Corn Stover Silage Inoculated with Ferulic Acid Esterase Producing L. johnsonii, L. plantarum, L. fermentum, and L. brevis Strains: Fermentative and Nutritional Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lactic Acid Bacteria Strains Used
2.2. FAE Activity Quantification
2.3. Growth in CS Soluble Fraction Medium (CSM)
2.4. Inoculation of CS Mini Silos
2.4.1. Silage Preparation
2.4.2. Fermentative, Microbiological, and Nutritional Analysis of Inoculated Silages
2.5. Statistical Analysis
3. Results
3.1. Ferulic Acid Esterase Activity Quantification
3.2. Growth in CS Soluble Fraction Medium (CSM)
3.3. Inoculation of Corn Stover Mini Silos
Chemical, Microbiological, and Compositional Analysis of Inoculated Silages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laiño, A.S.; Navarrete, E.T.; Véliz, K.E.; Burgos, J.C.V.; Torres, J.S.; Vélez, N.S. Valoración nutritiva del rastrojo de Zea mays y Oryza sativa para la alimentación de ovinos en el trópico ecuatoriano. Rev. Amaz. Cienc. Tecnol. 2015, 4, 235–249. [Google Scholar]
- Lu, C.D.; Miller, B.A. Current status, challenges and prospects for dairy goat production in the Americas. Asian-Australas. J. Anim. Sci. 2019, 32, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, M.; Wadhwa, M.; Makkar, H. Utilization of baby corn by-products and waste as livestock feed. Broadening Horiz. 2017, 44, 1–4. [Google Scholar]
- Wang, S.; Yuan, X.; Dong, Z.; Li, J.; Shao, T. Effect of ensiling corn stover with legume herbages in different proportions on fermentation characteristics, nutritive quality and in vitro digestibility on the Tibetan Plateau. Grassl. Sci. 2017, 63, 236–244. [Google Scholar] [CrossRef]
- Dejene, M.; Dixon, R.M.; Walsh, K.B.; McNeill, D.; Seyoum, S.; Duncan, A.J. High-cut harvesting of maize stover and genotype choice can provide improved feed for ruminants and stubble for conservation agriculture. Agron. J. 2022, 114, 187–200. [Google Scholar] [CrossRef]
- Ashbell, G.; Kipnis, T.; Titterton, M.; Hen, Y.; Azrieli, A.; Weinberg, Z. Examination of a technology for silage making in plastic bags. Anim. Feed. Sci. Technol. 2001, 91, 213–222. [Google Scholar] [CrossRef]
- Shinners, K.J.; Binversie, B.N.; Muck, R.E.; Weimer, P.J. Comparison of wet and dry corn stover harvest and storage. Biomass Bioenergy 2007, 31, 211–221. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; Okine, E.; McAllister, T. A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle1. J. Anim. Sci. 2012, 90, 1541–1552. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, M.; Qin, G.; Tan, Z.; Li, Z.; Wang, Y.; Cai, Y. Identification of lactic acid bacteria isolated from corn stovers. Anim. Sci. J. 2011, 82, 642–653. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Rinne, M. Highlights of progress in silage conservation and future perspectives. Grass Forage Sci. 2018, 73, 40–52. [Google Scholar] [CrossRef]
