Conceptual Design of an Autotrophic Multi-Strain Microalgae-Based Biorefinery: Preliminary Techno-Economic and Life Cycle Assessments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Identification and Process Description
2.2. Process Simulation
2.2.1. Microalgae Production (SS1)
2.2.2. Harvesting, Dewatering, and Cell Disruption (SS2)
2.2.3. Aqueous Fraction Processing (SS3)
2.3. Economic Assessment
2.4. Life-Cycle Assessment
3. Results and Discussion
3.1. Mass and Energy Balances
3.2. Economic Assessment
3.3. Environmental Assessment
3.4. Multi-Strain Biorefinery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a Sustainable Bioeconomy: An Overview of World Biomass Production and Utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Ferreira, A.; Gouveia, L. Microalgal Biorefineries. In Handbook of Microalgae Based Processes and Products; Elsevier: Amsterdam, The Netherlands, 2020; pp. 771–798. [Google Scholar]
- Porcelli, R.; Dotto, F.; Pezzolesi, L.; Marazza, D.; Greggio, N.; Righi, S. Comparative Life Cycle Assessment of Microalgae Cultivation for Non-Energy Purposes Using Different Carbon Dioxide Sources. Sci. Total Environ. 2020, 721, 137714. [Google Scholar] [CrossRef]
- Schade, S.; Meier, T. Distinct Microalgae Species for Food—Part 1: A Methodological (Top-down) Approach for the Life Cycle Assessment of Microalgae Cultivation in Tubular Photobioreactors. J. Appl. Phycol. 2020, 32, 2977–2995. [Google Scholar] [CrossRef]
- Schade, S.; Stangl, G.I.; Meier, T. Distinct Microalgae Species for Food—Part 2: Comparative Life Cycle Assessment of Microalgae and Fish for Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), and Protein. J. Appl. Phycol. 2020, 32, 2997–3013. [Google Scholar] [CrossRef]
- Singh, J.; Dhar, D.W. Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-Art. Front. Mar. Sci. 2019, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Deprá, M.C.; Severo, I.A.; dos Santos, A.M.; Zepka, L.Q.; Jacob-Lopes, E. Environmental Impacts on Commercial Microalgae-Based Products: Sustainability Metrics and Indicators. Algal Res. 2020, 51, 102056. [Google Scholar] [CrossRef]
- Paladino, O.; Neviani, M. Scale-up of Photo-Bioreactors for Microalgae Cultivation by π-Theorem. Biochem. Eng. J. 2020, 153, 107398. [Google Scholar] [CrossRef]
- Subhash, G.V.; Rajvanshi, M.; Kumar, G.R.K.; Sagaram, U.S.; Prasad, V.; Govindachary, S.; Dasgupta, S. Challenges in Microalgal Biofuel Production: A Perspective on Techno Economic Feasibility under Biorefinery Stratagem. Bioresour. Technol. 2022, 343, 126155. [Google Scholar] [CrossRef]
- Dong, T.; Knoshaug, E.P.; Davis, R.; Laurens, L.M.L.; van Wychen, S.; Pienkos, P.T.; Nagle, N. Combined Algal Processing: A Novel Integrated Biorefinery Process to Produce Algal Biofuels and Bioproducts. Algal Res. 2016, 19, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Moncada, J.; Tamayo, J.A.; Cardona, C.A. Integrating First, Second, and Third Generation Biorefineries: Incorporating Microalgae into the Sugarcane Biorefinery. Chem. Eng. Sci. 2014, 118, 126–140. [Google Scholar] [CrossRef]
- Moncada, J.; Cardona, C.A.; Rincón, L.E. Design and Analysis of a Second and Third Generation Biorefinery: The Case of Castorbean and Microalgae. Bioresour. Technol. 2015, 198, 836–843. [Google Scholar] [CrossRef]
- Posada, J.A.; Brentner, L.B.; Ramirez, A.; Patel, M.K. Conceptual Design of Sustainable Integrated Microalgae Biorefineries: Parametric Analysis of Energy Use, Greenhouse Gas Emissions and Techno-Economics. Algal Res. 2016, 17, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, R.; Espada, J.J.; Moreno, J.; Vicente, G.; Bautista, L.F.; Morales, V.; Sánchez-Bayo, A.; Dufour, J. Environmental Analysis of Spirulina Cultivation and Biogas Production Using Experimental and Simulation Approach. Renew. Energy 2017, 129, 724–732. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Ji, N.; Deng, S.; Zhao, J.; Li, S.; Kitamura, Y. Evaluation of Hydrolysis-Esterification Biodiesel Production from Wet Microalgae. Bioresour. Technol. 2016, 214, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.F.; Cabanas, C.; Silva, A.; Fonseca, D.; Santos, E.; Guerra, L.T.; Sheahan, C.; Reis, A.; Gírio, F. Process Simulation and Techno-Economic Assessment for Direct Production of Advanced Bioethanol Using a Genetically Modified Synechocystis sp. Bioresour. Technol. Rep. 2019, 6, 113–122. [Google Scholar] [CrossRef]
