicken manure | 5.3 | 20 | Ammonia stripping | 15% reduction in the TAN (from 6.8 to 5.8 g/L), 30% reduction of volatile fatty acids, and methane yield increased by 34%. | [78] |
Two stages (CSTR + stripping AnMBR) | Chicken manure | 4.0 | 4 + 15 | Ammonia stripping | 47% reduction in the TAN (from 5.7 to 3.1 g/L), 29% reduction of volatile fatty acids, and methane yield increased by 65%. | [39] |
CSTR | Chicken manure | 9.0 | 15 | Ammonia stripping | 35% reduction in the TAN, The methane yield reached 0.20 L/g VS which was higher than control digesters (0.03 L/g VS). | [140] |
CSTR | Chicken manure | 5.3 | 40 | Ammonia stripping | 12–72% reduction in TAN concentration, the specific gas yield was 0.39 L/g VS. | [77] |
CSTR | Chicken manure | 2.7 | 64 | Activated carbon particles | 19% reduction in the TAN (from 14.2 to 11.5 g/L), 25% reduction of volatile fatty acids, and methane yield increased by 10%. | [141] |
Leach-bed process | Chicken manure | ND | ND | Membrane separation | Methane production in the membrane-integrated reactor was 2.3 times higher than in the control reactor. | [75] |
CSTR | Swine manure | 3.7 | 20 | Membrane separation | 23% TAN reduction in the membrane-separation reactor Specific methane yield increased by 17% compared with the control reactor. | [142] |
4.2. Supplementation of Trace Elements
Operation Mode | Substrate | OLR (g-VS/(L·d)) | HRT (d) | TAN (g/L) | FAN (g/L) | Types and Concentrations (mg/L) | Findings | Reference |
---|---|---|---|---|---|---|---|---|
Continuous | Chicken manure | 4.8 | 20 | 6.8 | 0.6 | Fe: 280, Ni: 2 | Increased 34% methane production and 29% reduction of VFAs against control. SAMA and SHMA increased by 89% and 40%, respectively. The relative abundance of Methanosarcina sp. in the control group was 75%, significantly lower than in the trace element reactor (95%). | [45] |
Continuous | Chicken manure | 3.6 | 30 | 6.6 | 0.7 | Ni:1, Co:1, Mo: 0.2, Se: 0.2, W: 0.2, | Methane yield increased by 117%. The relative abundance of hydrogenotrophic Methanoculleus bourgensis was 53%. | [158] |
Continuous | Chicken manure | 3.7 | 30 | 6.0 | 0.7 | Ni:1, Co:1, Mo: 0.2, Se: 0.2, W: 0.2, | CH4 yield increased five times more than the control (0.05 vs. 0.31 L/g VS). The relative abundance of Methanoculleus bourgensis in the control group was only 3%, significantly lower than the trace element reactor (53%). | [148] |
Continuous | Chicken manure | 2.8–3.0 | 30 | 5.9 | 0.5 | Ni:1, Co:1, Mo: 0.2, Se: 0.2, W: 0.2, | CH4 yield increased 146% to control (0.32 vs. 0.13 L/g VS). The relative abundance of Methanobrevibacter sp. increased from 20% to 80%. | [150] |
Continuous | Chicken manure | 2.8 | 30 | 5.0 | 0.4 | Se: 0.2 | CH4 yield increased 107% to control (0.27 vs. 0.13 L/g VS). The relative abundance of Methanoculleus bourgensis increased from 5% to 63%. | [150] |
Continuous | Chicken manure | 1.3–1.5 | 20 | 5.0 | 0.6 | Ni:8, Co:1, Mo:2, Se: 0.2, W: 0.3, Zn:100, Mn: 150, Fe:500 | Improved methane production efficiency by 38% and decreased the H2S content. | [159] |
Batch | Chicken manure | / | / | 6.0 | / | Ni:1, Co:1, Mo: 0.2, Se: 0.2, W: 0.2, Fe: 5 | CH4 production and production rate improved by 7–8% and 5–6%. | [147] |
Batch | Chicken manure | / | / | 4.0 | / | Ni:1, Co:1, Mo: 0.2, Se: 0.2, W: 0.2, Fe: 5 | CH4 production and production rate were increased by 20% and 40%. | [147] |
Batch | Chicken manure and corn stover | / | / | ND | / | Fe: 5, Ni: 1.0, Mn: 0.5, Co: 0.5, Mo: 0.1 | The relative abundance of Methanosarcina sp. in the control group was 86%; it was higher than that of RFe (71%), R-Mo (54%), R-Ni (54%), R-Mn (53%), and R-Co (56.7%). Methanosarcina sp., Methanobacterium sp., and Methanospirillum sp. were enriched in all trace element reactors. | [149] |
Batch | Livestock manure | / | / | ND | / | Fe: 20 | Increased the biogas and methane volume by 1.45 and 1.59 times by the control, respectively. | [143] |
Batch | Livestock manure | / | / | ND | / | Fe3O4: 20 | Increased the biogas and methane volume by 1.66 and 1.96 times by the control, respectively. | [143] |
Batch | Pig manure | / | / | ND | / | ZVI: 20 (g/L) | Increased 20–26% of CH4 yields. | [160] |
Batch | Swine manure | / | / | ND | / | ZVI: 5 (g/L) | Increased the CH4 yield by 17.6%. ZVI significantly increased the relative abundances of Methanothrix sp. and Methanolinea sp. to 37.5% and 8.6%, corresponding to an improvement of 19.8% and 16.2%. | [161] |
Batch | Cattle manure | / | / | ND | / | ZVI: 80 | Increased the CH4 yield by 6.56%. | [144] |
Batch | Cattle Manure | / | / | ND | / | Fe3O4: 18 | Increased the biogas and methane production by 27.6% and 25.4% compared to the control, respectively. | [162] |
5. Challenges and Perspectives
5.1. Feedstock Pretreatment and Reactor Innovation
5.2. Identifying the Functional Microbial Community
5.3. Quantitative Supplementation of Trace Elements
5.4. Solid-Liquid Separation of Digestate
5.5. High-Value Products from Methane
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patterson, T.; Esteves, S.; Dinsdale, R.; Guwy, A. An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy 2011, 39, 1806–1816. [Google Scholar] [CrossRef]
- Chew, K.R.; Leong, H.Y.; Khoo, K.S.; Vo, D.-V.N.; Anjum, H.; Chang, C.-K.; Show, P.L. Effects of anaerobic digestion of food waste on biogas production and environmental impacts: A review. Environ. Chem. Lett. 2021, 19, 2921–2939. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAO [EB/OL]. Available online: http://www.fao.org/home/en/ (accessed on 5 May 2022).
