Preparation of a Pectinase-Enriched Multienzyme under Solid State Fermentation of Sugarcane Bagasse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Bacterial Strains
2.2. Screening of Bacterial Isolates for Cellulase, Xylanase and Pectinase Activities
2.3. Enzyme Assays
2.4. Genomic DNA Extraction and Identification of the Promising Isolates
2.5. Growth Profile of the Isolates
2.6. Solid State Fermentation of Sugarcane Bagasse
2.7. Gravimetric Analysis and Scanning Electron Microscopy
2.8. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Screening of Bacterial Strains
3.2. Identification of the Promising Isolates
3.3. Growth Profile of the Isolates
3.4. Production of Multienzyme
3.5. Gravimetric Analysis
3.6. SEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centuri, N.; Ulcuango, K.; Navas, M.; Mariscal-sancho, I.; Ib, M.A.; Moliner, A.; Hontoria, C. Soil Microbial Response to Cover Crop Termination Methods under Two Water Levels. Agronomy 2022, 12, 3002. [Google Scholar] [CrossRef]
- Bauza-kaszewska, J.; Breza-boruta, B.; Lamparski, R. Effects of Eco-Friendly Product Application and Sustainable Agricultural Management Practices on Soil Properties and Phytosanitary Condition of Winter Wheat Crops. Sustainability 2022, 14, 15754. [Google Scholar] [CrossRef]
- Javier, P.; Iturriaga, G.; Aguirre-mancilla, C.L.; Gabriel, J.; Dioselina, Á. Identification of Halophilic and Halotolerant Bacteria from the Root Soil of the Halophyte Sesuvium verrucosum Raf. Plants 2022, 11, 3355. [Google Scholar] [CrossRef]
- Fahmy, M.A.; Salem, S.H.; Qattan, S.Y.A.; Abourehab, M.A.S.; Ashkan, M.F.; Al-quwaie, D.A.; El-fattah, H.I.A.; Akl, B.A. Biodegradation of Chlorantraniliprole and Flubendiamide by Some Bacterial Strains Isolated from Different Polluted Sources. Processes 2022, 10, 2527. [Google Scholar] [CrossRef]
- Sharma, K.; Singh, V.; Pandit, S.; Thapa, B.S.; Pant, K. Isolation of Biosurfactant-Producing Bacteria and Their Co-Culture Application in Microbial Fuel Cell for Simultaneous Hydrocarbon Degradation and Power Generation. Sustainability 2022, 14, 15638. [Google Scholar] [CrossRef]
- Naz, S.A.; Jabeen, N.; Sohail, M.; Rasool, S.A. Production and purification of pyocin from a soil associated pseudomonas aeruginosa strain sa 188. Pakistan J. Agric. Sci. 2015, 52, 873–879. [Google Scholar]
- Tariq, R.; Ansari, I.; Qadir, F.; Ahmed, A.; Shariq, M.; Zafar, U.; Ahmad, A.; Khan, S.A.; Sohail, M. Optimization of endoglucanase production from thermophilic strain of Bacillus licheniformis RT-17 and its application for saccharification of sugarcane bagasse. Pak. J. Bot. 2018, 50, 807–816. [Google Scholar]
- Sohail, M.; Ahmad, A.; Shahzad, S.; Khan, S.A. A survey of amylolytic bacteria and fungi from native environmental samples. Pak. J. Bot. 2005, 37, 155–161. [Google Scholar]
- Walia, A.; Guleria, S.; Mehta, P.; Chauhan, A.; Parkash, J. Microbial xylanases and their industrial application in pulp and paper biobleaching: A review. 3 Biotech 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, H.; Rehman, I.; Ejaz, U.; Ansari, A.; Sohail, M. Production of multienzyme by Bacillus aestuarii UE25 using ionic liquid pretreated sugarcane bagasse. J. Basic Microbiol. 2021, 61, 1016–1028. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, U.; Sohail, M.; Ghanemi, A. Cellulases: From bioactivity to a variety of industrial applications. Biomimetics 2021, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Kaprelyants, L.; Zhurlova, O.; Shpyrko, T.; Pozhitkova, L. Xylooligosaccharides from agricultural by-products: Characterisation, production and physiological effects. Food Sci. Technol. 2017, 11, 25–34. [Google Scholar] [CrossRef]
