Insights into Co-Cultivation of Photosynthetic Microorganisms for Novel Molecule Discovery and Enhanced Production of Specialized Metabolites
Abstract
:1. Introduction
2. Ecological Interactions of Photosynthetic Microorganisms Related with the Production of Specialized Metabolism
3. Recent Status of Co-Cultivation of Photosynthetic Microorganisms
Co-Culture Type | Organism | Product/Application | Co-Culture Condition | Main Findings | Compounds Discovery with Biological Activity | Reference |
---|---|---|---|---|---|---|
Microalgae/cyanobacteria | Botryococcus braunii/Nostoc muscorum | Biofuels | Bioreactor | 50% enhancement in nitrogen fixation. 27% enhancement in lipid content. 38% enhancement in biomass content. | Triacontanol (phytohormone) | [58] |
Microalgae/bacteria | Chaetoceros calcitrans, Tetraselmis suecica, Nannochloropsis sp., and Thalassiosira weissflogii/Vibrio parahaemolyticus | Antimicrobial compound production | - | V. parahaemolyticus was significantly inhibited in co-culture. | Hydrophilic compounds of C. calcitrans with antibiotic activities | [65] |
Microalgae/microalgae | Chlorella vulgaris/Scenedesmus acutus | Biomass production and nutrient removal efficiencies | Thin-layer cascade (TLC) and thin-layer raceway pond | Better nutrient removal efficiencies. Maximum biomass densities of 1.3 and 2.1 g DWL−1. | Antifungal compounds against Pythium ultimum | [66] |
Microalgae/animalia | Porosira glacialis/zooplankton | Changes in bioactivity and metabolome | Outdoor 6000 L glass fiber vertical column open photobioreactor | Induced the production of compounds with cytotoxic activity towards normal lung fibroblasts. | Production of novels carotenoids in P. glacialis | [67] |
Cyanobacteria/bacteria | Nostoc sp./Enterobacter aerogenes | Bioelectricity, bioactive compound production, wastewater treatment | Two-chambered microbial fuel cell (MFC) with the algae in the cathode chamber and the bacteria in the anode chamber | MFC generated a maximum power density of 168 W/m2 and removed 84% of the chemical oxygen demand from the wastewater. | FTIR analysis of the extract confirmed the presence of bioactive compounds | [60] |
Microalgae/microalgae | Ettlia sp./Chlorella sp. | Biomass productivity and biodiesel production | Photobioreactor | Higher biomass productivity in coculture than in the monoculture of either Ettlia or Chlorella. | - | [59] |
Microalgae/bacteria | Chlorella pyrenoidosa/Rhodobacter capsulatus | Wastewater treatment, biomass production, lipid production | Batch culture (250 mL flasks) | The co-culture produced more biomass and lipids than either monoculture. | - | [62] |
Cyanobacteria/microalgae | Leptolyngbya tenuis/Chlorella ellipsoidea | Biodiesel production, carbon sequestration, cadmium accumulation | Batch culture (250 mL flasks) | The co-culture produced more biomass and lipids than either monoculture. It was also more effective at sequestering carbon and accumulating cadmium. | - | [70] |
Microalgae/fungi | Chlorella sorokiniana/Rhodotorula glutinis C. vulgaris/Aspergillus sp. | Biofuel production and bioremediation | - | Enhanced phosphate removal efficiencies. Enhanced ammonium–nitrogen removal. Enhanced biomass and oil production. | - | [71,72] |
Cyanobacteria/cyanobacteria | Anabaena cylindrica/Nostoc sp. | Polysaccharides, extracellular proteins, nitrogen fixation, biofertilizer | 400 mL bubble column photobioreactor | The co-culture produced more biomass, polysaccharides, extracellular proteins, and it had higher nitrogenase and photosynthetic activity than either monoculture. | - | [73] |