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure management: Implications for greenhouse gas emissions. Anim. Feed. Sci. Technol. 2011, 166–167, 514–531. [Google Scholar] [CrossRef]
- Feng, L.; Bonne Guldberg, L.; Jorgen Hansen, M.; Ma, C.; Vinther Ohrt, R.; Bjarne Moller, H. Impact of slurry removal frequency on CH4 emission and subsequent biogas production; a one-year case study. Waste Manag. 2022, 149, 199–206. [Google Scholar] [CrossRef]
- Serrano-Silva, N.; Sarria-GuzmÁN, Y.; Dendooven, L.; Luna-Guido, M. Methanogenesis and Methanotrophy in Soil: A Review. Pedosphere 2014, 24, 291–307. [Google Scholar] [CrossRef]
- Lin, M.; Ren, L.; Mdondo Wandera, S.; Liu, Y.; Dong, R.; Qiao, W. Enhancing pathogen inactivation in pig manure by introducing thermophilic and hyperthermophilic hygienization in a two-stage anaerobic digestion process. Waste Manag. 2022, 144, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Harirchi, S.; Wainaina, S.; Sar, T.; Nojoumi, S.A.; Parchami, M.; Parchami, M.; Varjani, S.; Khanal, S.K.; Wong, J.; Awasthi, M.K.; et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 2022, 13, 6521–6557. [Google Scholar] [CrossRef]
- Ileleji, K.E.; Martin, C.; Jones, D. Chapter 17: Basics of Energy Production through Anaerobic Digestion of Livestock Manure. In Bioenergy; Academic Press: Cambridge, MA, USA, 2015; pp. 287–295. [Google Scholar] [CrossRef]
- Nasir, I.M.; Ghazi, T.; Omar, R. Anaerobic digestion technology in livestock manure treatment for biogas production: A review. Eng. Life Sci. 2012, 12, 258–269. [Google Scholar] [CrossRef]
- Abid, M.; Wu, J.; Seyedsalehi, M.; Hu, Y.-Y.; Tian, G. Novel insights of impacts of solid content on high solid anaerobic digestion of cow manure: Kinetics and microbial community dynamics. Bioresour. Technol. 2021, 333, 125205. [Google Scholar] [CrossRef]
- Ahlberg-Eliasson, K.; Westerholm, M.; Isaksson, S.; Schnürer, A. Anaerobic Digestion of Animal Manure and Influence of Organic Loading Rate and Temperature on Process Performance, Microbiology, and Methane Emission from Digestates. Front. Energy Res. 2021, 9, 740314. [Google Scholar] [CrossRef]
- Jiang, Y.; McAdam, E.; Zhang, Y.; Heaven, S.; Banks, C.; Longhurst, P. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. J. Water Process Eng. 2019, 32, 100899. [Google Scholar] [CrossRef]
- Hashimoto, A. Ammonia inhibition of methanogenesis from cattle wastes. Agric. Wastes 1986, 17, 241–261. [Google Scholar] [CrossRef]
- Westerholm, M.; Dolfing, J.; Sherry, A.; Gray, N.D.; Head, I.M.; Schnurer, A. Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes. Environ. Microbiol. Rep. 2011, 3, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Westerholm, M.; Moestedt, J.; Schnurer, A. Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance. Appl. Energy 2016, 179, 124–135. [Google Scholar] [CrossRef]
- Schnürer, A.; Nordberg, A. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci. Technol. 2008, 57, 735–740. [Google Scholar] [CrossRef]
- Moestedt, J.; Bettina, M.; Westerholm, M.; Anna, S. Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microb. Biotechnol. 2015, 9, 180–194. [Google Scholar] [CrossRef]
- Wan, S.; Xi, B.; Xia, X.; Li, M.; Lv, D.; Wang, L.; Song, C. Using fluorescence excitation-emission matrix spectroscopy to monitor the conversion of organic matter during anaerobic co-digestion of cattle dung and duck manure. Bioresour. Technol. 2012, 123, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lim, T.T.; Duong, C.; Zhang, W.; Xu, C.; Yan, L.; Mei, Z.; Wang, W. Long-Term Mesophilic Anaerobic Co-Digestion of Swine Manure with Corn Stover and Microbial Community Analysis. Microorganisms 2020, 8, 188. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.; Feng, Y.; Ren, G.; Han, X. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour. Technol. 2012, 120, 78–83. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef]
- Orhan, Y.; Burak, D. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Walker, M.; Iyer, K.; Heaven, S.; Banks, C.J. Ammonia removal in anaerobic digestion by biogas stripping: An evaluation of process alternatives using a first order rate model based on experimental findings. Chem. Eng. J. 2011, 178, 138–145. [Google Scholar] [CrossRef]
- Sakar, S.; Yetilmezsoy, K.; Kocak, E. Anaerobic digestion technology in poultry and livestock waste treatment—A literature review. Waste Manag. Res. 2009, 27, 3–18. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Fan, R.; Song, Y.; Mahdy, A.; Dong, R.; Qiao, W. Enhancing Anaerobic Degradation of Lignocellulose-Rich Reed Straw by Adopting Grinding Pretreatment and High Temperature. Waste Biomass Valorization 2021, 12, 6067–6079. [Google Scholar] [CrossRef]
- Li, K.; Liu, R.; Sun, C. Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations. Bioresour. Technol. 2015, 198, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kafle, G.K.; Chen, L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Huang, G.; Yang, Z.; Han, L. Compositional characteristics and energy potential of Chinese animal manure by type and as a whole. Appl. Energy 2015, 160, 108–119. [Google Scholar] [CrossRef]
- Rajagopal, R.; Massé, D.I.; Singh, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.S.; Bao, Y.; Jin, P.; Tang, G.; Zhou, L. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew. Sustain. Energy Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Zubair, M.; Wang, S.; Zhang, P.; Ye, J.; Cai, Y. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. Bioresour. Technol. 2020, 301, 122823. [Google Scholar] [CrossRef]