- Viikari, L.; Alapuranen, M.; Puranen, T.; Vehmaanperä, J.; Siika-Aho, M. Thermostable enzymes in lignocellulose hydrolysis. Adv. Biochem. Eng. Biotechnol. 2007, 108, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Thite, V.S.; Nerurkar, A.S.; Baxi, N.N. Optimization of concurrent production of xylanolytic and pectinolytic enzymes by Bacillus safensis M35 and Bacillus altitudinis J208 using agro-industrial biomass through Response Surface Methodology. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, S.; Rahman, M.S.; Qin, W. New insights in pectinase production development and industrial applications. Appl. Microbiol. Biotechnol. 2021, 105, 9069–9087. [Google Scholar] [CrossRef]
- Dahmen, N.; Lewandowski, I.; Zibek, S.; Weidtmann, A. Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. GCB Bioenergy 2019, 11, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Bunterngsook, B.; Li, J.-X.; Zhao, X.-Q.; Champreda, V.; Liu, C.-G.; Bai, F.-W. Regulation and production of lignocellulolytic enzymes from Trichoderma reesei for biofuels production. Adv. Bioenergy 2019, 4, 79–119. [Google Scholar] [CrossRef]
- Behera, B.C.; Sethi, B.K.; Mishra, R.R.; Dutta, S.K.; Thatoi, H.N. Microbial cellulases—Diversity & biotechnology with reference to mangrove environment: A review. J. Genet. Eng. Biotechnol. 2017, 15, 197–210. [Google Scholar] [CrossRef]
- Hassan, M.; Sohail, M. Characterization of cellulases from thermophilic bacilli and their application for the saccharification of sugarcane bagasse. Pak. J. Bot. 2020, 52, 1785–1791. [Google Scholar] [CrossRef]
- Pandey, A.; Dhakar, K.; Sharma, A.; Priti, P.; Sati, P.; Kumar, B. Thermophilic bacteria that tolerate a wide temperature and pH range colonize the Soldhar (95 °C) and Ringigad (80 °C) hot springs of Uttarakhand, India. Ann. Microbiol. 2015, 65, 809–816. [Google Scholar] [CrossRef]
- Shrestha, S.; Khatiwada, J.R.; Zhang, X.; Chio, C.; Kognou, A.L.M.; Chen, F.; Han, S.; Chen, X.; Qin, W. Screening and molecular identification of novel pectinolytic bacteria from forest soil. Fermentation 2021, 7, 40. [Google Scholar] [CrossRef]
- Kang, S.-M.; Latif Khan, A.; Waqas, M.; Asaf, S.; Lee, K.-E.; Park, Y.-G.; Kim, A.-Y.; Khan, M.A.; You, Y.-H.; Lee, I.-J. Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J. Plant Interact. 2019, 14, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Rashid, R.; Sohail, M. Xylanolytic Bacillus species for xylooligosaccharides production: A critical review. Bioresour. Bioprocess. 2021, 8, 16. [Google Scholar] [CrossRef]
- Gavande, P.V.; Basak, A.; Sen, S.; Lepcha, K.; Murmu, N.; Rai, V.; Mazumdar, D.; Saha, S.P.; Das, V.; Ghosh, S. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization. Sci. Rep. 2021, 11, 3032. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Al-Tohamy, R.; Manni, A.; Luz, F.C.; Elsamahy, T.; Sun, J. Enhanced digestion of bio-pretreated sawdust using a novel bacterial consortium: Microbial community structure and methane-producing pathways. Fuel 2019, 254, 115604. [Google Scholar] [CrossRef]
- Arshad, M.; Ahmed, S. Cogeneration through bagasse: A renewable strategy to meet the future energy needs. Renew. Sustain. Energy Rev. 2016, 54, 732–737. [Google Scholar] [CrossRef]
