Bioconversion of Carrot Pomace to Value-Added Products: Rhizopus delemar Fungal Biomass and Cellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fungal Agar Plates
2.3. Pretreatment of the Carrot Pomace
2.4. Fungal Growth in Shake Flasks
2.5. Fungal Cultivation in Bench-Scale Bioreactors
2.6. Analytical Methods
2.6.1. Thermogravimetric Analysis (TGA)
2.6.2. Fluidscope™ Scanning (oCelloScope)
2.6.3. Fourier Transform Infrared (FTIR) SPECTROSCOPY
2.6.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Pretreatments on CP and SFCP
3.2. Effect of Pretreatments on Fungal Growth in Shake Flasks
3.3. Scale-Up of the Fungal Cultivation
3.4. Thermal Characterization of CP and SFCP after the Enzymatic Pretreatments
3.5. Chemical Composition Analyzed by Fourier Transform Infrared Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, C.; Wu, H.; Cai, M.; Li, Y.; Guo, C.; Han, Y.; Zhang, Y.; Song, B. Valorization of food waste digestate to ash and biochar composites for high performance adsorption of methylene blue. J. Clean. Prod. 2023, 397, 136612. [Google Scholar] [CrossRef]
- Ibarruri, J.; Hernández, I. Valorization of cheese whey and orange molasses for fungal biomass production by submerged fermentation with Rhizopus sp. Bioprocess Biosyst. Eng. 2019, 42, 1285–1300. [Google Scholar] [CrossRef]
- Rovai, D.; Ortgies, M.; Amin, S.; Kuwahara, S.; Schwartz, G.; Lesniauskas, R.; Garza, J.; Lammert, A. Utilization of Carrot Pomace to Grow Mealworm Larvae (Tenebrio molitor). Sustainability 2021, 13, 9341. [Google Scholar] [CrossRef]
- Amoroso, L.; De France, K.J.; Milz, C.I.; Siqueira, G.; Zimmermann, T.; Nyström, G. Sustainable Cellulose Nanofiber Films from Carrot Pomace as Sprayable Coatings for Food Packaging Applications. ACS Sustain. Chem. Eng. 2021, 10, 342–352. [Google Scholar] [CrossRef]
- Berglund, L.; Noël, M.; Aitomäki, Y.; Öman, T.; Oksman, K. Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Ind. Crops Prod. 2016, 92, 84–92. [Google Scholar] [CrossRef]
- Zambelli, R.A.; Pontes, B.C.V.; Pontes, E.R.; Silva, M.L.; Junior, E.C.S.; Pinto, L.I.F.; Melo, C.A.L.; Farias, M.M.; da Costa, C.S.; da Silva, A.C. Broccoli and carrot industrial solid waste characterization and application in the bread food matrix. Int. J. Nutr. Food Sci. 2017, 6, 9–15. [Google Scholar] [CrossRef]
- Ramos-Andrés, M.; Díaz-Cesteros, S.; Majithia, N.; García-Serna, J. Pilot-scale biorefinery for the production of purified biopolymers based on hydrothermal treatment in flow-through reactor cycles. Chem. Eng. J. 2022, 437, 135123. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.-Y.; Jiang, B.-H.; Duan, K.-J. Production of bioethanol from carrot pomace using the thermotolerant yeast Kluyveromyces marxianus. Energies 2013, 6, 1794–1801. [Google Scholar] [CrossRef] [Green Version]
- Roukas, T.; Kotzekidou, P. From food industry wastes to second generation bioethanol: A review. Rev. Environ. Sci. Biotechnol. 2022, 21, 299–329. [Google Scholar] [CrossRef]