- Penloglou, G.; Chatzidoukas, C.; Kiparissides, C. A Microalgae-Based Biorefinery Plant for the Production of Valuable Biochemicals: Design and Economics. In Computer Aided Chemical Engineering; Zdravko, K., Miloš, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 38, pp. 1731–1736. [Google Scholar]
- Arashiro, L.T.; Josa, I.; Ferrer, I.; van Hulle, S.W.H.; Rousseau, D.P.L.; Garfí, M. Life Cycle Assessment of Microalgae Systems for Wastewater Treatment and Bioproducts Recovery: Natural Pigments, Biofertilizer and Biogas. Sci. Total Environ. 2022, 847, 157615. [Google Scholar] [CrossRef]
- Ramos, A.A.; Polle, J.; Tran, D.; Cushman, J.C.; Jin, E.-S.; Varela, J.C. The Unicellular Green Alga Dunaliella Salina Teod. as a Model for Abiotic Stress Tolerance: Genetic Advances and Future Perspectives. Algae 2011, 26, 3–20. [Google Scholar] [CrossRef]
- AlFadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F.; Narayanankutty, A. Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules 2022, 27, 5584. [Google Scholar] [CrossRef]
- Thevarajah, B.; Nishshanka, G.K.S.H.; Premaratne, M.; Nimarshana, P.H.V.; Nagarajan, D.; Chang, J.S.; Ariyadasa, T.U. Large-Scale Production of Spirulina-Based Proteins and c-Phycocyanin: A Biorefinery Approach. Biochem. Eng. J. 2022, 185, 108541. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Ryther, J.H. Studies of Marine Planktonic Diatoms: I. Cyclotella Nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Johnson, M.K.; Johnson, E.J.; MacElroy, R.D.; Speer, H.L.; Bruff, B.S. Effects of Salts on the Halophilic Alga Dunaliella Viridis. J. Bacteriol. 1968, 95, 1461–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrouk, C. Contribution a l’etude d’une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques Sur La Croissance et La Photosynthese de Spirulina Mixima. Ph.D. Thesis, University of Paris, Paris, France, 1966. [Google Scholar]
- Eurostat Harmonized Index of Consumer Prices (HIPC), Consulted December 2022. Available online: www.Eurostat.com (accessed on 9 December 2022).
- Directorate-General for Environment. Commission Recommendation of the Use of the Environmental Footprint Methods; Directorate-General for Environment: Brussels, Belgium, 2021. [Google Scholar]
- Zampori, L.; Pant, R. Suggestions for Updating the Product Environmental Footprint (PEF) Method. In Publications Office of the European Union; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Simar, S.I. De Águas e Esgotos Tarifa 2016, Consulted 2022. Available online: http://www.simar-louresodivelas.pt/clientes_pag/tarifa_2016.aspx (accessed on 9 December 2022).
- Rosas, V.T.; Poersch, L.H.; Romano, L.A.; Tesser, M.B. Feasibility of the Use of Spirulina in Aquaculture Diets. Rev. Aquac. 2019, 11, 1367–1378. [Google Scholar] [CrossRef]
- Vázquez-Romero, B.; Perales, J.A.; Pereira, H.; Barbosa, M.; Ruiz, J. Techno-Economic Assessment of Microalgae Production, Harvesting and Drying for Food, Feed, Cosmetics, and Agriculture. Sci. Total Environ. 2022, 837, 155742. [Google Scholar] [CrossRef]
- Russo, G.L.; Langellotti, A.L.; Verardo, V.; Martín-García, B.; di Pierro, P.; Sorrentino, A.; Baselice, M.; Oliviero, M.; Sacchi, R.; Masi, P. Formulation of New Media from Dairy and Brewery Wastes for a Sustainable Production of DHA-Rich Oil by Aurantiochytrium Mangrovei. Mar. Drugs 2021, 20, 39. [Google Scholar] [CrossRef] [PubMed]
- Pordata Renewable Energy Fraction Data, Consulted December 2022. Available online: https://www.pordata.pt/ (accessed on 1 December 2022).