- Bayrakdar, A.; Sürmeli, R.n.; Alli, B. Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia. Bioresour. Technol. 2017, 244, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Westerholm, M.; Qiao, W.; Xiong, L.; Mahdy, A.; Yin, D.; Song, Y.; Dong, R. Metabolic performance of anaerobic digestion of chicken manure under wet, high solid, and dry conditions. Bioresour. Technol. 2020, 296, 122342. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Qiao, W.; Xiong, L.; Ricci, M.; Adani, F.; Dong, R. Effects of organic loading rate on anaerobic digestion of chicken manure under mesophilic and thermophilic conditions. Renew. Energy 2019, 139, 242–250. [Google Scholar] [CrossRef]
- Bi, S.; Westerholm, M.; Hu, W.; Mahdy, A.; Dong, T.; Sun, Y.; Qiao, W.; Dong, R. The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: A case study of a 10-year successful biogas plant. Renew. Energy 2021, 167, 644–651. [Google Scholar] [CrossRef]
- Yin, D.M.; Mahboubi, A.; Wainaina, S.; Qiao, W.; Taherzadeh, M.J. The effect of mono- and multiple fermentation parameters on volatile fatty acids (VFAs) production from chicken manure via anaerobic digestion. Bioresour. Technol. 2021, 330, 124992. [Google Scholar] [CrossRef]
- Mahdy, A.; Bi, S.; Song, Y.; Qiao, W.; Dong, R. Overcome inhibition of anaerobic digestion of chicken manure under ammonia-stressed condition by lowering the organic loading rate. Bioresour. Technol. Rep. 2020, 9, 100359. [Google Scholar] [CrossRef]
- Yin, D.M.; Taherzadeh, M.J.; Lin, M.; Jiang, M.M.; Dong, R.J. Upgrading the anaerobic membrane bioreactor treatment of chicken manure by introducing in-situ ammonia stripping and hyper-thermophilic pretreatment. Bioresour. Technol. 2020, 310, 123470. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Hu, W.; Qiao, W.; Westerholm, M.; Wandera, S.M.; Dong, R. Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level. Renew. Energy 2022, 194, 13–20. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, W.; Luo, W.; Fang, H.; Lv, H.; Liu, R.; Niu, Q. Anaerobic co-digestion of chicken manure and cardboard waste: Focusing on methane production, microbial community analysis and energy evaluation. Bioresour. Technol. 2021, 321, 124429. [Google Scholar] [CrossRef]
- Dalkilic, K.; Ugurlu, A. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system. J. Biosci. Bioeng. 2015, 120, 315–322. [Google Scholar] [CrossRef]
- Niu, Q.; Hojo, T.; Qiao, W.; Qiang, H.; Li, Y.-Y. Characterization of methanogenesis, acidogenesis and hydrolysis in thermophilic methane fermentation of chicken manure. Chem. Eng. J. 2014, 244, 587–596. [Google Scholar] [CrossRef]
- Niu, Q.; Takemura, Y.; Kubota, K.; Li, Y.Y. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience. Waste Manag. 2015, 43, 114–122. [Google Scholar] [CrossRef]
- Bi, S.; Westerholm, M.; Qiao, W.; Mandy, A.; Xiong, L.; Yin, D.; Fan, R.; Dach, J.; Dong, R. Enhanced methanogenic performance and metabolic pathway of high solid anaerobic digestion of chicken manure by Fe 2+ and Ni 2+ supplementation. Waste Manag. 2019, 94, 10–17. [Google Scholar] [CrossRef]
- Choi, H.L.; Sudiarto, S.; Renggaman, A. Prediction of livestock manure and mixture higher heating value based on fundamental analysis. Fuel 2014, 116, 772–780. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Z.; Xu, X.; Jiang, X.; Zheng, B.; Liu, X.; Pan, X.; Kardol, P. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Manag. 2014, 34, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hu, Y.Y.; Wang, S.F.; Cao, Z.P.; Li, H.Z.; Fu, X.M.; Wang, K.J.; Zuo, J.E. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis. Waste Manag. 2017, 62, 69–75. [Google Scholar] [CrossRef]
- Dennehy, C.; Lawlor, P.G.; McCabe, M.S.; Cormican, P.; Sheahan, J.; Jiang, Y.; Zhan, X.; Gardiner, G.E. Anaerobic co-digestion of pig manure and food waste; effects on digestate biosafety, dewaterability, and microbial community dynamics. Waste Manag 2018, 71, 532–541. [Google Scholar] [CrossRef]
- Duan, N.; Zhang, D.; Lin, C.; Zhang, Y.; Zhao, L.; Liu, H.; Liu, Z. Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. J. Environ. Manag. 2019, 231, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Panichnumsin, P.; Ahring, B.; Nopharatana, A.; Chaiprasert, P. Microbial community structure and performance of an anaerobic reactor digesting cassava pulp and pig manure. Water Sci. Technol. 2012, 66, 1590–1600. [Google Scholar] [CrossRef] [PubMed]
- Kafle, G.K.; Kim, S.H.; Sung, K.I. Batch anaerobic co-digestion of Kimchi factory waste silage and swine manure under mesophilic conditions. Bioresour. Technol. 2012, 124, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, W.; Wu, J.; Chen, X.; Peng, Y. Improving two-stage thermophilic-mesophilic anaerobic co-digestion of swine manure and rice straw by digestate recirculation. Chemosphere 2021, 274, 129787. [Google Scholar] [CrossRef]
- Wang, K.; Yun, S.; Xing, T.; Li, B.; Abbas, Y.; Liu, X. Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: Focusing on kinetic models for biogas production and digestate utilization. Bioresour. Technol. 2021, 323, 124571. [Google Scholar] [CrossRef] [PubMed]
- El-Mashad, H.M.; Zeeman, G.; van Loon, W.K.; Bot, G.P.; Lettinga, G. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour. Technol. 2004, 95, 191–201. [Google Scholar] [CrossRef]
- Negral, L.; Castrillon, L.; Maranon, E.; Fernandez-Nava, Y.; Ormaechea, P. Inverted phase fermentation as a pretreatment for anaerobic digestion of cattle manure and sewage sludge. J. Environ. Manag. 2017, 203, 741–744. [Google Scholar] [CrossRef]
- Plug Flow Reactor Market—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2019–2027. Available online: https://www.transparencymarketresearch.com/plug-flow-reactor-market.html (accessed on 10 August 2022).