- Su, R.; Ni, K.; Wang, T.; Yang, X.; Zhang, J.; Liu, Y.; Shi, W.; Yan, L.; Jie, C.; Zhong, J. Effects of ferulic acid esterase-producing Lactobacillus fermentum and cellulase additives on the fermentation quality and microbial community of alfalfa silage. PeerJ 2019, 7, e7712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Zhang, B.; Zhang, Y.; Zhang, X.; Usman, S.; Ding, Z.; Hao, L.; Guo, X. Probiotic effect of feruloyl esterase-producing Lactobacillus plantarum inoculated alfalfa silage on digestion, antioxidant, and immunity status of lactating dairy goats. Anim. Nutr. 2022, 11, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.T.; Xu, D.M.; Bai, J.; Li, F.H.; Adesogan, A.T.; Zhang, P.; Yuan, X.J.; Guo, X.S. Characterization and identification of ferulic acid esterase-producing Lactobacillus species isolated from Elymus nutans silage and their application in ensiled alfalfa. J. Appl. Microbiol. 2019, 127, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Guo, J.; Li, W.; Wu, Z.; Yu, Z. Effects of Ferulic Acid Esterase-Producing Lactic Acid Bacteria and Storage Temperature on the Fermentation Quality, In Vitro Digestibility and Phenolic Acid Extraction Yields of Sorghum (Sorghum bicolor L.) Silage. Microorganisms 2021, 9, 114. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; Okine, E.K.; McAllister, T.A. Use of thermal imaging and the in situ technique to assess the impact of an inoculant with feruloyl esterase activity on the aerobic stability and digestibility of barley silage. Can. J. Anim. Sci. 2012, 92, 381–394. [Google Scholar] [CrossRef]
- Jin, L.; Duniere, L.; Lynch, J.P.; McAllister, T.A.; Baah, J.; Wang, Y. Impact of ferulic acid esterase producing lactobacilli and fibrolytic enzymes on conservation characteristics, aerobic stability and fiber degradability of barley silage. Anim. Feed. Sci. Technol. 2015, 207, 62–74. [Google Scholar] [CrossRef]
- Li, F.; Ke, W.; Ding, Z.; Bai, J.; Zhang, Y.; Xu, D.; Li, Z.; Guo, X. Pretreatment of Pennisetum sinese silages with ferulic acid esterase-producing lactic acid bacteria and cellulase at two dry matter contents: Fermentation characteristics, carbohydrates composition and enzymatic saccharification. Bioresour. Technol. 2020, 295, 122261. [Google Scholar] [CrossRef]
- Comino, L.; Tabacco, E.; Righi, F.; Revello-Chion, A.; Quarantelli, A.; Borreani, G. Effects of an inoculant containing a Lactobacillus buchneri that produces ferulate-esterase on fermentation products, aerobic stability, and fibre digestibility of maize silage harvested at different stages of maturity. Anim. Feed. Sci. Technol. 2014, 198, 94–106. [Google Scholar] [CrossRef]
- Lynch, J.P.; Baah, J.; Beauchemin, K.A. Conservation, fiber digestibility, and nutritive value of corn harvested at 2 cutting heights and ensiled with fibrolytic enzymes, either alone or with a ferulic acid esterase-producing inoculant. J. Dairy Sci. 2015, 98, 1214–1224. [Google Scholar] [CrossRef] [Green Version]
- Andrada, E.; Mechoud, M.A.; Abeijón-Mukdsi, M.C.; Chagra Dib, E.P.; Cerviño, S.; Perez Chaia, A.; Medina, R.B. Ferulic Acid Esterase Producing Lactobacillus johnsonii from Goat Feces as Corn Silage Inoculants. Microorganisms 2022, 10, 1732. [Google Scholar] [CrossRef]