- Moradiya, K.K.; Marathe, K.V. Life Cycle Assessment (LCA) of Marine Microalgae Cultivation and Harvesting Process for the Indian Context. Sustain. Energy Technol. Assess. 2023, 56, 103063. [Google Scholar] [CrossRef]
- Goswami, R.K.; Agrawal, K.; Verma, P. Microalgae Dunaliella as Biofuel Feedstock and β-Carotene Production: An Influential Step towards Environmental Sustainability. Energy Convers. Manag. X 2022, 13, 100154. [Google Scholar] [CrossRef]
- Gaber, K.; Rösch, C.; Biondi, N. Life Cycle Assessment of Total Fatty Acid (TFA) Production from Microalgae Nannochloropsis Oceanica at Different Sites and Under Different Sustainability Scenarios. Bioenergy Res. 2022, 15, 1595–1615. [Google Scholar] [CrossRef]
- Ubando, A.T.; Ng, E.A.S.; Chen, W.-H.; Culaba, A.B.; Kwon, E.E. Life Cycle Assessment of Microalgal Biorefinery: A State-of-the-Art Review. Bioresour. Technol. 2022, 360, 127615. [Google Scholar] [CrossRef]
Strain (S) | #1 | #2 | #3 |
---|---|---|---|
Cultivation mode | autotrophic | autotrophic | autotrophic |
Production system | CRW | TPBR | CRW |
Reactor volume (m3) | 84 | 35 | 76 |
pH control | 7–8.5 | 7–8.5 | 7–8.5 |
Temperature (°C) | - | 35 (max.) | - |
Production regime | semi-continuous | semi-continuous | semi-continuous |
Culture media | derived from [22] | derived from [23] | derived from [24] |
Saline conditions | marine | hypersaline | freshwater |
Strain | Chemical Reaction Related to Biomass Production |
---|---|
S#1 | CO2 + 0.130 NaNO3 + 0.910 H2O → Biomass + 1.445 O2 + 0.130 Na+ |
S#2 | CO2 + 0.120 KNO3 + 0.905 H2O → Biomass + 1.378 O2 + 0.120 K+ |
S#3 | CO2 + 0.180 NaNO3 + 0.865 H2O → Biomass + 1.513 O2 + 0.180 Na+ |
Strain (S) | #1 | #2 | #3 |
---|---|---|---|
Production System | CRW | TPBR | CRW |
Parameter | |||
per day (day−1) | |||
Total raw materials 1 (kg) | 21.06 | 23.99 | 49.27 |
Consumed carbon dioxide (kg) | 33.27 | 3.90 | 29.92 |
Water (m3) | 0.43 | 0.17 | 0.39 |
Biomass production (kgAFDW) | 16.80 | 2.10 | 15.20 |
per produced biomass (kgAFDW −1) | |||
Total raw materials 1 (kg) | 1.25 | 11.42 | 3.24 |
Consumed carbon dioxide (kg) | 1.98 | 1.86 | 1.97 |
Water (dm3) | 25.60 | 80.95 | 25.66 |
Electricity consumption (kWh·day−1) | |||
SS1 | 182.15 | 34.04 | 171.20 |
SS2 | 12.65 | 2.32 | 11.45 |
SS3 | 3.84 | 1.68 | 2.64 |
Total | 198.64 | 38.04 | 185.29 |
Electricity consumption, per biomass (kWh·kgAFDW −1) | |||
SS1 | 10.84 | 16.21 | 11.26 |
SS2 | 0.75 | 1.10 | 0.75 |
SS3 | 0.23 | 0.80 | 0.18 |
Total | 11.82 | 18.11 | 12.19 |
Scale (tonAFDW·year−1) | Strain (S) | #1 | #2 | #3 | |
---|---|---|---|---|---|
10 | Cost (kEUR·year−1) | Raw materials | 6.99 | 25.91 | 34.06 |
