Continuous Fermentation Coupled with Online Gas Stripping for Effective Biobutanol Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cassava Flour
2.2. Cassava Pretreatment
2.3. Culture Medium
2.4. Analytical Methods
2.5. Bacterial Cultivation
2.6. Preparation of Immobilized Cell Carriers
2.7. Scanning Electron Microscopy (SEM) Sample Preparation
3. Results and Discussion
3.1. Effect of Cassava Concentrations on Butanol Synthesis by TSH06
3.2. Effect of Dilution Rates on Continuous Fermentation
3.3. Effect of Cassava Residue Particle Size and Additive Amount on Fermentation Performance of Immobilized Cells
3.4. Single-Stage Continuous Fermentation Coupled with Online Gas Stripping for Butanol Production
3.5. Two-Stage Continuous Fermentation Coupled with Online Gas Stripping for Butanol Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousif, I.E.; Saleh, A.M. Butanol-gasoline blends impact on performance and exhaust emissions of a four stroke spark ignition engine. Case Stud. Therm. Eng. 2023, 41, 102612. [Google Scholar] [CrossRef]
- Eshragh, M.; Parnian, P.; Zamir, S.M.; Halladj, R. Biofiltration of n-butanol vapor at different operating temperatures: Experimental study and mathematical modeling. Int. Biodeterior. Biodegrad. 2017, 119, 361–367. [Google Scholar] [CrossRef]
- Dobslaw, D.; Schulz, A.; Helbich, S.; Dobslaw, C.; Engesser, K.H. VOC removal and odor abatement by a low-cost plasma enhanced biotrickling filter process. J. Environ. Chem. Eng. 2017, 5, 5501–5511. [Google Scholar] [CrossRef]
- Abdelaal, A.S.; Yazdani, S.S. Engineering E. coli to synthesize butanol. Biochem. Soc. Trans. 2022, 50, 867–876. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Jing, Y.J.; Wei, S.J.; Zhang, Q.H.; Peng, S.Y.; An, X.J.; Li, H.G. Enhancement of butanol production in Clostridium acetobutylicum SE25 through oxidation-reduction potential regulation and analysis of its metabolic mechanisms. Fuel 2022, 331, 125708. [Google Scholar] [CrossRef]
- Hamid, A.; Keikhosro, K. Pretreatment and Hydrolysis of Lignocellulosic Wastes for Butanol Production: Challenges and Perspectives. Bioresour. Technol. 2018, 270, 702–721. [Google Scholar]
- Li, H.G.; Luo, W.; Gu, Q.Y.; Wang, Q.; Hu, W.J.; Yu, X.B. Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl. Biochem. Biotechnol. 2014, 172, 3330–3341. [Google Scholar] [CrossRef]
- Lin, Z.N.; Liu, H.J.; Wu, J.; Patakova, P.; Branska, B.; Zhang, J.A. Effective continuous acetone–butanol–ethanol production with full utilization of cassava by immobilized symbiotic TSH06. Biotechnol. Biofuels 2019, 12, 219. [Google Scholar] [CrossRef]
- Outram, V.; Lalander, C.A.; Lee, J.G.M.; Davies, E.T.; Harvey, A.P. Applied in Situ Product Recovery in ABE Fermentation. Biotechnol. Progr. 2017, 33, 563–579. [Google Scholar] [CrossRef]
- Lin, Z.N.; Liu, H.J.; Yan, X.; Zhou, Y.J.; Cheng, K.K.; Zhang, J.A. High-efficiency acetone-butanol-ethanol production and recovery in non-strict anaerobic gas-stripping fed-batch fermentation. Appl. Microbiol. Biotechnol. 2017, 101, 8029–8039. [Google Scholar] [CrossRef]
- Chen, C.-W.; Mirzaei, S.; Huang, C.-C.; Li, S.-Y. A scale-up study of the continuous ABE fermentation in a packed bed coupled with the extraction/gas-stripping in situ butanol recovery process. Sep. Purif. Technol. 2023, 318, 123952. [Google Scholar] [CrossRef]
- Staggs, K.W.; Nielsen, D.R. Improving n-butanol production in batch and semi-continuous processes through integrated product recovery. Process. Biochem. 2015, 50, 1487–1498. [Google Scholar] [CrossRef]