Microalgae/fungi/bacteria | Chlorella vulgaris/Aspergillus niger/Enterobacter aerogenes | Wastewater treatment | Photobioreactor (16.8 L) | The co-culture was more effective at removing organic matter and nutrients from wastewater than either monoculture. | - | [63] |
Microalgae/bacteria | Chlamydomonas reinhardtii/Escherichia coli, Pseudomonas stutzeri and Pseudomonas putida/unknown bacterial consortium | Hydrogen production | Bioreactors (100 mL) | Chlamydomonas could grow properly in presence of bacterial consortium and hydrogen evolution improved up to 56% in these co-cultures. | - | [61] |
Microalgae/bacteria | Chaetoceros muelleri/Vibrio parahaemolyticus | Algicidal activity (algal bloom control) | Batch culture (250 mL flasks) | Algicidal activity against Chaetoceros muelleri due to extracellular metabolites produced by the bacteria. | - | [69] |
Microalgae/bacteria | Streptomyces rosealbus/Chlorella vulgaris | Biodiesel production, bioflocculation formation | Batch culture (1 L flasks) | Co-culture produced more biomass and lipids, and better bioflocculation properties. | - | [74] |
Microalgae/bacteria | Chlamydomonas reinhardtii/Escherichia coli | Biomass production, starch production | Batch culture (250 mL flasks) | The co-culture produced more biomass and starch than either monoculture. | - | [75] |
Microalgae/fungi | Chlamydomonas reinhardtii/Saccharomyces cerevisiae | Biomass production | Batch culture (250 mL flasks) | The co-culture produced more biomass. Gene expression levels of 363 green algae and 815 yeast genes were altered through co-cultivation. | - | [76] |
Microalgae/bacteria | Free-living Symbiodinium/Alteromonas abrolhosensis | Algal bloom control | - | Algicidal activity against free-living Symbiodinium, attributed to the production of extracellular metabolites by the bacteria. The metabolites produced oxidative stress and photosynthetic system damage in the algae. | - | [68] |
Microalgae/fungi | Chlorella vulgaris/Aspergillus niger | Swine wastewater treatment | Batch culture (250 mL flasks) | The co-culture was able to form aggregated structures, which were mediated by extracellular polymeric substances (EPSs), simplifying the wastewater treatment. | - | [64] |
Extreme-Tolerant and Extremophilic Photosynthetic Microorganisms in Co-Cultivation Studies
4. Limitations on the Understanding of Ecological Interactions and Available Methodologies for Co-Cultivation
5. -Omics-Based Research and Standardized Methodologies as Future Directions of Co-Cultivation Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grubišić, M.; Ivančić Šantek, M.; Šantek, B. Potential of Microalgae for the Production of Different Biotechnological Products. Chem. Biochem. Eng. Q. 2019, 33, 161–181. [Google Scholar] [CrossRef]
- Malavasi, V.; Soru, S.; Cao, G. Extremophile Microalgae: The Potential for Biotechnological Application. J. Phycol. 2020, 56, 559–573. [Google Scholar] [CrossRef] [PubMed]
- Sydney, E.B.; Schafranski, K.; Barretti, B.R.V.; Sydney, A.C.N.; Zimmerman, J.F.D.A.; Cerri, M.L.; Mottin Demiate, I. Biomolecules from Extremophile Microalgae: From Genetics to Bioprocessing of a New Candidate for Large-Scale Production. Process Biochem. 2019, 87, 37–44. [Google Scholar] [CrossRef]