- Batstone, D.J.; Puyol, D.; Alsina, X.F.; Rodríguez, J. Mathematical modelling of anaerobic digestion processes: Applications and future needs. Rev. Environ. Sci. Biotechnol. 2015, 14, 595–613. [Google Scholar] [CrossRef]
- Sharma, V.K.; Testa, C.; Lastella, G.; Cornacchia, G. Inclined-plug-flow type reactor for anaerobic digestion of semi-solid waste. Appl. Energy 2000, 65, 173–185. [Google Scholar] [CrossRef]
- Linke, B.; Muha, I.; Wittum, G.; Plogsties, V. Mesophilic anaerobic co-digestion of cow manure and biogas crops in full scale German biogas plants: A model for calculating the effect of hydraulic retention time and VS crop proportion in the mixture on methane yield from digester and from digestate storage at different temperatures. Bioresour. Technol. 2013, 130, 689–695. [Google Scholar] [CrossRef]
- Gomez-Quiroga, X.; Aboudi, K.; Alvarez-Gallego, C.J.; Romero-Garcia, L.I. Successful and stable operation of anaerobic thermophilic co-digestion of sun-dried sugar beet pulp and cow manure under short hydraulic retention time. Chemosphere 2022, 293, 133484. [Google Scholar] [CrossRef]
- Dareioti, M.A.; Kornaros, M. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time. Bioresour. Technol. 2015, 175, 553–562. [Google Scholar] [CrossRef]
- Han, Y.; Green, H.; Tao, W. Reversibility of propionic acid inhibition to anaerobic digestion: Inhibition kinetics and microbial mechanism. Chemosphere 2020, 255, 126840. [Google Scholar] [CrossRef]
- Qiao, W.; Takayanagi, K.; Niu, Q.; Shofie, M.; Li, Y.Y. Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas. Bioresour. Technol. 2013, 149, 92–102. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, J.; Meng, L. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 2009, 33, 848–853. [Google Scholar] [CrossRef]
- Wagner, A.O.; Reitschuler, C.; Illmer, P. Effect of different acetate:propionate ratios on the methanogenic community during thermophilic anaerobic digestion in batch experiments. Biochem. Eng. J. 2014, 90, 154–161. [Google Scholar] [CrossRef]
- Hao, T.; Xiao, Y.; Varjani, S. Transiting from the inhibited steady-state to the steady-state through the ammonium bicarbonate mediation in the anaerobic digestion of low-C/N-ratio food wastes. Bioresour. Technol. 2022, 351, 127046. [Google Scholar] [CrossRef]
- Zheng, Z.; Cai, Y.; Zhang, Y.; Zhao, Y.; Gao, Y.; Cui, Z.; Hu, Y.; Wang, X. The effects of C/N (10–25) on the relationship of substrates, metabolites, and microorganisms in “inhibited steady-state” of anaerobic digestion. Water Res. 2021, 188, 116466. [Google Scholar] [CrossRef]
- Guo, Z.; Usman, M.; Alsareii, S.A.; Harraz, F.A.; Al-Assiri, M.S.; Jalalah, M.; Li, X.; Salama, E.S. Synergistic ammonia and fatty acids inhibition of microbial communities during slaughterhouse waste digestion for biogas production. Bioresour. Technol. 2021, 337, 125383. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Khoshnevisan, B.; Duan, N. Meta-analysis of anaerobic co-digestion of livestock manure in last decade: Identification of synergistic effect and optimization synergy range. Appl. Energy 2021, 282, 116128. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T.; Xing, Z.; Ma, Y.; Nan, F.; Pan, L.; Chen, J. Anaerobic co-digestion of Chinese cabbage waste and cow manure at mesophilic and thermophilic temperatures: Digestion performance, microbial community, and biogas slurry fertility. Bioresour. Technol. 2022, 363, 127976. [Google Scholar] [CrossRef]
- Cieslik, M.; Dach, J.; Lewicki, A.; Smurzynska, A.; Janczak, D.; Pawlicka-Kaczorowska, J.; Boniecki, P.; Cyplik, P.; Czekala, W.; Jozwiakowski, K. Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy 2016, 115, 1495–1502. [Google Scholar] [CrossRef]
- Lin, M.; Wang, A.; Ren, L.; Qiao, W.; Wandera, S.M.; Dong, R. Challenges of pathogen inactivation in animal manure through anaerobic digestion: A short review. Bioengineered 2022, 13, 1149–1161. [Google Scholar] [CrossRef]
- Yin, D.M.; Qiao, W.; Negri, C.; Adani, F.; Fan, R.; Dong, R.-J. Enhancing hyper-thermophilic hydrolysis pre-treatment of chicken manure for biogas production by in-situ gas phase ammonia stripping. Bioresour. Technol. 2019, 287, 121470. [Google Scholar] [CrossRef]
- Bayrakdar, A.; Sürmeli, R.Ö.; Çalli, B. Anaerobic digestion of chicken manure by a leach-bed process coupled with side-stream membrane ammonia separation. Bioresour. Technol. 2018, 258, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Ma, J.; Zhai, L.; Liu, H. Enhanced methane production and syntrophic connection between microorganisms during semi-continuous anaerobic digestion of chicken manure by adding biochar. J. Clean. Prod. 2019, 240, 118178. [Google Scholar] [CrossRef]
- Nie, H.; Jacobi, H.F.; Strach, K.; Xu, C.; Zhou, H.; Liebetrau, J. Mono-fermentation of chicken manure: Ammonia inhibition and recirculation of the digestate. Bioresour. Technol. 2015, 178, 238–246. [Google Scholar] [CrossRef]
- Bi, S.; Qiao, W.; Xiong, L.; Mahdy, A.; Wandera, S.M.; Yin, D.; Dong, R. Improved high solid anaerobic digestion of chicken manure by moderate in situ ammonia stripping and its relation to metabolic pathway. Renew. Energy 2020, 146, 2380–2389. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Ibragimov, E.M.; Vankov, P.Y.; Miluykov, V.A.; Ziganshin, A.M. Comparison of anaerobic digestion strategies of nitrogen-rich substrates: Performance of anaerobic reactors and microbial community diversity. Waste Manag. 2016, 59, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Qiao, W.; Qiang, H.; Hojo, T.; Li, Y.Y. Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration: Stability, inhibition and recovery. Bioresour. Technol. 2013, 137, 358–367. [Google Scholar] [CrossRef]
- Wandera, S.M.; Qiao, W.; Algapani, D.E.; Bi, S.; Yin, D.; Qi, X.; Liu, Y.; Dach, J.; Dong, R. Searching for possibilities to improve the performance of full scale agricultural biogas plants. Renew. Energy 2018, 116, 720–727. [Google Scholar] [CrossRef]