- Xue, C.; Zhao, J.-B.; Chen, L.-J.; Bai, F.-W.; Yang, S.-T.; Sun, J.-X. Integrated butanol recovery for an advanced biofuel: Current state and prospects. Appl. Microbiol. Biotechnol. 2014, 98, 3463–3474. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ren, H.F.; Liu, D.; Zhao, T.; Shi, X.C.; Cheng, H.; Zhao, N.; Li, Z.J.; Li, B.B.; Niu, H.Q.; et al. Enhancement of n-butanol production by in situ butanol removal using permeating-heating-gas stripping in acetone-butanol-ethanol fermentation. Bioresour. Technol. 2014, 164, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Wang, Y.; Chen CQin, P.; Mao, Q.; Zhang, C.; Li, P.; Tan, T. Acetone-butanol-ethanol from sweet sorghum juice by an immobilized fermentation-gas stripping integration process. Bioresour. Technol. 2016, 211, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Du, G.Q.; Sun, J.X.; Chen, L.J.; Gao, S.S.; Yu, M.L.; Yang, S.T.; Bai, F.W. Characterization of gas stripping and its integration with acetone-butanol-ethanol fermentation for high-efficient butanol production and recover. Biochem. Eng. J. 2014, 83, 55–61. [Google Scholar] [CrossRef]
- Liu, W.; Zha, W.; Yin, H.; Yang, C.Y.; Lu KChen, J.X. Integration of rare earth element stimulation, activated carbon adsorption and cell immobilization in ABE fermentation for promoting biobutanol production. Chem. Eng. Process. 2023, 184, 109306. [Google Scholar] [CrossRef]
- Gedam, P.S.; Raut, A.N.; Dhamole, P.B. Effect of Operating Conditions and Immobilization on Butanol Enhancement in an Extractive Fermentation Using Non-ionic Surfactant. Appl. Biochem. Biotechnol. 2019, 187, 1424–1436. [Google Scholar] [CrossRef]
- Yen, H.W.; Li, R.J.; Ma, T.W. The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. J. Taiwan Inst. Chem. Eng. 2011, 42, 902–907. [Google Scholar] [CrossRef]
- Malaviya, A.; Jang, Y.S.; Lee, S.Y. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl. Biochem. Biotechnol. 2012, 93, 1485–1494. [Google Scholar] [CrossRef]
- Abo, B.O.; Gao, M.; Wang, Y.; Wu, C.F.; Wang, Q.H.; Ma, H.Z. Production of butanol from biomass: Recent advances and future prospects. Environ. Sci. Pollut. Res. 2019, 26, 20164–20182. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.F.; Wang, G.Y.; Wang, G.H.; Borresen, B.T.; Liu, H.J.; Zhang, J.A. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum, and Bacillus cereus. Microb. Cell Factories 2016, 15, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Buehler, E.A.; Mesbah, A. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture. PLoS ONE 2016, 11, e0158243. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, Y.; Takeda, K.; Kobayashi, G.; Sonomoto, K. High production of acetone–butanol–ethanol with high cell density culture by cell-recycling and bleeding. J. Biotechnol. 2005, 120, 197–206. [Google Scholar] [CrossRef]
- Andrade, J.C.; Vasconcelos, I. Continuous cultures of Clostridium acetobutylicum: Culture stability and low-grade glycerol utilisation. Biotechnol. Lett. 2003, 25, 121–125. [Google Scholar] [CrossRef]
- Zheng, J.; Tashiro, Y.; Yoshida, T.; Gao, M.; Wang, Q.; Sonomoto, K. Continuous butanol fermentation from xylose with high cell density by cell recycling system. Bioresour. Technol. 2013, 129, 360–365. [Google Scholar] [CrossRef]
- Chang, Z.; Cai, D.; Wang, C.; Li, L.; Han, J.; Qin, P.; Wang, Z. Sweet sorghum bagasse as an immobilized carrier for ABE fermentation by using Clostridium acetobutylicum ABE 1201. RSC Adv. 2014, 4, 21819–21825. [Google Scholar] [CrossRef]