- De Boever, J.; Dupon, E.; Vliegher, A.d.; Campeneere, S.d.; Latré, L. Can lactobacilli producing ferulate esterase improve the nutritive value of grass and maize silage? In Proceedings of the Grassland and Forages in High Output Dairy Farming Systems. In Proceedings of the 18th Symposium of the European Grassland Federation, Wageningen, The Netherlands, 15–17 June 2015; pp. 190–193. [Google Scholar]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Adesogan, A.; Auerbach, H.; Bernardes, T.; Bolsen, K.; Borreani, G.; Cai, Y.; Coblentz, W.; Daniel, J.; Davies, D.; Driehuis, F. Silage manuscripts in the Journal of Dairy Science. J. Dairy Sci. 2020, 103, 6737–6738. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.L.; Carvalho, B.F.; Pinto, J.C.; Duarte, W.F.; Schwan, R.F. The use of Lactobacillus species as starter cultures for enhancing the quality of sugar cane silage. J. Dairy Sci. 2014, 97, 940–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaghy, J.; Kelly, P.; McKay, A. Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl. Microbiol. Biotechnol. 1998, 50, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Yang, H.J.; Li, D.H.; Wang, J.Q. A comparison of HPLC and spectrophotometrical methods to determine the activity of ferulic acid esterase in commercial enzyme products and rumen contents of steers. Anim. Feed. Sci. Technol. 2009, 153, 169–177. [Google Scholar] [CrossRef]
- Somogyi, M. Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar] [CrossRef]
- Johnson, H.E.; Merry, R.J.; Davies, D.R.; Kell, D.B.; Theodorou, M.K.; Griffith, G.W. Vacuum packing: A model system for laboratory-scale silage fermentations. J. Appl. Microbiol. 2005, 98, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Jaurena, G. Guía de Procedimientos Analíticos Año 2009. Ph.D. Thesis, Universidad de Buenos Aires, Buenos Aires, Argentina, 2009. [Google Scholar]
- ANKOM Technology Method 3: In Vitro True Digestibility using the DAISY II Incubator. Available online: https://www.ankom.com/product-catalog/daisy-incubator (accessed on 1 January 2023).
- Nsereko, V.L.; Smiley, B.K.; Rutherford, W.M.; Spielbauer, A.; Forrester, K.J.; Hettinger, G.H.; Harman, E.K.; Harman, B.R. Influence of inoculating forage with lactic acid bacterial strains that produce ferulate esterase on ensilage and ruminal degradation of fiber. Anim. Feed. Sci. Technol. 2008, 145, 122–135. [Google Scholar] [CrossRef]
- Kim, J.-H.; Baik, S.-H. Probiotic properties of Lactobacillus strains with high cinnamoyl esterase activity isolated from jeot-gal, a high-salt fermented seafood. Ann. Microbiol. 2019, 69, 407–417. [Google Scholar] [CrossRef]