- Bayrakdar, A.; Molaey, R.; Sürmeli, R.Ö.; Sahinkaya, E.; Calli, B. Biogas production from chicken manure: Co-digestion with spent poppy straw. Int. Biodeterior. Biodegrad. 2016, 119, 205–210. [Google Scholar] [CrossRef]
- Yin, D.M.; Westerhol, M.; Qiao, W.; Bi, S.J.; Wandera, S.M.; Fan, R.; Jiang, M.M.; Dong, R.J. An explanation of the methanogenic pathway for methane production in anaerobic digestion of nitrogen-rich materials under mesophilic and thermophilic conditions. Bioresour. Technol. 2018, 264, 42–50. [Google Scholar] [CrossRef]
- Daniel, M.; Gilbert, Y.; Topp, E. Pathogen removal in farm-scale psychrophilic anaerobic digesters processing swine manure. Bioresour. Technol. 2011, 102, 641–646. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Wu, J.; Li, H.Z.; Poncin, S.; Wang, K.J.; Zuo, J.E. Study of an enhanced dry anaerobic digestion of swine manure: Performance and microbial community property. Bioresour. Technol. 2019, 282, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Liu, M.; Li, K.; Li, C.; Wang, K. Optimizing dry anaerobic digestion at pilot scale for start-up strategy and long-term operation: Organic loading rate, temperature and co-digestion. Bioresour. Technol. 2020, 316, 123828. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Dong, H.; Zhu, Z.; Li, B. Performance Evaluation of a Large-Scale Swine Manure Mesophilic Biogas Plant in China. Trans. ASABE 2017, 60, 1713–1720. [Google Scholar] [CrossRef]
- Tian, T.; Qiao, W.; Han, Z.; Wen, X.; Yang, M.; Zhang, Y. Effect of temperature on the persistence of fecal bacteria in ambient anaerobic digestion systems treating swine manure. Sci. Total Environ. 2021, 791, 148302. [Google Scholar] [CrossRef]
- Masse, D.I.; Yan, G.; Saady, N.; Liu, C. Low-temperature anaerobic digestion of swine manure in a plug-flow reactor. Environ. Technol. 2013, 34, 2617–2624. [Google Scholar] [CrossRef]
- Cavinato, C.; Fatone, F.; Bolzonella, D.; Pavan, P. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: Comparison of pilot and full scale experiences. Bioresour. Technol. 2010, 101, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Moset, V.; Poulsen, M.; Wahid, R.; Hojberg, O.; Moller, H.B. Mesophilic versus thermophilic anaerobic digestion of cattle manure: Methane productivity and microbial ecology. Microb. Biotechnol. 2015, 8, 787–800. [Google Scholar] [CrossRef]
- Christou, M.L.; Vasileiadis, S.; Karpouzas, D.G.; Angelidaki, I.; Kotsopoulos, T.A. Effects of organic loading rate and hydraulic retention time on bioaugmentation performance to tackle ammonia inhibition in anaerobic digestion. Bioresour. Technol. 2021, 334, 125246. [Google Scholar] [CrossRef]
- Chen, S.; Dong, X. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 2005, 55, 2257–2261. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Eugenio, G.; Fardeau, M.L.; Cayol, J.L.; Patel, B.; Ollivier, B. Sporanaerobacter acetigenes gen. nov., sp. nov., a novel acetogenic, facultatively sulfur-reducing bacterium. Int. J. Syst. Evol. Microbiol. 2002, 52, 1217–1223. [Google Scholar] [CrossRef]
- Menes, R.J.; Mux, L.A. Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int. J. Syst. Evol. Microbiol. 2002, 52, 157–164. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Mladenovska, Z.; Westermann, P.; Ahring, B.K. Comparison of two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion with one-stage thermophilic (55 degrees C) digestion of cattle manure. Biotechnol. Bioeng. 2004, 86, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Chai, W.S.; Lay, C.-H.; Chen, C.-C.; Lee, C.-Y.; Show, P.L. Optimization of Hydrolysis-Acidogenesis Phase of Swine Manure for Biogas Production Using Two-Stage Anaerobic Fermentation. Processes 2021, 9, 1324. [Google Scholar] [CrossRef]
- Dareioti, M.A.; Vavouraki, A.I.; Tsigkou, K.; Kornaros, M. Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey. Energies 2021, 14, 5423. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Ahring, B.K.; Ibrahim, A.A.; Mladenovska, Z. Effect of temperature increase from 55 to 65 °C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res. 2001, 35, 2446–2452. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhao, L.; Li, C.; Angelidaki, I.; Zhu, G. Deep insights into the network of acetate metabolism in anaerobic digestion: Focusing on syntrophic acetate oxidation and homoacetogenesis. Water Res. 2021, 190, 116774. [Google Scholar] [CrossRef]
- Westerholm, M.; Muller, B.; Arthurson, V.; Schnurer, A. Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes Environ. 2011, 26, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Na, D.; Zhang, Y.; Liu, Z.; Li, B.; Zhang, D.; Dong, T. Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation. Waste Manag. 2017, 68, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Cao, G.; Guo, X.; Liu, T.; Wu, J.; Ren, N. Efficient biogas production from cattle manure in a plug flow reactor: A large scale long term study. Bioresour. Technol. 2019, 278, 450–455. [Google Scholar] [CrossRef]
- Conklin, A.; Stensel, H.D.; Ferguson, J. Growth Kinetics and Competition between Methanosarcina and Methanosaeta in Mesophilic Anaerobic Digestion. Water Environ. Res. 2006, 78, 486–496. [Google Scholar] [CrossRef]
- Hendriksen, H.V.; Ahring, B.K. Effects of ammonia on growth and morphology of thermophilic hydrogen-oxidizing methanogenic bacteria. FEMS Microbiol. Lett. 1991, 85, 241–246. [Google Scholar] [CrossRef]
- Lauterböck, B.; Nikolausz, M.; Lv, Z.; Baumgartner, M.; Liebhard, G.; Fuchs, W. Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide. Bioresour. Technol. 2014, 158, 209–216. [Google Scholar] [CrossRef]
- Cuzin, N.; Ouattara, A.S.; Labat, M.; Garcia, J.L. Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. Int. J. Syst. Evol. Microbiol. 2001, 51, 489–493. [Google Scholar] [CrossRef]
- Savant, D.V.; Shouche, Y.S.; Prakash, S.; Ranade, D.R. Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int. J. Syst. Evol. Microbiol. 2002, 52, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Zhilina, T.N.; Zavarzina, D.G.; Kevbrin, V.V.; Kolganova, T.V. Methanocalculus natronophilus sp. nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae. Microbiology 2014, 82, 698–706. [Google Scholar] [CrossRef]