- Singh, R.S.; Chauhan, K.; Singh, J.; Pandey, A.; Larroche, C. Solid-state fermentation of carrot pomace for the production of inulinase by Penicillium oxalicum BGPUP-4. Food Technol. Biotechnol. 2018, 56, 31–39. [Google Scholar] [CrossRef]
- Çakır, Z.B.; Yılmaz, H.; Ertan, F.; Tanrıseven, A.; Özkan, M. Carrot pomace alone supports heterotrophic growth and lipid production of Auxenochlorella protothecoides. Biomass Convers. Biorefin. 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Wijayarathna, E.R.K.B.; Mohammadkhani, G.; Soufiani, A.M.; Adolfsson, K.H.; Ferreira, J.A.; Hakkarainen, M.; Berglund, L.; Heinmaa, I.; Root, A.; Zamani, A. Fungal textile alternatives from bread waste with leather-like properties. Resour. Conserv. Recycl. 2022, 179, 106041. [Google Scholar] [CrossRef]
- Svensson, S.E.; Bucuricova, L.; Ferreira, J.A.; Souza Filho, P.F.; Taherzadeh, M.J.; Zamani, A. Valorization of bread waste to a fiber-and protein-rich fungal biomass. Fermentation 2021, 7, 91. [Google Scholar] [CrossRef]
- Köhnlein, M.B.M.; Abitbol, T.; Oliveira, A.O.; Magnusson, M.S.; Adolfsson, K.H.; Svensson, S.E.; Ferreira, J.A.; Hakkarainen, M.; Zamani, A. Bioconversion of food waste to biocompatible wet-laid fungal films. Mater. Des. 2022, 216, 110534. [Google Scholar] [CrossRef]
- Wikandari, R.; Millati, R.; Lennartsson, P.R.; Harmayani, E.; Taherzadeh, M.J. Isolation and characterization of zygomycetes fungi from tempe for ethanol production and biomass applications. Biotechnol. Appl. Biochem. 2012, 167, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Parchami, M.; Ferreira, J.A.; Taherzadeh, M.J. Starch and protein recovery from brewer’s spent grain using hydrothermal pretreatment and their conversion to edible filamentous fungi—A brewery biorefinery concept. Bioresour. Technol. 2021, 337, 125409. [Google Scholar] [CrossRef]
- Chojnacki, J.; Zdanowicz, A.; Ondruška, J.; Šooš, Ľ.; Smuga-Kogut, M. The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw. Energies 2021, 14, 405. [Google Scholar] [CrossRef]
- Ramos-Andrés, M.; Aguilera-Torre, B.; García-Serna, J. Hydrothermal production of high-molecular weight hemicellulose-pectin, free sugars and residual cellulose pulp from discarded carrots. J. Clean. Prod. 2021, 290, 125179. [Google Scholar] [CrossRef]
- de Vrije, T.; Budde, M.A.W.; Lips, S.J.; Bakker, R.R.; Mars, A.E.; Claassen, P.A.M. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int. J. Hydrogen Energy 2010, 35, 13206–13213. [Google Scholar] [CrossRef]
- Souza Filho, P.F.; Zamani, A.; Taherzadeh, M.J. Production of edible fungi from potato protein liquor (PPL) in airlift bioreactor. Fermentation 2017, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Kwong, T.F.N.; Qian, P.-Y. Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Appl. Microbiol. Biotechnol. 2006, 72, 1063–1073. [Google Scholar] [CrossRef]
