Quantitative PCR Assay as a Tool for the Detection of Lactobacilli in Sicilian Table Olives Produced at an Industrial Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Fermentations
2.2. Microbiological and Chemical Analyses
2.3. Total gDNA Extraction and Detection of Lactobacilli by qPCR
2.4. Statistical Analysis
3. Results
3.1. pH Values of Experimental Brine Samples
3.2. Microbial Data of Experimental Brine and Olive Samples
3.3. Detection of Lactobacilli in Table Olives by qPCR
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Olive Council Reunión Extraordinaria. Madrid. 2014. Available online: https://www.olimerca.com/noticiadet/elcoi-se-pronuncia-sobre-los-aceites-de-oliva-con-aditivos/62dbad318a564a84781316b96554b9b6 (accessed on 8 July 2014).
- Speranza, B.; Sinigaglia, M.; Corbo, M.R.; D’Errico, N.; Bevilacqua, A. A Preliminary Approach to Define the Microbiological Profile of Naturally Fermented Peranzana Alta Daunia Table Olives. Foods 2022, 11, 2100. [Google Scholar] [CrossRef] [PubMed]
- Vaccalluzzo, A.; Pino, A.; Russo, N.; De Angelis, M.; Caggia, C.; Randazzo, C.L. FoodOmics as a new frontier to reveal microbial community and metabolic processes occurring on table olives fermentation. Food Microbiol. 2020, 92, 103606. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.J.; Tavares, T.G.; Rocha, J.M.; Malcata, F.X.; Macedo, A.C. Cobrançosa Table Olives: Characterization of Processing Method and Lactic Acid Bacteria Profile throughout Spontaneous Fermentation. Appl. Sci. 2022, 12, 9738. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Todaro, A.; Pino, A.; Pitino, I.; Corona, O.; Caggia, C. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol. 2017, 65, 136–148. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Todaro, A.; Pino, A.; Pitino, I.; Corona, O.; Mazzaglia, A.; Caggia, C. Giarraffa and Grossa di Spagna naturally fermented table olives: Effect of starter and probiotic cultures on chemical, microbiological and sensory traits. Food Res. Int. 2014, 62, 1154–1164. [Google Scholar] [CrossRef]
- Heperkan, D. Microbiota of table olive fermentations and criteria of selection for their use as starters. Front. Microbiol. 2013, 4, 143. [Google Scholar] [CrossRef] [Green Version]
- Perpetuini, G.; Prete, R.; Garcia-Gonzalez, N.; Khairul Alam, M.; Corsetti, A. Table olives more than a fermented food. Foods 2020, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Bonatsou, S.; Tassou, C.C.; Panagou, E.Z.; Nychas, G.E. Table olive fermentation using starter cultures with multifunctional potential. Microorganisms 2017, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Vaccalluzzo, A.; Pino, A.; De Angelis, M.; Bautista-Gallego, J.; Romeo, F.V.; Foti, P.; Caggia, C.; Randazzo, C.L. Effects of Different Stress Parameters on Growth and on Oleuropein-Degrading Abilities of Lactiplantibacillus plantarum Strains Selected as Tailored Starter Cultures for Naturally Table Olives. Microorganisms 2020, 8, 1607. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Calero-Delgado, B.; Rodríguez-Gómez, F.; Bautista-Gallego, J.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. The use of multifunctional yeast-lactobacilli starter cultures improves fermentation performance of Spanish-style green table olives. Food Microbiol. 2020, 91, 103497. [Google Scholar]