- Zellner, G.; Messner, P.; Winter, J.; Stackebrandt, E. Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int. J. Syst. Bacteriol. 1998, 48, 1111–1117. [Google Scholar] [CrossRef]
- Patel, G.B.; Sprott, G.D. Methanosaeta concilii gen. nov. sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int. J. Syst. Bacteriol. 1990, 40, 79–82. [Google Scholar] [CrossRef]
- Kai, M.; Liu, X.; Dong, X. Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int. J. Syst. Evol. Microbiol. 2006, 56, 127–131. [Google Scholar] [CrossRef]
- Kern, T.; Fischer, M.A.; Deppenmeier, U.; Schmitz, R.A.; Rother, M. Methanosarcina flavescens sp. nov., a methanogenic archaeon isolated from a full-scale anaerobic digester. Int. J. Syst. Evol. Microbiol. 2016, 66, 1533–1538. [Google Scholar] [CrossRef]
- Westerholm, M.; Dolfing, J.; Schnurer, A. Growth Characteristics and Thermodynamics of Syntrophic Acetate Oxidizers. Environ. Sci. Technol. 2019, 53, 5512–5520. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, J.; Wei, Y.; Shen, P. Effects of ferric oxide on the microbial community and functioning during anaerobic digestion of swine manure. Bioresour. Technol. 2019, 287, 121393. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kim, S.; Kwon, O.S. Effect of applied voltage and temperature on methane production and microbial community in microbial electrochemical anaerobic digestion systems treating swine manure. J. Ind. Microbiol. Biotechnol. 2019, 46, 911–923. [Google Scholar] [CrossRef]
- Sun, L.; Pope, P.B.; Eijsink, V.G.; Schnurer, A. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb. Biotechnol. 2015, 8, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhang, C. Anaerobic codigestion of pretreated wheat straw with cattle manure and analysis of the microbial community. Bioresour. Technol. 2015, 186, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yuan, H.; Wachemo, A.C.; Li, X. Anaerobic co-digestion of cattle manure and liquid fraction of digestate (LFD) pretreated corn stover: Pretreatment process optimization and evolution of microbial community structure. Bioresour. Technol. 2020, 296, 122282. [Google Scholar] [CrossRef] [PubMed]
- Montecchio, D.; Esposito, G.; Gagliano, M.C.; Gallipoli, A.; Gianico, A.; Braguglia, C.M. Syntrophic acetate oxidation during the two-phase anaerobic digestion of waste activated sludge: Microbial population, Gibbs free energy and kinetic modelling. Int. Biodeterior. Biodegrad. 2017, 125, 177–188. [Google Scholar] [CrossRef]
- Dyksma, S.; Jansen, L.; Gallert, C. Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome 2020, 8, 105. [Google Scholar] [CrossRef]
- Lue, F.; Hao, L.; Guan, D.; Qi, Y.; Shao, L.; He, P. Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics. Water Res. 2013, 47, 2297–2306. [Google Scholar] [CrossRef]
- Tian, H.; Fotidis, I.A.; Kissas, K.; Angelidaki, I. Effect of different ammonia sources on aceticlastic and hydrogenotrophic methanogens. Bioresour. Technol. 2018, 250, 390–397. [Google Scholar] [CrossRef]
- Rivera-Salvador, V.; Lopez-Cruz, I.L.; Espinosa-Solares, T.; Aranda-Barradas, J.S.; Huber, D.H.; Sharma, D.; Toledo, J.U. Application of Anaerobic Digestion Model No. 1 to describe the syntrophic acetate oxidation of poultry litter in thermophilic anaerobic digestion. Bioresour. Technol. 2014, 167, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Hattori, S.; Kamagata, Y.; Hanada, S.; Shoun, H. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 2000, 50, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Balk, M.; Weijma, J.; Stams, A.J.M. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int. J. Syst. Evol. Microbiol. 2002, 52, 1361–1368. [Google Scholar] [CrossRef]
- Schnurer, A.; Schink, B.; Svensson, B.H. Clostridium ultunense sp. nov., a Mesophilic Bacterium Oxidizing Acetate in Syntrophic Association with a Hydrogenotrophic Methanogenic Bacterium. Int. J. Syst. Bacteriol. 1996, 46, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Westerholm, M.; Roos, S.; Schnürer, A. Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. Fems Microbiol. Lett. 2010, 309, 100–104. [Google Scholar] [CrossRef]
- Westerholm, M.; Roos, S.; Schnürer, A. Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Syst. Appl. Microbiol. 2011, 34, 260–266. [Google Scholar] [CrossRef]
- Manzoor, S.; Bongcam-Rudloff, E.; Schnürer, A.; Müller, B. Genome-Guided Analysis and Whole Transcriptome Profiling of the Mesophilic Syntrophic Acetate Oxidising Bacterium Syntrophaceticus schinkii. PLoS ONE 2016, 11, e0166520. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Fotidis, I.A.; Irini, A. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria. FEMS Microbiol. Ecol. 2015, 91, fiv130. [Google Scholar] [CrossRef]
- Ruiz-Sanchez, J.; Guivernau, M.; Fernandez, B.; Vila, J.; Vinas, M.; Riau, V.; Prenafeta-Boldu, F.X. Functional biodiversity and plasticity of methanogenic biomass from a full-scale mesophilic anaerobic digester treating nitrogen-rich agricultural wastes. Sci. Total Environ. 2019, 649, 760–769. [Google Scholar] [CrossRef]
- Westerholm, M.; Leven, L.; Schnurer, A. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Appl. Environ. Microbiol. 2012, 78, 7619–7625. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Fan, L.; Chapleur, O.; Guenne, A.e.; Bize, A.; Bureau, C.; Lü, F.; He, P.; Bouchez, T.; Maz’eas, L. Gradual development of ammonia-induced syntrophic acetate-oxidizing activities under mesophilic and thermophilic conditions quantitatively tracked using multiple isotopic approaches. Water Res. 2021, 204, 117586. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-J.; Morris, T.C.; Samocha, T.M. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture 2016, 453, 169–175. [Google Scholar] [CrossRef]