- Padmaperuma, G.; Kapoore, R.V.; Gilmour, D.J.; Vaidyanathan, S. Microbial Consortia: A Critical Look at Microalgae Co-Cultures for Enhanced Biomanufacturing. Crit. Rev. Biotechnol. 2017, 38, 690–703. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhang, H. Utilizing Cross-Species Co-Cultures for Discovery of Novel Natural Products. Curr. Opin. Biotechnol. 2021, 69, 252–262. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Giardi, M.T.; Zappi, D.; Touloupakis, E.; Antonacci, A. Photoautotrophs–Bacteria Co-Cultures: Advances, Challenges and Applications. Materials 2021, 14, 3027. [Google Scholar] [CrossRef]
- Yen, H.W.; Chen, P.W.; Chen, L.J. The Synergistic Effects for the Co-Cultivation of Oleaginous Yeast-Rhodotorula Glutinis and Microalgae-Scenedesmus Obliquus on the Biomass and Total Lipids Accumulation. Bioresour. Technol. 2015, 184, 148–152. [Google Scholar] [CrossRef]
- Silva, A.D.; Ambrozin, A.R.P.; de Camargo, A.F.S.; Cruz, F.D.P.N.; Ferreira, L.L.G.; Krogh, R.; Silva, T.L.; Camargo, I.L.B.D.C.; Andricopulo, A.D.; Vieira, P.C. Liquid Fungal Cocultivation as a Strategy to Access Bioactive Metabolites. Planta Med. 2021, 87, 187–195. [Google Scholar] [CrossRef]
- Yu, G.; Sun, Z.; Peng, J.; Zhu, M.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Secondary Metabolites Produced by Combined Culture of Penicillium Crustosum and a Xylaria sp. J. Nat. Prod. 2019, 82, 2013–2017. [Google Scholar] [CrossRef]
- Salwan, R.; Sharma, V. Molecular and Biotechnological Aspects of Secondary Metabolites in Actinobacteria. Microbiol. Res. 2020, 231, 126374. [Google Scholar] [CrossRef]
- Rojas, V.; Rivas, L.; Cárdenas, C.; Guzmán, F. Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020, 25, 5804. [Google Scholar] [CrossRef] [PubMed]
- Matos De Opitz, C.L.; Sass, P. Tackling Antimicrobial Resistance by Exploring New Mechanisms of Antibiotic Action. Future Microbiol. 2020, 15, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Baracaldo, P.; Cardona, T. On the Origin of Oxygenic Photosynthesis and Cyanobacteria. N. Phytol. 2020, 225, 1440–1446. [Google Scholar] [CrossRef]
- Leão, P.N.; Engene, N.; Antunes, A.; Gerwick, W.H.; Vasconcelos, V. The Chemical Ecology of Cyanobacteria. Nat. Prod. 2012, 29, 372–391. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.W.; Zehr, J.P. Cellular Interactions: Lessons from the Nitrogen-Fixing Cyanobacteria. J. Phycol. 2013, 49, 1024–1035. [Google Scholar] [CrossRef] [PubMed]
- Usher, K.M. The Ecology and Phylogeny of Cyanobacterial Symbionts in Sponges. Mar. Ecol. 2008, 29, 178–192. [Google Scholar] [CrossRef]
- Werth, S. Biogeography and Phylogeography of Lichen Fungi and Their Photobionts. In Biogeography of Microscopic Organisms Is Everything Small Everywhere? Cambridge University Press: Cambridge, MA, USA, 2011; pp. 191–208. ISBN 9780511974878. [Google Scholar]
- Almer, J.; Resl, P.; Gudmundsson, H.; Warshan, D.; Andrésson, Ó.S.; Werth, S. Symbiont-Specific Responses to Environmental Cues in a Threesome Lichen Symbiosis. Mol. Ecol. 2023, 32, 1045–1061. [Google Scholar] [CrossRef]
- Llamas, A.; Leon-Miranda, E.; Tejada-Jimenez, M. Microalgal and Nitrogen-Fixing Bacterial Consortia: From Interaction to Biotechnological Potential. Plants 2023, 12, 2476. [Google Scholar] [CrossRef]
- van Goethem, M.W.; Makhalanyane, T.P.; Cowan, D.A.; Valverde, A. Cyanobacteria and Alphaproteobacteria May Facilitate Cooperative Interactions in Niche Communities. Front. Microbiol. 2017, 8, 2099. [Google Scholar] [CrossRef]