Water 1 | 0.40 | 1.19 | 0.40 | ||
Electricity | 19.10 | 28.53 | 19.80 | ||
Labor | 131.56 | 131.56 | 131.56 | ||
Production Cost 2 (EUR·kgAFDW−1) | 15.81 | 18.72 | 18.58 | ||
270 | Cost (kEUR·year−1) | Raw materials | 188.27 | 699.44 | 919.84 |
Water 1 | 10.90 | 32.00 | 10.89 | ||
Electricity | 515.78 | 769.87 | 534.52 | ||
Labor | 803.26 | 803.26 | 803.26 | ||
Production Cost 2 (EUR·kgAFDW−1) | 5.62 | 8.54 | 8.40 |
Impact Category(per kgAFDW biomass) | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S#1 | S#2 | S#3 | S#1 | S#2 | S#3 | S#1 | S#2 | S#3 | S#1 | S#2 | S#3 | |
CC (kgCO2eq) | 13.23 | 39.60 | 16.13 | 7.53 | 36.58 | 12.93 | 8.80 | 13.61 | 12.44 | 5.59 | 10.59 | 9.24 |
OD (kgCFC11eq) | 6.92 × 10−7 | 2.44 × 10−6 | 7.95 × 10−7 | 4.10 × 10−7 | 2.30 × 10−6 | 6.45 × 10−7 | 4.33 × 10−7 | 7.42 × 10−7 | 6.05 × 10−7 | 2.82 × 10−7 | 6.01 × 10−7 | 4.56 × 10−7 |
IR (kBqU-235eq) | 1.07 | 3.87 | 1.11 | 0.47 | 3.48 | 0.70 | 0.66 | 1.08 | 0.86 | 0.25 | 0.69 | 0.44 |
POF (kgNMVOCeq) | 3.72 × 10−2 | 1.41 × 10−1 | 5.14 × 10−2 | 2.51 × 10−2 | 1.37 × 10−1 | 4.71 × 10−2 | 2.18 × 10−2 | 4.08 × 10−2 | 3.51 × 10−2 | 1.76 × 10−2 | 3.68 × 10−2 | 3.09 × 10−2 |
PM (disease inc.) | 3.87 × 10−7 | 2.37 × 10−6 | 1.33 × 10−6 | 2.93 × 10−7 | 2.33 × 10−6 | 1.29 × 10−6 | 2.05 × 10−7 | 5.06 × 10−7 | 6.97 × 10−7 | 1.58 × 10−7 | 4.62 × 10−7 | 6.50 × 10−7 |
HTNC (CTUh) | 2.23 × 10−7 | 1.15 × 10−6 | 4.12 × 10−7 | 7.73 × 10−8 | 1.03 × 10−6 | 2.88 × 10−7 | 1.34 × 10−7 | 2.62 × 10−7 | 2.53 × 10−7 | 9.06 × 10−9 | 1.45 × 10−7 | 1.29 × 10−7 |
HTC (CTUh) | 7.50 × 10−9 | 4.70 × 10−8 | 1.24 × 10−8 | 5.00 × 10−9 | 4.52 × 10−8 | 1.05 × 10−8 | 3.81 × 10−9 | 8.86 × 10−9 | 7.50 × 10−9 | 1.92 × 10−9 | 7.09 × 10−9 | 5.63 × 10−9 |
A (mol H+eq) | 8.50 × 10−2 | 2.76 × 10−1 | 1.57 × 10−1 | 5.74 × 10−2 | 2.68 × 10−1 | 1.48 × 10−1 | 5.19 × 10−2 | 8.95 × 10−2 | 9.87 × 10−2 | 4.34 × 10−2 | 8.16 × 10−2 | 9.02 × 10−2 |
FE (kgPeq) | 4.56 × 10−3 | 1.78 × 10−2 | 5.93 × 10−3 | 2.74 × 10−3 | 1.69 × 10−2 | 4.99 × 10−3 | 2.67 × 10−3 | 4.75 × 10−3 | 4.11 × 10−3 | 1.72 × 10−3 | 3.86 × 10−3 | 3.17 × 10−3 |
ME (kgNeq) | 1.99 × 10−2 | 5.74 × 10−2 | 2.57 × 10−2 | 1.54 × 10−2 | 5.58 × 10−2 | 2.39 × 10−2 | 1.40 × 10−2 | 1.50 × 10−2 | 2.08 × 10−2 | 1.22 × 10−2 | 1.33 × 10−2 | 1.91 × 10−2 |
TE (molNeq) | 1.49 × 10−1 | 5.39 × 10−1 | 3.16 × 10−1 | 1.07 × 10−1 | 5.26 × 10−1 | 3.03 × 10−1 | 9.26 × 10−2 | 1.60 × 10−1 | 1.94 × 10−1 | 7.90 × 10−2 | 1.47 × 10−1 | 1.81 × 10−1 |
FEC (CTUe) | 240.25 | 2832.87 | 1153.39 | 171.87 | 2801.33 | 1119.99 | 130.33 | 1277.27 | 572.48 | 96.73 | 1245.72 | 539.07 |
LU (Pt) | 49.11 | 242.32 | 100.76 | 33.32 | 235.39 | 93.42 | 26.52 | 56.36 | 58.63 | 19.14 | 49.44 | 51.29 |
