In Vitro Fermentation
Funding
Acknowledgments
Conflicts of Interest
References
- Tian, X.; Gao, C.; Hou, Z.; Wang, R.; Zhang, X.; Li, Q.; Wei, Z.; Wu, D.; Wang, M. Comparisons of Ramie and Corn Stover Silages: Effects on Chewing Activity, Rumen Fermentation, Microbiota and Methane Emissions in Goats. Fermentation 2022, 8, 432. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Liu, H.; Xu, J.; Liu, T.; Wang, C.; Zheng, C. Evaluation of Gas Production, Fermentation Parameters, and Nutrient Degradability in Different Proportions of Sorghum Straw and Ammoniated Wheat Straw. Fermentation 2022, 8, 415. [Google Scholar] [CrossRef]
- Han, C.; Guo, Y.; Cai, X.; Yang, R. Starch Properties, Nutrients Profiles, In Vitro Ruminal Fermentation and Molecular Structure of Corn Processed in Different Ways. Fermentation 2022, 8, 315. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Li, C.; Malik, K. The Potential Use of Endophyte-Free inebrians as Sheep Feed Evaluated with In Vitro Fermentation. Fermentation 2022, 8, 419. [Google Scholar] [CrossRef]
- Dufourny, S.; Lebrun, S.; Douny, C.; Dubois, B.; Scippo, M.-L.; Wavreille, J.; Rondia, P.; Everaert, N.; Delcenserie, V. Apple Pomace Modulates the Microbiota and Increases the Propionate Ratio in an In Vitro Piglet Gastrointestinal Model. Fermentation 2022, 8, 408. [Google Scholar] [CrossRef]
- Iqbal, Y.; Ponnampalam, E.N.; Le, H.H.; Artaiz, O.; Muir, S.K.; Jacobs, J.L.; Cottrell, J.J.; Dunshea, F.R. Assessment of Feed Value of Chicory and Lucerne for Poultry, Determination of Bioaccessibility of Their Polyphenols and Their Effects on Caecal Microbiota. Fermentation 2022, 8, 237. [Google Scholar] [CrossRef]
- Hu, G.; Jiang, H.; Zong, Y.; Datsomor, O.; Kou, L.; An, Y.; Zhao, J.; Miao, L. Characterization of Lactic Acid-Producing Bacteria Isolated from Rumen: Growth, Acid and Bile Salt Tolerance, and Antimicrobial Function. Fermentation 2022, 8, 385. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Wang, W.-K.; Wu, Q.-C.; Zhang, F.; Li, W.-J.; Yang, Z.-M.; Bo, Y.-K.; Yang, H.-J. The Effect of Different Lactic Acid Bacteria Inoculants on Silage Quality, Phenolic Acid Profiles, Bacterial Community and In Vitro Rumen Fermentation Characteristic of Whole Corn Silage. Fermentation 2022, 8, 285. [Google Scholar] [CrossRef]
- Huang, X.; Xu, Y.; Wu, X.; Ding, Y.; Fan, C.; Xue, Y.; Zhuo, Z.; Cheng, J. Mixed Fermentation of Lactiplantibacillus plantarum and Bacillus licheniformis Changed the Chemical Composition, Bacterial Community, and Rumen Degradation Rate of Tea Residue. Fermentation 2022, 8, 380. [Google Scholar] [CrossRef]
- Guo, T.; Guo, T.; Guo, L.; Li, F.; Li, F.; Ma, Z. Rumen Bacteria Abundance and Fermentation Profile during Subacute Ruminal Acidosis and Its Modulation by Aspergillus oryzae Culture in RUSITEC System. Fermentation 2022, 8, 329. [Google Scholar] [CrossRef]
- Wei, W.; Zhen, Y.; Wang, Y.; Shahzad, K.; Wang, M. Advances of Rumen Functional Bacteria and the Application of Micro-Encapsulation Fermentation Technology in Ruminants: A Review. Fermentation 2022, 8, 564. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Z.; Du, C.; Xiong, B.; Yang, L. Responses of Fermentation Characteristics and Microbial Communities to Vitamin B12 Supplementation in In Vitro Ruminal Cultures. Fermentation 2022, 8, 406. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Q.; Wang, W.; Guo, S.; Li, W.; Lv, L.; Chen, H.; Xiong, F.; Liu, Y.; Chen, Y.; et al. Inhibitory Effect Mediated by Deoxynivalenol on Rumen Fermentation under High-Forage Substrate. Fermentation 2022, 8, 369. [Google Scholar] [CrossRef]
- Shi, T.; Guo, X.; Liu, Y.; Zhang, T.; Wang, X.; Li, Z.; Jiang, Y. Rumen Metaproteomics Highlight the Unique Contributions of Microbe-Derived Extracellular and Intracellular Proteins for In Vitro Ruminal Fermentation. Fermentation 2022, 8, 394. [Google Scholar] [CrossRef]
- Wei, X.; Ouyang, K.; Long, T.; Liu, Z.; Li, Y.; Qiu, Q. Dynamic Variations in Rumen Fermentation Characteristics and Bacterial Community Composition during In Vitro Fermentation. Fermentation 2022, 8, 276. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M. In Vitro Fermentation. Fermentation 2023, 9, 86. https://doi.org/10.3390/fermentation9020086
Wang M. In Vitro Fermentation. Fermentation. 2023; 9(2):86. https://doi.org/10.3390/fermentation9020086
Chicago/Turabian StyleWang, Mengzhi. 2023. "In Vitro Fermentation" Fermentation 9, no. 2: 86. https://doi.org/10.3390/fermentation9020086
APA StyleWang, M. (2023). In Vitro Fermentation. Fermentation, 9(2), 86. https://doi.org/10.3390/fermentation9020086