- Bonatsou, S.; Panagou, E.Z. Fermentation of cv. kalamata natural black olives with potential multifunctional yeast starters. Foods 2022, 11, 3106. [Google Scholar] [CrossRef] [PubMed]
- Abriouel, H.; Benomar, N.; Lucas, R.; Galvez, A. Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally fermented Aloreña green table olives. Int. J. Food Microbiol. 2011, 144, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Li, X.; Zhang, T.; Xu, J.; Shi, Z.; Wu, Z.; Wu, J.; Pan, D.; Du, L. A Novel qPCR Method for the Detection of Lactic Acid Bacteria in Fermented Milk. Foods 2021, 10, 3066. [Google Scholar] [CrossRef] [PubMed]
- Postollec, F.; Falentin, H.; Pavan, S.; Combrisson, J.; Sohier, D. Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol. 2011, 28, 848–861. [Google Scholar] [CrossRef]
- Dreier, M.; Meola, M.; Berthoud, H.; Shani, N.; Wechsler, D.; Junier, P. High-throughput qPCR and 16S rRNA gene amplicon sequencing as complementary methods for the investigation of the cheese microbiota. BMC Microbiol. 2022, 22, 48. [Google Scholar] [CrossRef]
- Correa-Galeote, D.; Ghomari, I.; Asehraou, A.; González-López, J. Revealing the bacterial abundance and diversity in brines from started Spanish-style green table olives. LWT 2022, 160, 113212. [Google Scholar] [CrossRef]
- Vaccalluzzo, A.; Solieri, L.; Tagliazucchi, D.; Cattivelli, A.; Martini, S.; Pino, A.; Cinzia, C.; Randazzo, C.L. Metabolomic and Transcriptional Profiling of Oleuropein Bioconversion into Hydroxytyrosol during Table Olive Fermentation by Lactiplantibacillus plantarum. Appl. Environ. Microbiol. 2022, 88, e02019-21. [Google Scholar] [CrossRef]
- Pino, A.; Vaccalluzzo, A.; Solieri, L.; Romeo, F.V.; Todaro, A.; Caggia, C.; Arroyo-López, F.N.; Bautista-Gallego, J.; Randazzo, C.L. Effect of sequential inoculum of beta-glucosidase positive and probiotic strains on brine fermentation to obtain low salt Sicilian table olives. Front. Microbiol. 2019, 10, 174. [Google Scholar] [CrossRef]
- Vaccalluzzo, A.; Celano, G.; Pino, A.; Calabrese, F.M.; Foti, P.; Caggia, C.; Randazzo, C. Metagenetic and Volatilomic Approaches to Elucidate the Effect of Lactiplantibacillus plantarum Starter Cultures on Sicilian Table Olives. Front. Microbiol. 2022, 12, 4326. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Russo, N.; Pino, A.; Mazzaglia, A.; Ferrante, M.; Conti, G.O.; Caggia, C. Effects of selected bacterial cultures on safety and sensory traits of Nocellara Etnea olives produced at large factory scale. Food Chem. Toxicol. 2018, 115, 491–498. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Romero-Gil, V.; Medina-Pradas, E.; Garrido-Fernández, A.; Arroyo-López, F.N. Exploring bacteria diversity in commercialized table olive biofilms by metataxonomic and compositional data analysis. Sci. Rep. 2020, 10, 11381. [Google Scholar] [CrossRef] [PubMed]