- Palakodeti, A.; Azman, S.; Rossi, B.; Dewil, R.; Appels, L. A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping. Renew. Sustain. Energy Rev. 2021, 143, 110903. [Google Scholar] [CrossRef]
- Hu, L.; Yu, J.; Luo, H.; Wang, H.; Xu, P.; Zhang, Y. Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation. Chem. Eng. J. 2020, 382, 123001. [Google Scholar] [CrossRef]
- Ham, K.; Beom, S.K.; Kwon, Y.C. Enhanced ammonium removal efficiency by ion exchange process of synthetic zeolite after Na+ and heat pretreatment. Water Sci. Technol. 2018, 78, 1417–1425. [Google Scholar] [CrossRef]
- Li, K.; Liu, R.; Yu, Q.; Ma, R. Removal of nitrogen from chicken manure anaerobic digestion for enhanced biomethanization. Fuel 2018, 232, 395–404. [Google Scholar] [CrossRef]
- Zhou, M.; Li, C.; Ni, F.; Chen, A.; Li, M.; Shen, G.; Deng, Y.; Deng, L. Packed activated carbon particles triggered a more robust syntrophic pathway for acetate oxidation-hydrogenotrophic methanogenesis at extremely high ammonia concentrations. Renew. Energy 2022, 191, 305–317. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, I.; Riano, B.; Molinuevo-Salces, B.; Vanotti, M.B.; Garcia-Gonzalez, M.C. Improved anaerobic digestion of swine manure by simultaneous ammonia recovery using gas-permeable membranes. Water Res. 2021, 190, 116789. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 2017, 120, 842–853. [Google Scholar] [CrossRef]
- Ma, J.; Gu, J.; Wang, X.; Peng, H.; Bao, J. Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure. Bioresour. Technol. 2019, 289, 121688. [Google Scholar] [CrossRef]
- Feng, X.M.; Karlsson, A.; Svensson, B.H.; Bertilsson, S. Impact of trace element addition on biogas production from food industrial waste--linking process to microbial communities. FEMS Microbiol. Ecol. 2010, 74, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, A.; Einarsson, P.; Schnürer, A.; Sundberg, C.; Ejlertsson, J.; Svensson, B.H. Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J. Biosci. Bioeng. 2012, 114, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Molaey, R.; Bayrakdar, A.; Sürmeli, R.Ö.; Çalli, B. Anaerobic digestion of chicken manure: Influence of trace element supplementation. Eng. Life Sci. 2019, 19, 143–150. [Google Scholar] [CrossRef]
- Molaey, R.; Bayrakdar, A.; Calli, B. Long-term inuence of trace element deciency on anaerobic mono-digestion of chicken manure. J. Environ. Manag. 2018, 223, 743–748. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Z.; Ran, W.; Yuan, H.; Li, X. Performance and microbial community dynamics in anaerobic co-digestion of chicken manure and corn stover with different modification methods and trace element supplementation strategy. Bioresour. Technol. 2021, 325, 124713. [Google Scholar] [CrossRef] [PubMed]
- Molaey, R.; Bayrakdar, A.; Sürmeli, R.O.; Çalli, B. Influence of trace element supplementation on anaerobic digestion of chicken manure: Linking process stability to methanogenic population dynamics. J. Clean. Prod. 2018, 181, 794–800. [Google Scholar] [CrossRef]
- Thanh, P.M.; Ketheesan, B.; Yan, Z.; Stuckey, D. Trace metal speciation and bioavailability in anaerobic digestion: A review. Biotechnol. Adv. 2016, 34, 122–136. [Google Scholar] [CrossRef]
- Choong, Y.Y.; Ismail, N.; Abdullah, A.Z.; Yhaya, M.F. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresour. Technol. 2016, 209, 369–379. [Google Scholar] [CrossRef]
- Luo, G.; Angelidaki, I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol. Bioeng. 2012, 109, 2729–2736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, Y.; Qilin, Y.; Xu, Z.; Quan, X. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron. Bioresour. Technol. 2014, 159, 297–304. [Google Scholar] [CrossRef]
- Wei, J.; Hao, X.; van Loosdrecht, M.C.M.; Li, J. Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review. Renew. Sustain. Energy Rev. 2018, 89, 16–26. [Google Scholar] [CrossRef]
- Xin, K.; Yu, S.; Shuang, X.; Wen, F.; Liu, J.; Li, H. Effect of Fe0 addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates. Waste Manag. 2017, 71, 719–727. [Google Scholar] [CrossRef]
- Hao, X.; Wei, J.; Van Loosdrecht, M.C.M.; Cao, D. Analysing the mechanisms of sludge digestion enhanced by iron. Water Res. 2017, 117, 58–67. [Google Scholar] [CrossRef]
- Molaey, R.; Bayrakdar, A.; Recep, S.; Alli, B. Anaerobic digestion of chicken manure: Mitigating process inhibition at high ammonia concentrations by selenium supplementation. Biomass Bioenergy 2018, 108, 439–446. [Google Scholar] [CrossRef]
- Cai, Y.; Janke, L.; Meng, X.; Zheng, Z.; Zhao, X.; Pr¨oter, J.; Sch¨afer, F. The absolute concentration and bioavailability of trace elements: Two vital parameters affecting anaerobic digestion performance of chicken manure leachate. Bioresour. Technol. 2022, 350, 126909. [Google Scholar] [CrossRef]
- Liang, Y.G.; Li, X.J.; Zhang, J.; Zhang, L.G.; Cheng, B. Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure. Environ. Sci. Pollut. Res. 2017, 24, 12328–12337. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, F.; Huang, W.; Lei, Z.; Zhang, Z.; Huang, W. Combined effect of zero valent iron and magnetite on semi-dry anaerobic digestion of swine manure. Bioresour. Technol. 2022, 346, 126438. [Google Scholar] [CrossRef]
- Singh, D.; Malik, K.; Sindhu, M.; Kumari, N.; Rani, V.; Mehta, S.; Malik, K.; Ranga, P.; Sharma, K.; Dhull, N.; et al. Biostimulation of Anaerobic Digestion Using Iron Oxide Nanoparticles (IONPs) for Increasing Biogas Production from Cattle Manure. Nanomaterials 2022, 12, 497. [Google Scholar] [CrossRef]
- Bolado-Rodriguez, S.; Toquero, C.; Martin-Juarez, J.; Travaini, R.; Garcia-Encina, P.A. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour. Technol. 2016, 201, 182–190. [Google Scholar] [CrossRef]
- Hendriks, A.T.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Usman Khan, M.; Kiaer Ahring, B. Improving the biogas yield of manure: Effect of pretreatment on anaerobic digestion of the recalcitrant fraction of manure. Bioresour. Technol. 2021, 321, 124427. [Google Scholar] [CrossRef]