- Turnham, K.E.; Wham, D.C.; Sampayo, E.; LaJeunesse, T.C. Mutualistic Microalgae Co-Diversify with Reef Corals That Acquire Symbionts during Egg Development. ISME J. 2021, 15, 3271–3285. [Google Scholar] [CrossRef]
- Perera, I.; Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Consortia of Cyanobacteria/Microalgae and Bacteria in Desert Soils: An Underexplored Microbiota. Appl. Microbiol. Biotechnol. 2018, 102, 7351–7363. [Google Scholar] [CrossRef]
- Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Megharaj, M. Soil Microalgae and Cyanobacteria: The Biotechnological Potential in the Maintenance of Soil Fertility and Health. Crit. Rev. Biotechnol. 2019, 39, 981–998. [Google Scholar] [CrossRef]
- Mutale-Joan, C.; Sbabou, L.; Hicham, E.A. Microalgae and Cyanobacteria: How Exploiting These Microbial Resources Can Address the Underlying Challenges Related to Food Sources and Sustainable Agriculture: A Review. J. Plant Growth Regul. 2022, 42, 1–20. [Google Scholar] [CrossRef]
- Gayathri, M.; Kumar, P.S.; Prabha, A.M.L.; Muralitharan, G. In Vitro Regeneration of Arachis Hypogaea L. and Moringa Oleifera Lam. Using Extracellular Phytohormones from Aphanothece Sp. MBDU 515. Algal Res. 2015, 7, 100–105. [Google Scholar] [CrossRef]
- Kholssi, R.; Lougraimzi, H.; Grina, F.; Lorentz, J.F.; Silva, I.; Castaño-Sánchez, O.; Marks, E.A.N. Green Agriculture: A Review of the Application of Micro- and Macroalgae and Their Impact on Crop Production on Soil Quality. J. Soil. Sci. Plant Nutr. 2022, 22, 4627–4641. [Google Scholar] [CrossRef]
- Supraja, K.V.; Behera, B.; Balasubramanian, P. Performance Evaluation of Hydroponic System for Co-Cultivation of Microalgae and Tomato Plant. J. Clean. Prod. 2020, 272, 122823. [Google Scholar] [CrossRef]
- Özer Uyar, G.E.; Mısmıl, N. Symbiotic Association of Microalgae and Plants in a Deep Water Culture System. PeerJ 2022, 10, e14536. [Google Scholar] [CrossRef] [PubMed]
- Chaïb, S.; Pistevos, J.C.A.; Bertrand, C.; Bonnard, I. Allelopathy and Allelochemicals from Microalgae: An Innovative Source for Bio-Herbicidal Compounds and Biocontrol Research. Algal Res. 2021, 54, 102213. [Google Scholar] [CrossRef]
- Al-Nazwani, M.S.; Aboshosha, S.S.; El-Saedy, M.A.M.; Ghareeb, R.Y.; Komeil, D.A. Antifungal Activities of Chlorella vulgaris Extract on Black Scurf Disease, Growth Performance and Quality of Potato. Arch. Phytopathol. Plant Prot. 2021, 54, 2171–2190. [Google Scholar] [CrossRef]
- Leão, P.N.; Vasconcelos, M.T.S.D.; Vasconcelos, V.M. Allelopathy in Freshwater Cyanobacteria. Crit. Rev. Microbiol. 2009, 35, 271–282. [Google Scholar] [CrossRef]
- Tan, K.; Huang, Z.; Ji, R.; Qiu, Y.; Wang, Z.; Liu, J. A Review of Allelopathy on Microalgae. Microbiology 2019, 165, 587–592. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Climate Change: A Catalyst for Global Expansion of Harmful Cyanobacterial Blooms. Environ. Microbiol. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef]
- Ger, K.A.; Hansson, L.A.; Lürling, M. Understanding Cyanobacteria-Zooplankton Interactions in a More Eutrophic World. Freshw. Biol. 2014, 59, 1783–1798. [Google Scholar] [CrossRef]