- Rehman, S.; Aslam, H.; Ahmad, A.; Khan, S.A.; Sohail, M. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels. Braz. J. Microbiol. 2014, 1492, 1485–1492. [Google Scholar] [CrossRef] [Green Version]
- Qadir, F.; Shariq, M.; Ahmed, A.; Sohail, M. Evaluation of a yeast co-culture for cellulase and xylanase production under solid state fermentation of sugarcane bagasse using multivariate approach. Ind. Crops Prod. 2018, 123, 407–415. [Google Scholar] [CrossRef]
- Ejaz, U.; Muhammad, S.; Imran, F.; Ali, I.; Sohail, M. Cellulose extraction from methyltrioctylammonium chloride pretreated sugarcane bagasse and its application. Int. J. Biol. Macromol. 2020, 165, 11–17. [Google Scholar] [CrossRef]
- Sohail, M.; Naseeb, S.; Sherwani, S.K.; Sultana, S.; Aftab, S.; Shahzad, S.; Ahmad, A.; Khan, S.A. Distribution of hydrolytic enzymes among native fungi: Aspergillus the pre-dominant genus of hydrolase producer. Pak. J. Bot. 2009, 41, 2567–2582. [Google Scholar]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wahyuni, S.; Ode, W.; Purnamasari, G.; Pato, U.; Susilowati, P.E. Identification and Genetic Diversity of Amylase Producing Lactic Acid Bacteria from Brown Rice (Oryza nivara) Wakawondu Cultivar Based on 16S rRNA Gene. Fermentation 2022, 8, 691. [Google Scholar] [CrossRef]
- Sridevi, A.; Narasimha, G.; Ramanjaneyulu, G.; Dileepkumar, K.; Reddy, B.R.; Devi, P.S. Saccharification of pretreated sawdust by Aspergillus niger cellulase. 3 Biotech 2015, 5, 883–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finley, R.B. American Society of Mammalogists American Society of Mammalogists. J. Mammal. 1959, 40, 591–594. [Google Scholar] [CrossRef]
- Shariq, M.; Sohail, M. Production of cellulase and xylanase from Candida tropicalis (MK-118) on purified and crude substrates. Pak. J. Bot. 2020, 52, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Ammouneh, H.; Harba, M.; Makee, H.; Nuclear, C.; Commission, S. Isolation and characterization of native Bacillus thuringiensis isolates from Syrian soil and testing their insecticidal activities against some insect pests Isolation and characterization of native Bacillus thuringiensis isolates from Syrian soil and tes. Turk. J. Agric. For. 2011, 35, 421–431. [Google Scholar] [CrossRef]
- Al-momani, F.; Obeidat, M. Ecology, toxicity, and hydrolytic activities of Bacillus thuringiensis in forests. Turk. J. Agric. For. 2013, 37, 76–82. [Google Scholar] [CrossRef]
- Ben Gharsa, H.; Bouri, M.; Mougou Hamdane, A.; Schuster, C.; Leclerque, A.; Rhouma, A. Bacillus velezensis strain MBY2, a potential agent for the management of crown gall disease. PLoS ONE 2021, 16, e0252823. [Google Scholar] [CrossRef]
- Lu, P.; Jiang, K.; Hao, Y.-Q.; Chu, W.-Y.; Xu, Y.-D.; Yang, J.-Y.; Chen, J.-L.; Zeng, G.-H.; Gu, Z.-H.; Zhao, H.-X. Profiles of Bacillus spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens. J. Microbiol. Biotechnol. 2021, 31, 1231–1240. [Google Scholar]
- Lu, M.; Gao, Z.; Xing, S.; Long, J.; Li, C.; He, L.; Wang, X. Purification, characterization, and chemical modification of Bacillus velezensis SN-14 fibrinolytic enzyme. Int. J. Biol. Macromol. 2021, 177, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Chandra, A.; Dhar, A.; Shukla, P.; Baishya, D. Multi-efficient thermostable endoxylanase from Bacillus velezensis AG20 and its production of xylooligosaccharides as efficient prebiotics with anticancer activity. Process Biochem. 2021, 109, 59–71. [Google Scholar] [CrossRef]