- Sues, A.; Millati, R.; Edebo, L.; Taherzadeh, M.J. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus. FEMS Yeast Res. 2005, 5, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Yesmin, M.N.; Azad, M.A.K.; Kamruzzaman, M.; Uddin, M.N. Bioethanol Production from Corn, Pumpkin and Carrot of Bangladesh as Renewable Source using Yeast. Acta Chem. Malays. 2020, 4, 45–54. [Google Scholar] [CrossRef]
- Aimaretti, N.R.; Ybalo, C.V.; Rojas, M.L.; Plou, F.J.; Yori, J.C. Production of bioethanol from carrot discards. Bioresour. Technol. 2012, 123, 727–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clementz, A.; Torresi, P.A.; Molli, J.S.; Cardell, D.; Mammarella, E.; Yori, J.C. Novel method for valorization of by-products from carrot discards. LWT 2019, 100, 374–380. [Google Scholar] [CrossRef]
- Demiray, E.; Karatay, S.E.; Dönmez, S.; Dönmez, G. The usage of carrot pomace for bioethanol production. J. Chil. Chem. 2016, 61, 2996–2998. [Google Scholar] [CrossRef]
- Svensson, S.E.; Ferreira, J.A.; Hakkarainen, M.; Adolfsson, K.H.; Zamani, A. Fungal textiles: Wet spinning of fungal microfibers to produce monofilament yarns. Sustain. Mater. Technol. 2021, 28, e00256. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; Elhassan, O.; Mansour, S.; McKay, G. Biochar development from thermal TGA studies of individual food waste vegetables and their blended systems. Biomass Convers. Biorefin. 2022, 12, 1–18. [Google Scholar] [CrossRef]
- Varanasi, S.; Henzel, L.; Sharman, S.; Batchelor, W.; Garnier, G. Producing nanofibres from carrots with a chemical-free process. Carbohydr. Polym. 2018, 184, 307–314. [Google Scholar] [CrossRef]
- Sucheta; Chaturvedi, K.; Yadav, S.K. Ultrasonication assisted salt-spices impregnation in black carrots to attain anthocyanins stability, quality retention and antimicrobial efficacy on hot-air convective drying. Carbohydr. Polym. 2019, 58, 104661. [Google Scholar] [CrossRef] [PubMed]
- Szymańska-Chargot, M.; Chylińska, M.; Gdula, K.; Kozioł, A.; Zdunek, A. Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces. Polymers 2017, 9, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Abbreviation | Definitions |
---|---|
CP | Carrot pomace |
LFCP | Liquid fraction of carrot pomace after enzymatic treatment |
SFCP | Solid fraction of carrot pomace after pretreatments |
HPLC | High-performance liquid chromatography |
FTIR | Fourier transform infrared |
TGA | Thermogravimetric analysis |
Type of Ingredient | CP a | SFCP b (Hydrothermal) | SFCP c (Hemicellulase) | SFCP d (Pectinase) | SFCP e (Invertase) |
---|---|---|---|---|---|
Glucan | 30.6 ± 0.2 | 26.4 ± 0.54 | 28.3 ± 0.01 | 33.5 ± 0.85 | 29.0 ± 0.2 |
Xylan | 0.4 ± 0.02 | 1.3 ± 0.44 | 0.9 ± 0.01 | 0.9 ±0.03 | 1.2 ± 0.6 |
Galactan | 6.7 ± 0.04 | 12.7 ± 0.8 | 7.2 ± 0.02 | 7.3 ± 0.27 | 5.7 ± 0.2 |
Arabinans | 4.5 ± 0.09 | 7.9 ± 0.09 | 6.1 ± 0.07 | 6.5 ± 0.3 | 5.6 ± 0.05 |