- Pino, A.; Rapisarda, A.M.C.; Vitale, S.G.; Cianci, S.; Caggia, C.; Randazzo, C.L.; Cianci, A. A clinical pilot study on the effect of the probiotic Lacticaseibacillus rhamnosus TOM 22.8 strain in women with vaginal dysbiosis. Sci Rep. 2021, 11, 2592. [Google Scholar] [CrossRef]
- Bornes, S.; Camarès, O.; Paquet-Gachinat, M.; Veisseire, P.; Ravel, J.; Dausset, C.; Nivoliez, A. Rapid Quantitative PCR Assay for the Detection of the Three Vaginal Pathogens Candida, Gardnerella and Atopobium as well as the Commensal Lactobacillus Genera. IJMB 2021, 6, 71–77. [Google Scholar] [CrossRef]
- Romeo, F.V. Microbiological Aspects of Table Olives. In Olive Germplasm—The Olive Cultivation, Table Olive and Olive Oil Industry in Italy; InTechOpen: London, UK, 2012. [Google Scholar]
- Chranioti, C.; Kotzekidou, P.; Gerasopoulos, D. Effect of starter cultures on fermentation of naturally and alkali-treated cv. Conservolea green olives. LWT 2018, 89, 403–408. [Google Scholar] [CrossRef]
- Argyri, A.A.; Tassou, C.C. Beneficial Role of Microorganisms in Olives. Good Microbes Med. Food Prod. Biotechnol. Bioremediation Agric. 2022, 185, 198. [Google Scholar]
- López-García, E.; Benítez-Cabello, A.; Martín-Arranz, V.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. Optimisation of working parameters for lactic acid bacteria and yeast recovery from table olive biofilms, preserving fruit integrity and reducing chloroplast recovery. LWT 2022, 166, 113787. [Google Scholar] [CrossRef]
- Grounta, A.; Doulgeraki, A.I.; Nychas, G.J.E.; Panagou, E.Z. Biofilm formation on Conservolea natural black olives during single and combined inoculation with a functional Lactobacillus pentosus starter culture. Food Microbiol. 2016, 56, 35–44. [Google Scholar] [CrossRef]
- De Angelis, M.; Campanella, D.; Cosmai, L.; Summo, C.; Rizzello, C.G.; Caponio, F. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiol. 2015, 52, 18–30. [Google Scholar] [CrossRef]
- Tufariello, M.; Durante, M.; Ramires, F.A.; Grieco, F.; Tommasi, L.; Perbellini, E.; Falco, V.; Tasioula-Margari, M.; Logrieco, A.F.; Mita, G.; et al. New process for production of fermented black table olives using selected autochthonous microbial resources. Front. Microbiol. 2015, 6, 1007. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, B.; Bangar, S.P.; Echegaray, N.; Suri, S.; Tomasevic, I.; Manuel Lorenzo, J.; Melekoglu, E.; Rocha, J.M.; Ozogul, F. The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. Microorganisms 2022, 10, 826. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Romero-Gil, V.; Bautista-Gallego, J.; Rodríguez-Gómez, F.; Jiménez-Díaz, R.; García-García, P.; Querol Simon, A.; Garrido-Fernández, A. Potential benefits of the application of yeast starters in table olive processing. Front. Microbiol. 2012, 3, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pino, A.; De Angelis, M.; Todaro, A.; Van Hoorde, K.; Randazzo, C.L.; Caggia, C. Fermentation of Nocellara Etnea table olives by functional starter cultures at different low salt concentrations. Front. Microbiol. 2018, 9, 1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anagnostopoulos, D.A.; Tsaltas, D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front. Microbiol. 2022, 12, 797295. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, D.A.; Tsaltas, D. Fermented foods and beverages. In Innovations in Traditional Foods; Woodhead Publishing: Sawston, UK, 2019; pp. 257–291. [Google Scholar]