- Xu, Z.; He, H.; Zhang, S.; Guo, T.; Kong, J. Characterization of Feruloyl Esterases Produced by the Four Lactobacillus Species: L. amylovorus, L. acidophilus, L. farciminis and L. fermentum, Isolated from Ensiled Corn Stover. Front. Microbiol. 2017, 8, 941. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, C.; Jansch, A.; Ehrmann, M.A.; Toelstede, S.; Vogel, R.F. Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria. Curr. Microbiol. 2017, 74, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Couteau, D.; McCartney, A.L.; Gibson, G.R.; Williamson, G.; Faulds, C.B. Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J. Appl. Microbiol. 2001, 90, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Amaral, R.C.; Carvalho, B.F.; Costa, D.M.; Morenz, M.J.F.; Schwan, R.F.; Ávila, C.L.D.S. Novel lactic acid bacteria strains enhance the conservation of elephant grass silage cv. BRS Capiaçu. Anim. Feed. Sci. Technol. 2020, 264, 114472. [Google Scholar] [CrossRef]
- Costa, D.M.; Carvalho, B.F.; Bernardes, T.F.; Schwan, R.F.; Ávila, C.L.D.S. New epiphytic strains of lactic acid bacteria improve the conservation of corn silage harvested at late maturity. Anim. Feed. Sci. Technol. 2021, 274, 114852. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, S.; Zhang, R.; Li, S.; Kong, J. The changes in dominant lactic acid bacteria and their metabolites during corn stover ensiling. J. Appl. Microbiol. 2018, 125, 675–685. [Google Scholar] [CrossRef]
- Xu, Z.; He, H.; Zhang, S.; Kong, J. Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Sci. Rep. 2017, 7, 13614. [Google Scholar] [CrossRef] [Green Version]
- Escareño, L.; Salinas-González, H.; Wurzinger, M.; Iñiguez, L.; Sölkner, J.; Meza-Herrera, C. Dairy goat production systems. Trop. Anim. Health Prod. 2012, 45, 17–34. [Google Scholar] [CrossRef]
- Gelasakis, A.; Rose, G.; Giannakou, R.; Valergakis, G.; Theodoridis, A.; Fortomaris, P.; Arsenos, G. Typology and characteristics of dairy goat production systems in Greece. Livest. Sci. 2017, 197, 22–29. [Google Scholar] [CrossRef]
- Anomale, M.; Aizpeolea, M.; Wernicke, T.; Macor, L.; Bruno, M.; Di Niro, M.; Saavedra, J.; Peñafort, C. NA 23 Relevamiento de calidad nutricional y de confección de silajes de maíz en la región Centro de CREA. Comunicación. In Proceedings of the 43th Congreso Argentino de Producción Animal, Online, 25–27 November 2020. [Google Scholar]
- Gómez Rodríguez, V.M.; Heredia Nava, D.; Ramirez Vega, H.; Garcia Martinez, A.; Olmos Colmenero, J.D.J. Diagnóstico de la calidad de los ensilados de maíz en los Altos de Jalisco. In Estudios Sociales y Económicos de la Producción Pecuari; Universidad Autónoma Chapingo: Chapingo, Mexico, 2017. [Google Scholar]
- Guo, G.; Shen, C.; Liu, Q.; Zhang, S.-L.; Shao, T.; Wang, C.; Wang, Y.-X.; Xu, Q.-F.; Huo, W.-J. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. J. Integr. Agric. 2020, 19, 838–847. [Google Scholar] [CrossRef]
- Gao, J.L.; Wang, P.; Zhou, C.H.; Li, P.; Tang, H.Y.; Zhang, J.B.; Cai, Y. Chemical composition and in vitro digestibility of corn stover during field exposure and their fermentation characteristics of silage prepared with microbial additives. Asian-Australas J. Anim. Sci. 2019, 32, 1854–1863. [Google Scholar] [CrossRef] [Green Version]