WU (m3deprived) | 16.29 | 55.46 | 23.34 | 14.63 | 54.91 | 22.76 | 4.49 | 9.15 | 8.60 | 3.90 | 8.60 | 8.02 |
FRU (MJ) | 152.50 | 464.29 | 174.17 | 89.74 | 435.44 | 143.63 | 96.94 | 156.31 | 133.62 | 66.21 | 127.46 | 103.07 |
Strain | S#1 | S#2 | S#3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Subsystems | SS1 | SS2 | SS3 | SS1 | SS2 | SS3 | SS1 | SS2 | SS3 | |
Impact category (%) | CC | 93.0 | 5.4 | 1.6 | 92.8 | 4.2 | 3.0 | 96.0 | 3.3 | 0.8 |
OD | 92.6 | 5.6 | 1.7 | 93.3 | 3.9 | 2.8 | 95.7 | 3.5 | 0.8 | |
IR | 88.4 | 8.9 | 2.7 | 91.9 | 4.7 | 3.4 | 93.9 | 4.9 | 1.1 | |
POF | 92.9 | 5.4 | 1.6 | 93.5 | 3.8 | 2.7 | 96.2 | 3.1 | 0.7 | |
PM | 95.3 | 3.6 | 1.1 | 96.9 | 1.8 | 1.3 | 98.9 | 0.9 | 0.2 | |
HTNC | 64.4 | 27.3 | 8.3 | 95.7 | 2.5 | 1.8 | 97.6 | 1.9 | 0.4 | |
HTC | 95.0 | 3.9 | 1.2 | 97.4 | 1.5 | 1.1 | 98.4 | 1.3 | 0.3 | |
A | 93.1 | 5.3 | 1.6 | 92.8 | 4.1 | 3.0 | 96.9 | 2.6 | 0.6 | |
FE | 92.0 | 6.1 | 1.9 | 93.1 | 4.0 | 2.9 | 95.9 | 3.3 | 0.8 | |
ME | 96.5 | 2.7 | 0.8 | 93.8 | 3.6 | 2.6 | 97.9 | 1.7 | 0.4 | |
TE | 94.2 | 4.4 | 1.3 | 94.0 | 3.5 | 2.5 | 97.6 | 1.9 | 0.4 | |
FEC | 94.3 | 4.4 | 1.3 | 99.1 | 0.5 | 0.4 | 99.0 | 0.8 | 0.2 | |
LU | 93.1 | 5.3 | 1.6 | 94.8 | 3.0 | 2.2 | 97.6 | 2.0 | 0.5 | |
WU | 95.6 | 3.3 | 1.0 | 96.2 | 2.2 | 1.6 | 98.0 | 1.6 | 0.4 | |
FRU | 92.3 | 5.9 | 1.8 | 92.3 | 4.5 | 3.2 | 95.4 | 3.8 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, T.F.; Ortigueira, J.; Matos, C.T.; Costa, L.; Ribeiro, C.; Reis, A.; Gírio, F. Conceptual Design of an Autotrophic Multi-Strain Microalgae-Based Biorefinery: Preliminary Techno-Economic and Life Cycle Assessments. Fermentation 2023, 9, 255. https://doi.org/10.3390/fermentation9030255
Lopes TF, Ortigueira J, Matos CT, Costa L, Ribeiro C, Reis A, Gírio F. Conceptual Design of an Autotrophic Multi-Strain Microalgae-Based Biorefinery: Preliminary Techno-Economic and Life Cycle Assessments. Fermentation. 2023; 9(3):255. https://doi.org/10.3390/fermentation9030255
Chicago/Turabian StyleLopes, Tiago F., Joana Ortigueira, Cristina T. Matos, Luís Costa, Cláudia Ribeiro, Alberto Reis, and Francisco Gírio. 2023. "Conceptual Design of an Autotrophic Multi-Strain Microalgae-Based Biorefinery: Preliminary Techno-Economic and Life Cycle Assessments" Fermentation 9, no. 3: 255. https://doi.org/10.3390/fermentation9030255
APA StyleLopes, T. F., Ortigueira, J., Matos, C. T., Costa, L., Ribeiro, C., Reis, A., & Gírio, F. (2023). Conceptual Design of an Autotrophic Multi-Strain Microalgae-Based Biorefinery: Preliminary Techno-Economic and Life Cycle Assessments. Fermentation, 9(3), 255. https://doi.org/10.3390/fermentation9030255