- Randazzo, C.L.; Scifò, G.O.; Tomaselli, F.; Caggia, C. Polyphasic characterization of bacterial community in fresh cut salads. Int. J. Food Microbiol. 2009, 128, 484–490. [Google Scholar] [CrossRef]
- Sohier, D.; Jamet, E.; Le Dizes, A.S.; Dizin, M.; Pavan, S.; Postollec, F.; Coton, E. Polyphasic approach for quantitative analysis of obligately heterofermentative Lactobacillus species in cheese. Food Microbiol. 2012, 31, 271–277. [Google Scholar] [CrossRef] [PubMed]
pH | |||||||
---|---|---|---|---|---|---|---|
Samples | T0 | T7 | T30 | T60 | T90 | T120 | T180 |
C | 6.67 ± 0.10 aA | 5.80 ± 0.30 aB | 5.18 ± 0.08 aC | 5.04 ± 0.14 aCD | 5.03 ± 0.05 aCD | 4.91 ± 0.05 aCD | 4.69 ± 0.03 aD |
L | 6.64 ± 0.07 aA | 5.06 ± 0.08 bB | 4.34 ± 0.03 cC | 4.17 ± 0.04 bCD | 3.93 ± 0.08 bD | 3.80 ± 0.09 cE | 3.90 ± 0.13 bDE |
LY | 6.69 ± 0.06 aA | 5.11 ± 0.06 bB | 4.69 ± 0.05 bC | 4.22 ± 0.06 bCD | 4.13 ± 0.04 bD | 4.17 ± 0.09 bD | 4.17 ± 0.09 bD |
Brine | Olive | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7 | 30 | 60 | 90 | 120 | 180 | 0 | 7 | 30 | 60 | 90 | 120 | 180 | |
Mesophilic Bacteria | ||||||||||||||
C | 5.55 ± 0.56 aB | 6.42 ± 0.08 aA | 6.28 ± 0.04 aA | 6.23 ± 0.03 aA | 6.27 ± 0.08 aA | 5.60 ± 0.04 aB | 4.45 ± 0.05 aC | 4.84 ± 0.04 aE | 5.52 ± 0.06 aD | 7.28 ± 0.04 aB | 7.69 ± 0.12 aA | 6.16 ± 0.05 aC | 5.46 ± 0.04 aD | 5.06 ± 0.04 aE |
L | 5.46 ± 0.14 abB | 6.15 ± 0.07 bA | 5.49 ± 0.06 cB | 4.57 ± 0.05 bC | 3.83 ± 0.13 bD | 3.19 ± 0.03 bE | 3.15 ± 0.04 bE | 4.93 ± 0.04 aD | 5.29 ± 0.13 aC | 5.74 ± 0.06 bB | 6.59 ± 0.05 bA | 4.57 ± 0.03 cE | 3.28 ± 0.08 bF | 3.13 ± 0.04 bF |
LY | 5.86 ± 0.14 aB | 6.20 ± 0.04 abA | 5.89 ± 0.09 bAB | 4.34 ± 0.06 cC | 4.04 ± 0.08 bC | 3.26 ± 0.08 bD | 3.17 ± 0.04 bD | 4.87 ± 0.17 aD | 5.38 ± 0.08 aBC | 5.69 ± 0.07 bB | 6.74 ± 0.06 bA | 5.07 ± 0.05 aCD | 3.54 ± 0.05 bE | 3.24 ± 0.04 bE |
Lactic acid bacteria | ||||||||||||||
C | 3.64 ± 0.06 aC | 3.67 ± 0.04 bC | 4.32 ± 0.11 bB | 5.10 ± 0.03 cA | 5.14 ± 0.05 cA | 4.24 ± 0.05 bB | 4.13 ± 0.04 cB | 3.55 ± 0.16 aE | 4.42 ± 0.17 bCD | 4.89 ± 0.05 cAB | 4.52 ± 0.07 bBC | 5.17 ± 0.09 bA | 4.94 ± 0.06 bAB | 4.00 ± 0.15 bD |
L | 3.66 ± 0.07 aF | 7.84 ± 0.02 aBC | 7.96 ± 0.06 aB | 8.29 ± 0.05 aA | 7.58 ± 0.05 bC | 6.78 ± 0.16 aD | 6.14 ± 0.02 bE | 3.44 ± 0.08 aF | 7.63 ± 0.10 aCD | 7.91 ± 0.06 bBC | 8.25 ± 0.06 aA | 7.97 ± 0.09 aAB | 7.59 ± 0.08 aD | 7.11 ± 0.04 aE |
LY | 3.67 ± 0.07 aE | 7.93 ± 0.06 aAB | 8.04 ± 0.06 aA | 7.87 ± 0.04 bAB | 7.79 ± 0.04 aB | 7.13 ± 0.04 aC | 6.63 ± 0.07 aD | 3.62 ± 0.16 aC | 7.85 ± 0.07 aAB | 8.18 ± 0.05 aA | 8.19 ± 0.07 aA | 8.11 ± 0.01 aA | 7.90 ± 0.16 aAB | 7.35 ± 0.05 aB |
Staphylococci | ||||||||||||||
C | 4.23 ± 0.05 aB | 4.80 ± 0.04 aA | 4.29 ± 0.05 aAB | 3.36 ± 0.20 C | 2.35 ± 0.21 D | <1 | <1 | 4.12 ± 0.04 aB | 4.61 ± 0.04 aA | 4.12 ± 0.16 aB | 3.40 ± 0.18 C | 3.41 ± 0.19 C | 2.02 ± 0.11 D | <1 |