Lignin | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 |
Total ash | 2.9 ± 0.32 | 2.9 ± 0.82 | 2.7 ± 0.25 | 7.0 ± 0.9 | 3.9 ± 0.86 |
Other | 54.5 | 48.5 | 54.4 | 44.5 | 54.1 |
Type of Pretreatment | Yeast Extract (g/L) | Time (h) | Fungal Biomass Concentration (g/L) | Fungal Biomass 1 (g/g) |
---|---|---|---|---|
Hydrothermal | 0 | 48 | 1.83 ± 0.01 | 0.11 ± 0.00 |
0 | 72 | 1.83 ± 0.01 | 0.13 ± 0.01 | |
1 | 72 | 1.55 ± 0.20 | 0.11 ± 0.01 | |
Pectinase | 0 | 48 | 3.27 ± 0.00 | 0.10 ± 0.00 |
1 | 48 | 3.34 ± 0.26 | 0.08 ± 0.00 | |
2 | 48 | 3.49 ± 0.26 | 0.09 ± 0.00 | |
3 | 48 | 3.60 ± 0.28 | 0.09 ± 0.00 | |
Hemicellulase | 0 | 48 | 2.81 ± 0.14 | 0.09 ± 0.00 |
1 | 48 | 3.18 ± 0.11 | 0.11 ± 0.00 | |
1 | 72 | 3.52 ± 0.37 | 0.10 ± 0.00 | |
Pectinase + Hemicellulase | 0 | 48 | 2.34 ± 0.14 | 0.07 ± 0.00 |
0 | 72 | 2.46 ± 0.35 | 0.08 ± 0.01 | |
1 | 48 | 3.12 ± 0.54 | 0.08 ± 0.01 | |
1 | 72 | 3.51 ± 0.51 | 0.09 ± 0.01 | |
Invertase | 0 | 72 | 3.95 ± 0.06 | 0.17 ± 0.00 |
1 | 72 | 3.90 ± 0.19 | 0.16 ± 0.00 |
Type of Enzymatic Pretreatment and Nutrient during Cultivation | Fungal Biomass Concentration in LFCP (g/L) | Fungal Biomass Yield (g/g total Solids in Medium) | DM of Soluble Solid before Cultivation (%) | DM of Soluble Solid after Cultivation (%) |
---|---|---|---|---|
Hemicellulase | 3.26 ± 0.00 | 0.10 ± 0.001 | 2.99 ± 0.007 | 1.88 ± 0.16 |
Hemicellulase—Yeast extract | 3.64 ± 0.17 | 0.12 ± 0.005 | 3.09 ± 0.007 | 1.70 ± 0.00 |
Pectinase | 2.90 ± 0.03 | 0.06 ± 0.008 | 4.56 ± 0.02 | 2.78 ± 0.01 |
Pectinase—Yeast extract | 4.01 ± 0.05 | 0.08 ± 0.001 | 4.66 ± 0.02 | 2.24 ± 0.09 |
Invertase | 5.01 ± 0.69 | 0.17 ± 0.023 | 2.93 ± 0.006 | 0.79 ± 0.04 |
Invertase—Yeast extract | 4.92 ± 0.63 | 0.16 ± 0.001 | 3.03 ± 0.003 | 0.82 ± 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, S.N.; Parchami, M.; Ramamoorthy, S.K.; Soufiani, A.M.; Hakkarainen, M.; Zamani, A. Bioconversion of Carrot Pomace to Value-Added Products: Rhizopus delemar Fungal Biomass and Cellulose. Fermentation 2023, 9, 374. https://doi.org/10.3390/fermentation9040374
Mousavi SN, Parchami M, Ramamoorthy SK, Soufiani AM, Hakkarainen M, Zamani A. Bioconversion of Carrot Pomace to Value-Added Products: Rhizopus delemar Fungal Biomass and Cellulose. Fermentation. 2023; 9(4):374. https://doi.org/10.3390/fermentation9040374
Chicago/Turabian StyleMousavi, S. Najmeh, Mohsen Parchami, Sunil Kumar Ramamoorthy, Amir Mahboubi Soufiani, Minna Hakkarainen, and Akram Zamani. 2023. "Bioconversion of Carrot Pomace to Value-Added Products: Rhizopus delemar Fungal Biomass and Cellulose" Fermentation 9, no. 4: 374. https://doi.org/10.3390/fermentation9040374
APA StyleMousavi, S. N., Parchami, M., Ramamoorthy, S. K., Soufiani, A. M., Hakkarainen, M., & Zamani, A. (2023). Bioconversion of Carrot Pomace to Value-Added Products: Rhizopus delemar Fungal Biomass and Cellulose. Fermentation, 9(4), 374. https://doi.org/10.3390/fermentation9040374