- Fulgueira, C.L.; Amigot, S.L.; Gaggiotti, M.; Romero, L.A.; Basílico, J.C. Forage quality: Techniques for testing. Fresh Prod. 2007, 1, 121–131. [Google Scholar]
- Kung, L.; Shaver, R. Interpretation and use of silage fermentation analysis reports. Focus Forage 2001, 3, 1–5. [Google Scholar]
- Fijalkowska, M.; Przemieniecki, S.W.; Purwin, C.; Lipinski, K.; Kurowski, T.P.; Karwowska, A. The effect of an additive containing three Lactobacillus species on the fermentation pattern and microbiological status of silage. J. Sci. Food Agric. 2020, 100, 1174–1184. [Google Scholar] [CrossRef]
- Saarisalo, E.; Skytta, E.; Haikara, A.; Jalava, T.; Jaakkola, S. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 2007, 102, 327–336. [Google Scholar] [CrossRef]
- Ni, K.; Wang, Y.; Li, D.; Cai, Y.; Pang, H. Characterization, identification and application of lactic Acid bacteria isolated from forage paddy rice silage. PLoS ONE 2015, 10, e0121967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puntillo, M.; Gaggiotti, M.; Oteiza, J.M.; Binetti, A.; Massera, A.; Vinderola, G. Potential of Lactic Acid Bacteria Isolated from Different Forages as Silage Inoculants for Improving Fermentation Quality and Aerobic Stability. Front. Microbiol. 2020, 11, 586716. [Google Scholar] [CrossRef]
- He, Y.; Cone, J.W.; Hendriks, W.H.; Dijkstra, J. Corn stover usage and farm profit for sustainable dairy farming in China. Anim. Biosci. 2021, 34, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Li, G.; Zheng, N.; Wang, J.; Yu, Z. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. Bioresour. Technol. 2018, 253, 244–251. [Google Scholar] [CrossRef]
- Raffrenato, E.; Ross, D.A.; Van Amburgh, M.E. Development of an in vitro method to determine rumen undigested aNDFom for use in feed evaluation. J. Dairy Sci. 2018, 101, 9888–9900. [Google Scholar] [CrossRef]
- DeFeo, M.E.; Shampoe, K.V.; Carvalho, P.H.V.; Silva, F.A.S.; Felix, T.L. In vitro and in situ techniques yield different estimates of ruminal disappearance of barley. Transl. Anim. Sci. 2020, 4, 141–148. [Google Scholar] [CrossRef]
- Tharangani, R.M.H.; Yakun, C.; Zhao, L.S.; Ma, L.; Liu, H.L.; Su, S.L.; Shan, L.; Yang, Z.N.; Kononoff, P.J.; Weiss, W.P.; et al. Corn silage quality index: An index combining milk yield, silage nutritional and fermentation parameters. Anim. Feed. Sci. Technol. 2021, 273, 114817. [Google Scholar] [CrossRef]
- Jin, L.; Dunière, L.; Lynch, J.P.; Zaheer, R.; Turkington, K.; Blackshaw, R.E.; Lupwayi, N.Z.; O’Donovan, J.T.; Harker, K.N.; McAllister, T.; et al. Impact of ferulic acid esterase-producing lactobacilli and fibrolytic enzymes on ensiling and digestion kinetics of mixed small-grain silage. Grass Forage Sci. 2017, 72, 80–92. [Google Scholar] [CrossRef]
- Lynch, J.P.; Jin, L.; Church, J.S.; Baah, J.; Beauchemin, K.A. Fibrolytic enzymes and a ferulic acid esterase-producing bacterial additive applied to alfalfa hay at baling: Effects on fibre digestibility, chemical composition and conservation characteristics. Grass Forage Sci. 2015, 70, 85–93. [Google Scholar] [CrossRef]