- Lin, Q.; Donghui, W.; Jianlong, W. Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon. Bioresour. Technol. 2010, 101, 5229–5234. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Ma, Y.J.; Yang, F.X.; Zheng, C.H. Continuous acetone- butanol-ethanol production by corn stalk immobilized cells. J. Ind. Microbiol. Biotechnol. 2009, 36, 1117–1121. [Google Scholar] [CrossRef]
- Leong, Y.L.; Krivak, D.; Kiel, M.; Laski, E.; González-Sánchez, A.; Dobslaw, D. Triclosan biodegradation performance of adapted mixed cultures in batch and continuous operating systems at high-concentration levels. Clean. Eng. Technol. 2021, 5, 100266. [Google Scholar] [CrossRef]
- Erik, A.; Cristian, P.; Mark, V.; Heyden, A. Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol. Bioeng. 2006, 94, 961–979. [Google Scholar]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Tielen, P.; Rosenau, F.; Wilhelm, S.; Jaeger, K.-E.; Flemming, H.-C.; Wingender, J. Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiology 2010, 156 Pt 7, 2239. [Google Scholar] [CrossRef] [PubMed]
- Sand, W.; Gehrke, T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res. Microbiol. 2006, 157, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Yang, J.; Wu, J.; Liu, D.; Zhou, J.W.; Chen, Y.; Ying, H.J. Extracellular polymer substances and the heterogeneity of Clostridium acetobutylicum biofilm induced tolerance to acetic acid and butanol. RSC Adv. 2016, 6, 33695–33704. [Google Scholar] [CrossRef]
- Wang, G.Y.; Wu, P.F.; Liu, Y.; Mi, S.; Mai, S.; Gu, C.K.; Wang, G.H.; Liu, H.J.; Zhang, J.A.; Børresen, B.T.; et al. Isolation and characterisation of non-anaerobic butanol-producing symbiotic system TSH0. Appl. Microbiol. Biotechnol. 2015, 99, 8803–8813. [Google Scholar] [CrossRef]
- Lai, M.C.; Traxler, R.W. A coupled two-stage continuous fermentation for solvent production by Clostridium acetobutylicum. Enzym. Microb. Technol. 1994, 16, 1021–1025. [Google Scholar] [CrossRef]
- Gapes, J.R.; Nimcevic, D.; Friedl, A. Long-Term Continuous Cultivation of Clostridium beijerinckii in a Two-Stage Chemostat with On-Line Solvent Removal. Appl. Environ. Microbiol. 1996, 62, 3210–3219. [Google Scholar] [CrossRef]
- Richter, H.; Qureshi, N.; Heger, S.; Dien, B.; Cotta, M.A.; Angenent, L.T. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal. Biotechnol. Bioeng. 2012, 109, 913–921. [Google Scholar] [CrossRef]
- Setlhaku, M.; Brunberg, S.; Villa, E.A.; Wichmann, R. Improvement in the bioreactor specific productivity by coupling continuous reactor with repeated fed-batch reactor for acetone-butanol-ethanol production. J. Biotechnol. 2012, 161, 147–152. [Google Scholar]
- Chang, Z.; Cai, D.; Wang, Y.; Chen, C.; Fu, C.; Wang, G.; Qin, P.; Wang, Z.; Tan, T. Effective multiple stages continuous acetone–butanol–ethanol fermentation by immobilized bioreactors: Making full use of fresh corn stalk. Bioresour. Technol. 2016, 205, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Oudshoorn, A.; Van der Wielen, L.A.M.; Straathof, A.J.J. Assessment of Options for Selective 1-Butanol Recovery from Aqueous Solution. Ind. Eng. Chem. Res. 2009, 48, 7325–7336. [Google Scholar] [CrossRef]
- Rochón, E.; Cortizoa, G.; Cabot MICubero, M.T.G.; Coca, M.; Ferrari, M.D.; Lareo, C. Bioprocess intensification for isopropanol, butanol and ethanol (IBE) production by fermentation from sugarcane and sweet sorghum juices through a gas stripping-pervaporation recovery process. Fuel 2020, 281, 118593. [Google Scholar] [CrossRef]