- Doan, C.T.; Chen, C.L.; Nguyen, V.B.; Tran, T.N.; Nguyen, A.D.; Wang, S.L. Conversion of pectin-containing by-products to pectinases by Bacillus amyloliquefaciens and its applications on hydrolyzing banana peels for prebiotics production. Polymers 2021, 13, 1483. [Google Scholar] [CrossRef]
- Nawawi, M.H.; Ismail, K.I.; Sa’ad, N.; Mohamad, R.; Tahir, P.M.; Asa’ari, A.Z.; Saad, W.Z. Optimisation of Xylanase–Pectinase Cocktail Production with Bacillus amyloliquefaciens ADI2 Using a Low-Cost Substrate via Statistical Strategy. Fermentation 2022, 8, 119. [Google Scholar] [CrossRef]
- Jiang, L.; Duan, L.; Tian, X.; Wang, B.; Zhang, H.; Zhang, M.; Li, Z. NaCl salinity stress decreased Bacillus thuringiensis (Bt) protein content of transgenic Bt cotton (Gossypium hirsutum L.) seedlings. Environ. Exp. Bot. 2006, 55, 315–320. [Google Scholar] [CrossRef]
- Wekesa, T.B.; Wekesa, V.W.; Onguso, J.M.; Wafula, E.N.; Kavesu, N. Isolation and Characterization of Bacillus velezensis from Lake Bogoria as a Potential Biocontrol of Fusarium solani in Phaseolus vulgaris L. Bacteria 2022, 1, 279–293. [Google Scholar] [CrossRef]
- Sohail, M.; Siddiqi, R.; Ahmad, A.; Khan, S.A. Cellulase production from Aspergillus niger MS82: Effect of temperature and pH. N. Biotechnol. 2009, 25, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Tantayotai, P.; Rattanaporn, K.; Tepaamorndech, S.; Cheenkachorn, K.; Sriariyanun, M. Analysis of an Ionic Liquid and Salt Tolerant Microbial Consortium Which Is Useful for Enhancement of Enzymatic Hydrolysis and Biogas Production. Waste Biomass Valorization 2019, 10, 1481–1491. [Google Scholar] [CrossRef]
- Bağcıoğlu, M.; Fricker, M.; Johler, S.; Ehling-Schulz, M. Detection and identification of Bacillus cereus, Bacillus cytotoxicus, Bacillus thuringiensis, Bacillus mycoides and Bacillus weihenstephanensis via machine learning based FTIR spectroscopy. Front. Microbiol. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Ejaz, U.; Ahmed, A.; Sohail, M. Statistical optimization of immobilization of yeast cells on corncob for pectinase production. Biocatal. Agric. Biotechnol. 2018, 14, 450–456. [Google Scholar] [CrossRef]
- Chandel, A.K.; Antunes, F.A.; Silva, M.B.; Da Silva, S.S. Unraveling the structure of sugarcane bagasse after soaking in concentrated aqueous ammonia (SCAA) and ethanol production by Scheffersomyces (Pichia) stipitis. Biotechnol. Biofuels 2013, 6, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Experimental Set | Inoculation of Bacterial Strains (h of Cultivation) | ||
---|---|---|---|
B45 | BF3 | B987 | |
1 | 0 | 0 | 0 |
2 | 0 | 8 | 8 |
3 | 0 | - | 0 |
4 | - | 0 | 0 |
5 | 0 | 0 | 16 |
Strain | Enzyme Production (IU mL−1) | ||
---|---|---|---|
Endoglucanase | Xylanase | Pectinase | |
B45 | 4.05 | 0.23 a | 0 |
B325 | 0.85 a | 0 | 0 |
B350 | 0.23 b | 0.64 | 0 |
B411 | 0 | 0 | 0.15 c |
BF1 | 0 | 0.35 | 0 |
BF3 | 0.18 | 3.16 c | 0 |
BF9 | 0 | 0 | 0.18 |
B987 | 0 | 0 | 2.35 d |
B989 | 1.15 | 0.85 | 0 |
BG2 | 0.18 | 0.45 | 0 |
BG7 | 0.35 | 0.13 b | 0 |
BG11 | 0.92 a | 0 | 0 |
BG89 | 0.35 d | 0 | 0 |
BH1 | 0 | 0 | 0.18 c |
BH2 | 0.01 | 0.76 | 0 |
BH9 | 1.23 | 0 | 0 |
BH11 | 0.67 | 0 | 0 |
BH32 | 0.92 | 0 | 0 |
BH42 | 0.65 | 0.32 | 0 |
BH51 | 0 | 0 | 0.45 |
BH53 | 0.65 | 0.28 | 0 |
BH60 | 0.11 | 0.78 | 0 |
Strains | Growth and Enzyme Production in Media Containing NaCl (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | |
B45 | 0.788 c (3.91) a | 0.971 (4.89) b | 1.013 a (4.88) | 1.722 (5.68) c | 1.651 b (5.81) | 0.952 (4.69) | 0.531 (0.51) | 0.315 (-) | 0.328 b (-) |
BF3 | 0.548 b (2.01) | 0.622 (3.65) | 0.744 a (4.22) b | 0.965 (5.88) a | 0.911 (5.76) a | 0.530 c (1.09) c | 0.421 b (-) | 0.388 (-) | 0.368 (-) |
B987 | 0.671 (1.32) b | 1.678 b (3.62) | 1.824 (3.24) c | 1.912 c (3.29) | 2.105 (3.91) | 1.872 (3.18) | 1.751 (2.21) c | 0.822 b (-) | 0.534 (-) |
Strains | Growth in Media Containing 2% NaCl at Temperature (°C) | |||||||
---|---|---|---|---|---|---|---|---|
25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | |
B45 | 0.481 (-) | 0.963 c (3.87) c | 1.588 a (4.23) a | 1.942 a (4.87) | 1.948 b (4.91) b | 1.613 (2.81) | 0.958 b (0.52) | 0.685 (-) |
BF3 | 0.591 b (-) | 0.682 c (1.12) | 0.931 (3.11) | 1.783 c (5.52) | 1.840 (5.58) a | 1.808 (3.45) | 0.936 b (3.88) | 0.858 (0.89) |
B987 | 0.428 (-) | 0.832 (2.31) b | 1.631 (3.38) | 1.911 (3.87) | 2.311 a (4.01) | 1.114 b (3.06) | 1.852 (2.14) a | 0.852 a (1.23) |
Enzymes | Enzyme Production (IU mg−1 of Protein) | ||
---|---|---|---|
UTSB | ACSB | AKSB | |
Experiment No. 1 | |||
EG | 110.4 | 69.09 a | 109.68 |
Xyl | 210.6 | 129.27 | 202.68 b |
Pec | 29.6 | 35.82 | 0 a |
Experiment No. 2 | |||
EG | 96.67 a | 84.92 b | 152.28 |
Xyl | 110.42 a | 75.53 | 133.29 c |
Pec | 45.56 a | 24.91 c | 39.85 |
Experiment No. 3 | |||
EG | 7.13 a | 6.06 a | 8.03 |
Xyl | 10.33 | 10.26 b | 12.65 |
Pec | 2.54 | 1.27 | 1.92 |
Experiment No. 4 | |||
EG | 109.69 a | 40.76 | 115.0 a |
Xyl | 101.23 | 107.45 b | 129.45 |
Pec | 34.77 c | 0 c | 0 a |
Experiment No. 5 | |||
EG | 122.15 a | 85.38 b | 155.77 a |
Xyl | 188.45 b | 86.61 c | 179.62 c |
Pec | 59.48 c | 24.46 c | 34.19 a |
Experiment | Substrate | Component (%) | |||
---|---|---|---|---|---|
Lignin | Hemicellulose | Cellulose | Other Fractions * | ||
1 | UTSB | 6 | 27 | 49 a | 18 |
ACSB | 5 b | 35 | 46 | 14 | |
AKSB | 7 | 21 | 63 a | 9 | |
2 | UTSB | 7 | 23 | 54 | 16 |
ACSB | 6 a | 24 | 64 | 6 a | |
AKSB | 8 | 20 | 62 | 10 | |
3 | UTSB | 6 a | 23 b | 63 | 8 b |
ACSB | 5 | 21 | 62 | 12 b | |
AKSB | 4 | 27 a | 61 | 8 a | |
4 | UTSB | 7 | 21 | 59 | 13 c |
ACSB | 4 | 31 c | 51 | 14 | |
AKSB | 4 | 25 | 58 a | 13 c | |
5 | UTSB | 6 | 33 | 52 a | 9 a |
ACSB | 4 | 32 c | 54 | 10 a | |
AKSB | 4 c | 24 a | 61 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, O.M.; Sohail, M.; Mahmoud, S.F.; Alswat, A.S.; El-Halmouch, Y. Preparation of a Pectinase-Enriched Multienzyme under Solid State Fermentation of Sugarcane Bagasse. Fermentation 2023, 9, 141. https://doi.org/10.3390/fermentation9020141
Alzahrani OM, Sohail M, Mahmoud SF, Alswat AS, El-Halmouch Y. Preparation of a Pectinase-Enriched Multienzyme under Solid State Fermentation of Sugarcane Bagasse. Fermentation. 2023; 9(2):141. https://doi.org/10.3390/fermentation9020141
Chicago/Turabian StyleAlzahrani, Othman M., Muhammad Sohail, Samy F. Mahmoud, Amal S. Alswat, and Yasser El-Halmouch. 2023. "Preparation of a Pectinase-Enriched Multienzyme under Solid State Fermentation of Sugarcane Bagasse" Fermentation 9, no. 2: 141. https://doi.org/10.3390/fermentation9020141
APA StyleAlzahrani, O. M., Sohail, M., Mahmoud, S. F., Alswat, A. S., & El-Halmouch, Y. (2023). Preparation of a Pectinase-Enriched Multienzyme under Solid State Fermentation of Sugarcane Bagasse. Fermentation, 9(2), 141. https://doi.org/10.3390/fermentation9020141