- Gaballah, E.S.; Abomohra, A.E.; Xu, C.; Elsayed, M.; Abdelkader, T.K.; Lin, J.; Yuan, Q. Enhancement of biogas production from rape straw using different co-pretreatment techniques and anaerobic co-digestion with cattle manure. Bioresour. Technol. 2020, 309, 123311. [Google Scholar] [CrossRef]
- Lizasoain, J.; Trulea, A.; Gittinger, J.; Kral, I.; Piringer, G.; Schedl, A.; Nilsen, P.J.; Potthast, A.; Gronauer, A.; Bauer, A. Corn stover for biogas production: Effect of steam explosion pretreatment on the gas yields and on the biodegradation kinetics of the primary structural compounds. Bioresour. Technol. 2017, 244, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Verde, I.; Regueiro, L.; Lema, J.M.; Carballa, M. Blending based optimisation and pretreatment strategies to enhance anaerobic digestion of poultry manure. Waste Manag. 2018, 71, 521–531. [Google Scholar] [CrossRef] [PubMed]
- De Vrieze, J.; Regueiro, L.; Props, R.; Vilchez-Vargas, R.; Jauregui, R.; Pieper, D.H.; Lema, J.M.; Carballa, M. Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion. Biotechnol. Biofuels 2016, 9, 244. [Google Scholar] [CrossRef]
- Zakrzewski, M.; Goesmann, A.; Jaenicke, S.; Junemann, S.; Eikmeyer, F.; Szczepanowski, R.; Al-Soud, W.A.; Sorensen, S.; Puhler, A.; Schluter, A. Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J. Biotechnol. 2012, 158, 248–258. [Google Scholar] [CrossRef]
- Huber, D.; Voith von Voithenberg, L.; Kaigala, G.V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? Micro Nano Eng. 2018, 1, 15–24. [Google Scholar] [CrossRef]
- Karakashev, D.; Batstone, D.J.; Trably, E.; Angelidaki, I. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl. Environ. Microbiol. 2006, 72, 5138–5141. [Google Scholar] [CrossRef]
- Nocker, A.; Sossa, K.E.; Camper, A.K. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J. Microbiol. Methods 2007, 70, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Gomec, C.Y.; Ahn, Y.; Speece, R.E. Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environ. Technol. 2003, 24, 1183–1190. [Google Scholar] [CrossRef]
- Aquino, S.F.; Stuckey, D.C. Bioavailability and Toxicity of Metal Nutrients during Anaerobic Digestion. J. Environ. Eng. 2007, 133, 28–35. [Google Scholar] [CrossRef]
- Grell, T.; Marchuk, S.; Williams, I.; McCabe, B.K.; Tait, S. Resource recovery for environmental management of dilute livestock manure using a solid-liquid separation approach. J. Environ. Manag. 2022, 325, 116254. [Google Scholar] [CrossRef]
- Liu, X.-M.; Sheng, G.-P.; Luo, H.-W.; Feng, Z. Contribution of Extracellular Polymeric Substances (EPS) to the Sludge Aggregation. Environ. Sci. Technol. 2010, 44, 4355–4360. [Google Scholar] [CrossRef]
- Vaxelaire, J.; Cezac, P. Moisture distribution in activated sludges: A review. Water Res. 2004, 38, 2214–2229. [Google Scholar] [CrossRef]
- Wi, J.; Lee, S.; Ahn, H. Influence of Dairy Manure as Inoculum Source on Anaerobic Digestion of Swine Manure. Bioengineering 2023, 10, 432. [Google Scholar] [CrossRef] [PubMed]
- Demichelis, F.; Tommasi, T.; Deorsola, F.A.; Marchisio, D.; Fino, D. Effect of inoculum origin and substrate-inoculum ratio to enhance the anaerobic digestion of organic fraction municipal solid waste (OFMSW). J. Clean. Prod. 2022, 351, 131539. [Google Scholar] [CrossRef]
- Fan, Z.; Xiao, W. Electrochemical Splitting of Methane in Molten Salts To Produce Hydrogen. Angew. Chem. Int. Ed. Engl. 2021, 60, 7664–7668. [Google Scholar] [CrossRef]
- Wismann, S.T.; Engbæk, J.S.; Vendelbo, S.B.; Bendixen, F.B. Electrified methane reforming A compact approach to greener industrial hydrogen production. Science 2019, 364, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Gamal, A.; Eid, K.; El-Naas, M.H.; Kumar, D.; Kumar, A. Catalytic Methane Decomposition to Carbon Nanostructures and COx-Free Hydrogen: A Mini-Review. Nanomaterials 2021, 11, 1226. [Google Scholar] [CrossRef]
- Kerckhof, F.M.; Sakarika, M.; Van Giel, M.; Muys, M.; Vermeir, P.; De Vrieze, J.; Vlaeminck, S.E.; Rabaey, K.; Boon, N. From Biogas and Hydrogen to Microbial Protein Through Co-Cultivation of Methane and Hydrogen Oxidizing Bacteria. Front. Bioeng. Biotechnol. 2021, 9, 733753. [Google Scholar] [CrossRef] [PubMed]
- Anupamaa; Ravindra, P. Value-added food: Single cell protein. Biotechnol. Adv. 2000, 18, 459–479. [Google Scholar] [CrossRef]
- Pander, B.; Mortimer, Z.; Woods, C.; McGregor, C.; Dempster, A.; Thomas, L.; Maliepaard, J.; Mansfield, R.; Rowe, P.; Krabben, P. Hydrogen oxidising bacteria for production of single-cell protein and other food and feed ingredients. Eng. Biol. 2020, 4, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Mahdy, A.; Hou, Z.; Lin, M.; Stinner, W.; Qiao, W.; Dong, R. Air Supplement as a Stimulation Approach for the In Situ Desulfurization and Methanization Enhancement of Anaerobic Digestion of Chicken Manure. Energy Fuels 2020, 34, 12606–12615. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Qiao, W.; Westerholm, M.; Huang, G.; Taherzadeh, M.J.; Dong, R. Microbiological and Technological Insights on Anaerobic Digestion of Animal Manure: A Review. Fermentation 2023, 9, 436. https://doi.org/10.3390/fermentation9050436
Song Y, Qiao W, Westerholm M, Huang G, Taherzadeh MJ, Dong R. Microbiological and Technological Insights on Anaerobic Digestion of Animal Manure: A Review. Fermentation. 2023; 9(5):436. https://doi.org/10.3390/fermentation9050436
Chicago/Turabian StyleSong, Yapeng, Wei Qiao, Maria Westerholm, Guangqun Huang, Mohammad J. Taherzadeh, and Renjie Dong. 2023. "Microbiological and Technological Insights on Anaerobic Digestion of Animal Manure: A Review" Fermentation 9, no. 5: 436. https://doi.org/10.3390/fermentation9050436
APA StyleSong, Y., Qiao, W., Westerholm, M., Huang, G., Taherzadeh, M. J., & Dong, R. (2023). Microbiological and Technological Insights on Anaerobic Digestion of Animal Manure: A Review. Fermentation, 9(5), 436. https://doi.org/10.3390/fermentation9050436