Fermentation Parameter | Cassava (g/L) | Glucose (g/L) | |||
---|---|---|---|---|---|
80 | 70 | 60 | 50 | 65 | |
Initial starch concentration (g/L) | 61.6 ± 1.1 | 54.2 ± 0.9 | 45.7 ± 1.2 | 38.0 ± 1.0 | 0 |
Initial glucose concentration (g/L) | 0 | 0 | 0 | 0 | 65.3 ± 1.1 |
Final starch concentration (g/L) | 5.5 ± 1.9 | 0 | 0 | 0 | 0 |
Final maltose concentration (g/L) | 0.6 ± 0.1 | 0.4 ± 0.1 | 0 | 0 | 0 |
Final glucose concentration (g/L) | 8.0 ± 1.2 | 4.8 ± 0.9 | 0.1 ± 0.1 | 0.1 ± 0.1 | 11.3 ± 1.4 |
Butanol(g/L) | 11.6 ± 0.4 | 11.8 ± 0.3 | 10.5 ± 0.2 | 8.5 ± 0.2 | 11.7 ± 0.2 |
Acetone (g/L) | 4.3 ± 0.2 | 4.4 ± 0.1 | 4.0 ± 0.4 | 3.2 ± 0.3 | 4.9 ± 0.2 |
Ethanol (g/L) | 1.6 ± 0.1 | 1.6 ± 0.2 | 1.4 ± 0.2 | 1.2 ± 0.2 | 1.7 ± 0.1 |
Total solvent (g/L) | 17.5 ± 0.8 | 17.8 ± 0.3 | 15.9 ± 0.8 | 12.9 ± 0.7 | 18.3 ± 0.4 |
Total solvent yield (g/g) | 0.35 a | 0.36 a | 0.35 a | 0.35 a | 0.33 b |
Butanol yield (g/g) | 0.24 c | 0.24 c | 0.23 c | 0.22 c | 0.22 d |
Butanol productivity (g/(L·h)) | 0.16 | 0.16 | 0.14 | 0.12 | 0.16 |
Total solvent productivity (g/(L·h)) | 0.24 | 0.25 | 0.21 | 0.18 | 0.25 |
Parameter | Butanol | ABE |
---|---|---|
Solvent concentration in fermentation broth (g/L) | 4.8~6.1 | 7.1~9.6 |
Solvent concentration in the condensate collector (g/L) | 71.2 | 97.6 |
Productivity (g/(L·h)) | 0.9 | 1.33 |
Yield (g/g starch) | 0.24 | 0.35 |
Substrate utilization % | 99.3% |
Fermentation Stage | Substrate | Dilution Rate | Strategy | Butanol Productivity (g/(L·h)) | Abe Productivity (g/(L·h)) | Butanol Concentration (g/L) | Abe Concentration (g/L) | Strain | Reference |
---|---|---|---|---|---|---|---|---|---|
Two-stage | Glucose | D1 = 0.075; D2 = 0.06 | Free cell | 0.4 | -- | 5.93 | -- | C. acetobutylicum ATCC 824 | [37] |
Two-stage | Glucose | D1 = 0.55; D2 = 0.18 | Immobilized cell; Pervaporation | 1.24 | -- | 9.3 | -- | C. beijerinckii B592 | [38] |
Two-stage | Glucose | D1 = 0.25; D2 = 0.025 | Butyric acid addition; Gas stripping | 0.4 | -- | 4 | -- | C. saccharoperbutylacetonicum N1–4 | [39] |
Two-stage | Glucose | D1 = 0.1; D2 = 0.1 | Free cell | 0.38 | 0.58 | 9.5 | 14.6 | C. acetobutylicum ATCC 824 | [40] |
Two-stage | Glucose | D1 = 0.1 D2 = 0.04 | Stage 1: continuous Stage 2: repeated fed-batch | 0.62 | 0.92 | 12 | 19.5 | C. acetobutylicum ATCC 824 | [40] |
Three-stage | Corn stalk | D1 = 0.12; D2 = 0.12 D3 = 0.12 | Immobilized cell | 0.45 | 0.6~0.9 | 12.4 | 19.9 | C. acetobutylicum ABE 1201 | [41] |
Two-stage | Cassava | D1 = 0.2; D2 = 0.1 | Immobilized cell; Gas stripping | 0.9 | 1.33 | 71.2 | 97.6 | TSH06 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Liu, H.; Cong, W.; Zhang, J. Continuous Fermentation Coupled with Online Gas Stripping for Effective Biobutanol Production. Fermentation 2023, 9, 942. https://doi.org/10.3390/fermentation9110942
Lin Z, Liu H, Cong W, Zhang J. Continuous Fermentation Coupled with Online Gas Stripping for Effective Biobutanol Production. Fermentation. 2023; 9(11):942. https://doi.org/10.3390/fermentation9110942
Chicago/Turabian StyleLin, Zhangnan, Hongjuan Liu, Wei Cong, and Jian’an Zhang. 2023. "Continuous Fermentation Coupled with Online Gas Stripping for Effective Biobutanol Production" Fermentation 9, no. 11: 942. https://doi.org/10.3390/fermentation9110942
APA StyleLin, Z., Liu, H., Cong, W., & Zhang, J. (2023). Continuous Fermentation Coupled with Online Gas Stripping for Effective Biobutanol Production. Fermentation, 9(11), 942. https://doi.org/10.3390/fermentation9110942