L | 4.27 ± 0.04 aA | 3.63 ± 0.04 bB | 2.67 ± 0.05 bC | <1 | <1 | <1 | <1 | 4.07 ± 0.07 aA | 3.62 ± 0.09 bA | 2.15 ± 0.21 bB | <1 | <1 | <1 | <1 |
LY | 4.26 ± 0.05 aA | 3.72 ± 0.03 bB | 2.57 ± 0.07 bC | <1 | <1 | <1 | <1 | 4.12 ± 0.06 aA | 3.48 ± 0.04 bB | 2.18 ± 0.04 bC | <1 | <1 | <1 | <1 |
Enterobacteriaceae | ||||||||||||||
C | 3.62 ± 0.12 aD | 5.38 ± 0.09 aA | 5.06 ± 0.09 aB | 4.57 ± 0.05 aC | 3.36 ± 0.04 D | 2.77 ± 0.05 E | <1 | 3.25 ± 0.07 aB | 4.43 ± 0.18 aA | 4.30 ± 0.14 aA | 3.31 ± 0.27 aB | 2.37 ± 0.06 C | 2.17 ± 0.09 C | <1 |
L | 3.63 ± 0.10 aB | 4.19 ± 0.05 bA | 3.14 ± 0.06 bC | 2.23 ± 0.11 bD | <1 | <1 | <1 | 3.14 ± 0.05 aB | 4.11 ± 0.09 aA | 3.19 ± 0.10 bB | 2.21 ± 0.13 bC | <1 | <1 | <1 |
LY | 3.62 ± 0.08 aB | 4.17 ± 0.09 bA | 2.27 ± 0.04 cC | 2.08 ± 0.06 bC | <1 | <1 | <1 | 3.12 ± 0.18 aB | 4.18 ± 0.10 aA | 3.24 ± 0.06 bB | 2.24 ± 0.04 bC | <1 | <1 | <1 |
Yeasts | ||||||||||||||
C | 3.99 ± 0.07 aD | 4.54 ± 0.12 bC | 5.74 ± 0.06 bA | 5.21 ± 0.05 bB | 4.51 ± 0.09 bC | 3.64 ± 0.04 bE | 3.37 ± 0.04 bE | 2.72 ± 0.12 aF | 4.85 ± 0.07 bB | 5.28 ± 0.06 bA | 5.21 ± 0.16 bAB | 4.31 ± 0.09 bC | 3.86 ± 0.06 bD | 3.15 ± 0.06 bE |
L | 3.89 ± 0.08 aBCD | 3.61 ± 0.21 cCD | 4.87 ± 0.05 cA | 4.14 ± 0.04 cB | 4.03 ± 0.04 cBC | 3.59 ± 0.12 bD | 3.15 ± 0.07 bE | 2.65 ± 0.19 aD | 4.41 ± 0.05 cB | 5.04 ± 0.04 cA | 5.18 ± 0.08 bA | 4.25 ± 0.04 bB | 3.39 ± 0.11 cC | 3.07 ± 0.06 bC |
LY | 3.97 ± 0.10 aF | 6.81 ± 0.04 aCD | 7.10 ± 0.14 aBC | 7.86 ± 0.06 aA | 7.16 ± 0.07 aB | 6.58 ± 0.08 aDE | 6.28 ± 0.06 aE | 2.73 ± 0.05 aD | 6.91 ± 0.10 aB | 7.86 ± 0.05 aA | 7.58 ± 0.06 aA | 6.79 ± 0.09 aB | 6.12 ± 0.06 aC | 5.89 ± 0.11 aC |
Cycle Threshold (Ct) | Cell Density log CFU/mL | |||||
---|---|---|---|---|---|---|
T7 | T90 | T180 | T7 | T90 | T180 | |
C | 24.84 ± 0.05 | 22.69 ± 0.09 | 15.17 ± 0.16 | 3.66 ± 0.00 | 4.61 ± 0.00 | 6.58 ± 0.02 |
L | 10.09 ± 0.21 | 8.75 ± 0.08 | 10.87 ± 0.19 | 8.10 ± 0.07 | 8.50 ± 0.02 | 7.86 ± 0.06 |
LY | 9.79 ± 0.24 | 7.81 ± 0.11 | 11.07 ± 0.09 | 8.19 ± 0.07 | 8.78 ± 0.03 | 7.80 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaccalluzzo, A.; Pino, A.; Bosco, G.; Caggia, C.; Randazzo, C.L. Quantitative PCR Assay as a Tool for the Detection of Lactobacilli in Sicilian Table Olives Produced at an Industrial Scale. Fermentation 2023, 9, 355. https://doi.org/10.3390/fermentation9040355
Vaccalluzzo A, Pino A, Bosco G, Caggia C, Randazzo CL. Quantitative PCR Assay as a Tool for the Detection of Lactobacilli in Sicilian Table Olives Produced at an Industrial Scale. Fermentation. 2023; 9(4):355. https://doi.org/10.3390/fermentation9040355
Chicago/Turabian StyleVaccalluzzo, Amanda, Alessandra Pino, Georgiana Bosco, Cinzia Caggia, and Cinzia Lucia Randazzo. 2023. "Quantitative PCR Assay as a Tool for the Detection of Lactobacilli in Sicilian Table Olives Produced at an Industrial Scale" Fermentation 9, no. 4: 355. https://doi.org/10.3390/fermentation9040355
APA StyleVaccalluzzo, A., Pino, A., Bosco, G., Caggia, C., & Randazzo, C. L. (2023). Quantitative PCR Assay as a Tool for the Detection of Lactobacilli in Sicilian Table Olives Produced at an Industrial Scale. Fermentation, 9(4), 355. https://doi.org/10.3390/fermentation9040355