- Schwarzenberger, A.; Hasselmann, M.; von Elert, E. Positive Selection of Digestive Proteases in Daphnia: A Mechanism for Local Adaptation to Cyanobacterial Protease Inhibitors. Mol. Ecol. 2020, 29, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Osman, O.A.; Beier, S.; Grabherr, M.; Bertilsson, S. Interactions of Freshwater Cyanobacteria with Bacterial Antagonists. Appl. Environ. Microbiol. 2017, 83, 2634–2650. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.S.; Mock, T.; Armbrust, E.V. Genomic Insights into Marine Microalgae. Annu. Rev. Genet. 2008, 42, 619–645. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.B.; Smith, A.G. Exploring Mutualistic Interactions between Microalgae and Bacteria in the Omics Age. Curr. Opin. Plant Biol. 2015, 26, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Warshan, D.; Liaimer, A.; Pederson, E.; Kim, S.Y.; Shapiro, N.; Woyke, T.; Altermark, B.; Pawlowski, K.; Weyman, P.D.; Dupont, C.L.; et al. Genomic Changes Associated with the Evolutionary Transitions of Nostoc to a Plant Symbiont. Mol. Biol. Evol. 2018, 35, 1160–1175. [Google Scholar] [CrossRef]
- Khalil, Z.G.; Cruz-Morales, P.; Licona-Cassani, C.; Marcellin, E.; Capon, R.J. Inter-Kingdom Beach Warfare: Microbial Chemical Communication Activates Natural Chemical Defences. ISME J. 2019, 13, 147–158. [Google Scholar] [CrossRef]
- Keller, N.P. Fungal Secondary Metabolism: Regulation, Function and Drug Discovery. Nat. Rev. Microbiol. 2019, 17, 167–180. [Google Scholar] [CrossRef]
- Kim, H.; Rha, E.; Seong, W.; Yeom, S.J.; Lee, D.H.; Lee, S.G. A Cell-Cell Communication-Based Screening System for Novel Microbes with Target Enzyme Activities. ACS Synth. Biol. 2016, 5, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Reen, F.J.; Mooij, M.J.; Holcombe, L.J.; Mcsweeney, C.M.; Mcglacken, G.P.; Morrissey, J.P.; O’Gara, F. The Pseudomonas Quinolone Signal (PQS), and Its Precursor HHQ, Modulate Interspecies and Interkingdom Behaviour. FEMS Microbiol. Ecol. 2011, 77, 413–428. [Google Scholar] [CrossRef] [PubMed]
- Hashidoko, Y.; Kim, D. Bidirectional Cell-Cell Communication via Indole and Cyclo(Pro-Tyr) Modulates Interspecies Biofilm Formation. Appl. Environ. Microbiol. 2021, 87, e01277-21. [Google Scholar] [CrossRef] [PubMed]
- Humphries, J.; Xiong, L.; Liu, J.; Prindle, A.; Yuan, F.; Arjes, H.A.; Tsimring, L.; Süel, G.M. Species-Independent Attraction to Biofilms through Electrical Signaling. Cell 2017, 168, 200–209.e12. [Google Scholar] [CrossRef]
- König, C.C.; Scherlach, K.; Schroeckh, V.; Horn, F.; Nietzsche, S.; Brakhage, A.A.; Hertweck, C. Bacterium Induces Cryptic Meroterpenoid Pathway in the Pathogenic Fungus Aspergillus Fumigatus. ChemBioChem 2013, 14, 938–942. [Google Scholar] [CrossRef]
- Wang, G.; Ran, H.; Fan, J.; Keller, N.P.; Liu, Z.; Wu, F.; Yin, W.B. Fungal-Fungal Cocultivation Leads to Widespread Secondary Metabolite Alteration Requiring the Partial Loss-of-Function VeA1 Protein. Sci. Adv. 2022, 8, 6094. [Google Scholar] [CrossRef]
- Ramanan, R.; Kim, B.H.; Cho, D.H.; Oh, H.M.; Kim, H.S. Algae–Bacteria Interactions: Evolution, Ecology and Emerging Applications. Biotechnol. Adv. 2016, 34, 14–29. [Google Scholar] [CrossRef]
- Qiao, Z.; Li, J.; Qin, S. Bioactive Compounds for Quorum Sensing Signal-Response Systems in Marine Phycosphere. J. Mar. Sci. Eng. 2022, 10, 699. [Google Scholar] [CrossRef]
- Shibl, A.A.; Isaac, A.; Ochsenkühn, M.A.; Cárdenas, A.; Fei, C.; Behringer, G.; Arnoux, M.; Drou, N.; Santos, M.P.; Gunsalus, K.C.; et al. Diatom Modulation of Select Bacteria through Use of Two Unique Secondary Metabolites. Proc. Natl. Acad. Sci. USA 2020, 117, 27445. [Google Scholar] [CrossRef]