- Lynch, J.P.; Prema, D.; Van Hamme, J.D.; Church, J.S.; Beauchemin, K.A. Fiber degradability, chemical composition and conservation characteristics of alfalfa haylage ensiled with exogenous fibrolytic enzymes and a ferulic acid esterase-producing inoculant. Can. J. Anim. Sci. 2014, 94, 697–704. [Google Scholar] [CrossRef]
Species | Strain | Isolation Source | FAE Activity 1 |
---|---|---|---|
Lactobacillus johnsonii | CRL2240 | Goat feces | 218 b |
CRL2237 | Goat feces | 211 b | |
CRL2238 | Goat feces | 591 d | |
Lactiplantibacillus plantarum | CRL046 | Bovine cheese | 35 a |
CRL2241 | Whole plant corn silage | 11 a | |
ETC182 | Whole plant corn silage | 26 a | |
Limosilactobacillus fermentum | CRL1446 | Bovine cheese | 330 c |
Levilactobacillus brevis | CRL2239 | Whole plant corn silage | 36 a |
SEM | 9.48 | ||
p-value | <0.0001 |
Strain | ∆pH | ∆CFU mL−1 | RSs | |||
---|---|---|---|---|---|---|
12 h | 24 h | 48 h | 48 h | 48 h | ||
L. johnsonii | CRL2240 | 0.18 a | 0.79 a | 2.20 a | 4.7 b | 23 c |
CRL2237 | 0.18 a | 0.61 a | 2.39 b | 3.5 a | 24 c | |
CRL2238 | 0.60 b,c | 1.58 b | 2.80 d | 4.6 b | 7 b | |
L. plantarum | CRL046 | 1.96 e | 2.25 c | 2.99 e | 4.9 b | 4 a,b |
CRL2241 | 1.57 d | 2.23 c | 3.00 e | 5.2 c | 1 a | |
ETC182 | 1.85 e | 2.33 c | 2.98 e | 5.1 c | 2 a,b | |
L. fermentum | CRL1446 | 0.52 b | 1.42 b | 2.46 c | 4.8 b | 20 c |
L. brevis | CRL2239 | 0.77 c | 1.47 b | 2.38 b,c | 4.7 b | 3 a,b |
SEM | 0.04 | 0.05 | 0.02 | 0.04 | 1.16 | |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.01 |
Item | |
---|---|
pH | 4.24 ± 0.01 |
Log CFU g FM−1 | |
Lactic acid bacteria | 6.9 ± 0.01 |
Total Mesophilic Bacteria | 7.4 ± 0.01 |
Yeast | 6.2 ± 0.12 |
g kg FM−1 | |
Reducing Sugars | 46 ± 2 |
Dry Matter | 250 ± 2 |
g kg DM−1 | |
Organic Matter | 889 ± 1 |
Crude Protein | 102 ± 2 |
aNDF | 591 ± 3 |
ADF | 327 ± 2 |
ADL | 35 ± 2 |
IVDMD | 683 ± 2 |
L. johnsonii | L. plantarum | L. fermentum | L. brevis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | UN | CRL2240 | CRL2237 | CRL2238 | CRL046 | CRL2241 | ETC182 | CRL1446 | CRL2239 | SEM | p Value | |
pH | 3.63 a,b | 3.58 a | 3.63 a,b | 3.62 a | 3.69 b | 3.59 a | 3.57 a | 3.61 a | 3.62 a | 0.01 | *** | 0.0003 |
Log CFU g FM−1 | ||||||||||||
LAB | ND a | ND a | 3.7 b | 4.1 b | 3.8 b | 3.9 b | 4 b | 4.4 b | ND a | 0.42 | * | 0.0171 |
TMB | 5.7 a,b | 5.9 b | 5.3 a,b | 5.6 a,b | 5.8 a,b | 5.4 a,b | 5.8 a,b | 5.7 a,b | 5.1 a | 0.16 | * | 0.0484 |
Yeast | ND a | ND a | 3.6 b | 3.7 b | ND a | 3.7 b | 3.6 b | 4.3 b | ND a | 0.33 | ** | 0.0012 |
g kg DM−1 | ||||||||||||
RSs | 29 a,b | 28 a,b | 36 b | 27 a,b | 23 a,b | 21 a | 23 a,b | 25 a,b | 28 a,b | 3.34 | * | 0.0289 |
N-NH3 | 1.3 | 1.0 | 0.7 | 0.7 | 0.9 | 1.0 | 0.9 | 0.7 | 0.7 | 0.3 | ns | 0.8672 |
Lactate | 145 | 160 | 147 | 125 | 131 | 158 | 146 | 147 | 128 | 8.46 | t | 0.0856 |
Acetate | 31 | 17 | 24 | 16 | 18 | 24 | 19 | 21 | 18 | 2.72 | t | 0.0642 |
L:A | 5 | 9 | 6 | 8 | 7 | 7 | 8 | 7 | 7 | 0.98 | ns | 0.2677 |