- Seyedsayamdost, M.R.; Case, R.J.; Kolter, R.; Clardy, J. The Jekyll-and-Hyde Chemistry of Phaeobacter Gallaeciensis. Nat. Chem. 2011, 3, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Chhun, A.; Sousoni, D.; del Aguiló-Ferretjans, M.M.; Song, L.; Corre, C.; Christie-Oleza, J.A. Phytoplankton Trigger the Production of Cryptic Metabolites in the Marine Actinobacterium Salinispora Tropica. Microb. Biotechnol. 2021, 14, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, S.; Bohni, N.; Schnee, S.; Schumpp, O.; Gindro, K.; Wolfender, J.L. Metabolite Induction via Microorganism Co-Culture: A Potential Way to Enhance Chemical Diversity for Drug Discovery. Biotechnol. Adv. 2014, 32, 1180–1204. [Google Scholar] [CrossRef]
- de-Bashan, L.E.; Mayali, X.; Bebout, B.M.; Weber, P.K.; Detweiler, A.M.; Hernandez, J.P.; Prufert-Bebout, L.; Bashan, Y. Establishment of Stable Synthetic Mutualism without Co-Evolution between Microalgae and Bacteria Demonstrated by Mutual Transfer of Metabolites (NanoSIMS Isotopic Imaging) and Persistent Physical Association (Fluorescent in Situ Hybridization). Algal Res. 2016, 15, 179–186. [Google Scholar] [CrossRef]
- Benedetti, M.; Vecchi, V.; Barera, S.; Dall’Osto, L. Biomass from Microalgae: The Potential of Domestication towards Sustainable Biofactories. Microb. Cell Factories 2018, 17, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, L.; Wang, S.; Yang, G.; Zhao, L.; Pan, K. Co-Culturing Bacteria and Microalgae in Organic Carbon Containing Medium. J. Biol. Res. 2016, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Nayak, M.; Ghosh, A. A Review on Co-Culturing of Microalgae: A Greener Strategy towards Sustainable Biofuels Production. Sci. Total Environ. 2022, 802, 149765. [Google Scholar] [CrossRef]
- Gautam, K.; Tripathi, J.K.; Pareek, A.; Sharma, D.K. Growth and Secretome Analysis of Possible Synergistic Interaction between Green Algae and Cyanobacteria. J. Biosci. Bioeng. 2019, 127, 213–221. [Google Scholar] [CrossRef]
- Rashid, N.; Ryu, A.J.; Jeong, K.J.; Lee, B.; Chang, Y.K. Co-Cultivation of Two Freshwater Microalgae Species to Improve Biomass Productivity and Biodiesel Production. Energy Convers. Manag. 2019, 196, 640–648. [Google Scholar] [CrossRef]
- Lakshmidevi, R.; Nagendra Gandhi, N.; Muthukumar, K. Bioelectricity and Bioactive Compound Productionin an Algal-Assisted Microbial Fuel Cell with Immobilized Bioanode. Biomass Convers. Biorefin 2022, 12, 3457–3473. [Google Scholar] [CrossRef]
- Fakhimi, N.; Tavakoli, O. Improving Hydrogen Production Using Co-Cultivation of Bacteria with Chlamydomonas Reinhardtii Microalga. Mater. Sci. Energy Technol. 2019, 2, 1–7. [Google Scholar] [CrossRef]
- Shen, X.F.; Xu, Y.P.; Tong, X.Q.; Huang, Q.; Zhang, S.; Gong, J.; Chu, F.F.; Zeng, R.J. The Mechanism of Carbon Source Utilization by Microalgae When Co-Cultivated with Photosynthetic Bacteria. Bioresour. Technol. 2022, 365, 128152. [Google Scholar] [CrossRef]
- Dong, X.; Wei, J.; Huang, J.; Zhao, C.; Sun, S.; Zhao, Y.; Liu, J. Performance of Different Microalgae-Fungi-Bacteria Co-Culture Technologies in Photosynthetic and Removal Performance in Response to Various GR24 Concentrations. Bioresour. Technol. 2022, 347, 126428. [Google Scholar] [CrossRef]
- Wu, Q.; Li, S.; Wang, H.; Wang, W.; Gao, X.; Guan, X.; Zhang, Z.; Teng, Y.; Zhu, L. Construction of an Efficient Microalgal-Fungal Co-Cultivation System for Swine Wastewater Treatment: Nutrients Removal and Extracellular Polymeric Substances (EPS)-Mediated Aggregated Structure Formation. Chem. Eng. J. 2023, 476, 146690. [Google Scholar] [CrossRef]