Ethanol | 4 | 3 | 13 | 5 | 5 | 17 | 17 | 15 | 12 | 4.1 | ns | 0.1854 |
Total acids | 176 | 177 | 171 | 146 | 149 | 182 | 165 | 168 | 141 | 9.48 | ns | 0.1298 |
TPC | 48 | 49 | 48 | 49 | 50 | 50 | 50 | 49 | 48 | 0.61 | ns | 0.2063 |
L. johnsonii | L. plantarum | L. fermentum | L. brevis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | UN | CRL2240 | CRL2237 | CRL2238 | CRL046 | CRL2241 | ETC182 | CRL1446 | CRL2239 | SEM | p-Value | |
DM loss, g kg FM−1 | 44 b | 35 a,b | 46 b | 42 b | 25 a | 45 b | 32 a,b | 37 a,b | 23 a | 0.29 | *** | 0.0001 |
ADIN, g kg total N−1 | 124 | 116 | 103 | 104 | 103 | 119 | 94 | 98 | 97 | 12 | ns | 0.5404 |
g kg DM−1 | ||||||||||||
Organic matter | 885 a | 902 a,b | 902 a,b | 900 a,b | 901 a,b | 905 b | 900 a,b | 896 a,b | 902 a,b | 4 | * | 0.0451 |
Crude protein | 100 b | 90 a,b | 84 a | 87 a,b | 88 a,b | 88 a,b | 88 a,b | 98 a,b | 90 a,b | 4 | * | 0.0462 |
aNDF | 606 | 625 | 610 | 612 | 617 | 610 | 640 | 622 | 608 | 11 | ns | 0.5782 |
ADF | 358 | 376 | 366 | 364 | 363 | 361 | 380 | 366 | 366 | 7 | ns | 0.5198 |
ADL | 40 | 44 | 38 | 38 | 39 | 42 | 39 | 42 | 42 | 2 | ns | 0.6194 |
Hemicellulose | 248 | 249 | 245 | 248 | 254 | 250 | 259 | 255 | 242 | 5 | ns | 0.4327 |
Cellulose | 317 | 332 | 327 | 326 | 324 | 318 | 341 | 324 | 324 | 6 | ns | 0.2582 |
In vitro digestibility | ||||||||||||
IVDMD | 657 | 633 | 658 | 648 | 655 | 655 | 635 | 641 | 640 | 8 | ns | 0.2462 |
dNDF, g kg DM−1 | 263 | 257 | 268 | 260 | 272 | 265 | 274 | 262 | 248 | 7 | ns | 0.2527 |
NDFD, % aNDF | 43 | 41 | 44 | 43 | 44 | 43 | 43 | 42 | 41 | 0.9 | t | 0.0953 |
In situ digestibility | ||||||||||||
dNDF, g kg DM−1 | 165 | 167 | 167 | 169 | 164 | 137 | 185 | 165 | 167 | 13 | ns | 0.5996 |
NDFD, % aNDF | 27 | 27 | 27 | 28 | 26 | 22 | 29 | 27 | 28 | 1.8 | ns | 0.4784 |
dADF, g kg DM−1 | 17 a | 29 b | 14 a | 46 b | 15 a | 14 a | 27 b | 14 a | 34 b | 6 | ** | 0.0072 |
ADFD, % ADF | 5 a | 8 a,b | 4 a | 13 b | 4 a | 4 a | 7 a,b | 4 a | 10 a,b | 1.5 | ** | 0.0064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrada, E.; Marquez, A.; Chagra Dib, E.P.; Gauffin-Cano, P.; Medina, R.B. Corn Stover Silage Inoculated with Ferulic Acid Esterase Producing L. johnsonii, L. plantarum, L. fermentum, and L. brevis Strains: Fermentative and Nutritional Parameters. Fermentation 2023, 9, 331. https://doi.org/10.3390/fermentation9040331
Andrada E, Marquez A, Chagra Dib EP, Gauffin-Cano P, Medina RB. Corn Stover Silage Inoculated with Ferulic Acid Esterase Producing L. johnsonii, L. plantarum, L. fermentum, and L. brevis Strains: Fermentative and Nutritional Parameters. Fermentation. 2023; 9(4):331. https://doi.org/10.3390/fermentation9040331
Chicago/Turabian StyleAndrada, Estefania, Antonela Marquez, Elsa Patricia Chagra Dib, Paola Gauffin-Cano, and Roxana Beatriz Medina. 2023. "Corn Stover Silage Inoculated with Ferulic Acid Esterase Producing L. johnsonii, L. plantarum, L. fermentum, and L. brevis Strains: Fermentative and Nutritional Parameters" Fermentation 9, no. 4: 331. https://doi.org/10.3390/fermentation9040331