- Soto-Rodriguez, S.A.; Magallón-Servín, P.; López-Vela, M.; Nieves Soto, M. Inhibitory Effect of Marine Microalgae Used in Shrimp Hatcheries on Vibrio Parahaemolyticus Responsible for Acute Hepatopancreatic Necrosis Disease. Aquac. Res. 2022, 53, 1337–1347. [Google Scholar] [CrossRef]
- Carneiro, M.; Ranglová, K.; Lakatos, G.E.; Câmara Manoel, J.A.; Grivalský, T.; Kozhan, D.M.; Toribio, A.; Moreno, J.; Otero, A.; Varela, J.; et al. Growth and Bioactivity of Two Chlorophyte (Chlorella and Scenedesmus) Strains Co-Cultured Outdoors in Two Different Thin-Layer Units Using Municipal Wastewater as a Nutrient Source. Algal Res. 2021, 56, 102299. [Google Scholar] [CrossRef]
- Osvik, R.D.; Ingebrigtsen, R.A.; Norrbin, M.F.; Andersen, J.H.; Eilertsen, H.C.; Hansen, E.H. Adding Zooplankton to the OSMAC Toolkit: Effect of Grazing Stress on the Metabolic Profile and Bioactivity of a Diatom. Mar. Drugs 2021, 19, 87. [Google Scholar] [CrossRef]
- Jia, Y.; Lu, J.; Wang, M.; Qin, W.; Chen, B.; Xu, H.; Ma, Z. Algicidal Bacteria in Phycosphere Regulate Free-Living Symbiodinium Fate via Triggering Oxidative Stress and Photosynthetic System Damage. Ecotoxicol. Environ. Saf. 2023, 263, 115369. [Google Scholar] [CrossRef]
- Prasath, B.B.; Zahir, M.; Elsawah, A.M.; Raza, M.; Lecong, C.; Chutian, S.; Poon, K. Statistical Approaches in Modeling of the Interaction between Bacteria and Diatom under a Dual-Species Co-Cultivation System. J. King Saud. Univ. Sci. 2022, 34, 101743. [Google Scholar] [CrossRef]
- Satpati, G.G.; Pal, R. Co-Cultivation of Leptolyngbya Tenuis (Cyanobacteria) and Chlorella Ellipsoidea (Green Alga) for Biodiesel Production, Carbon Sequestration, and Cadmium Accumulation. Curr. Microbiol. 2021, 78, 1466–1481. [Google Scholar] [CrossRef]
- Das, P.K.; Rani, J.; Rawat, S.; Kumar, S. Microalgal Co-Cultivation for Biofuel Production and Bioremediation: Current Status and Benefits. BioEnergy Res. 2021, 15, 1–26. [Google Scholar] [CrossRef]
- Qin, L.; Liu, L.; Zeng, A.P.; Wei, D. From Low-Cost Substrates to Single Cell Oils Synthesized by Oleaginous Yeasts. Bioresour. Technol. 2017, 245, 1507–1519. [Google Scholar] [CrossRef]
- Xue, C.; Wang, L.; Wu, T.; Zhang, S.; Tang, T.; Wang, L.; Zhao, Q.; Sun, Y. Characterization of Co-Cultivation of Cyanobacteria on Growth, Productions of Polysaccharides and Extracellular Proteins, Nitrogenase Activity, and Photosynthetic Activity. Appl. Biochem. Biotechnol. 2017, 181, 340–349. [Google Scholar] [CrossRef]
- Lakshmikandan, M.; Wang, S.; Murugesan, A.G.; Saravanakumar, M.; Selvakumar, G. Co-Cultivation of Streptomyces and Microalgal Cells as an Efficient System for Biodiesel Production and Bioflocculation Formation. Bioresour. Technol. 2021, 332, 125118. [Google Scholar] [CrossRef]
- Yamada, R.; Yokota, M.; Matsumoto, T.; Hankamer, B.; Ogino, H. Promoting Cell Growth and Characterizing Partial Symbiotic Relationships in the Co-Cultivation of Green Alga Chlamydomonas Reinhardtii and Escherichia Coli. Biotechnol. J. 2023, 18, 2200099. [Google Scholar] [CrossRef]
- Karitani, Y.; Yamada, R.; Matsumoto, T.; Ogino, H. Improvement of Cell Growth in Green Algae Chlamydomonas Reinhardtii through Co-Cultivation with Yeast Saccharomyces Cerevisiae. bioRxiv 2023. [Google Scholar] [CrossRef]
- Sekurova, O.N.; Schneider, O.; Zotchev, S.B. Novel Bioactive Natural Products from Bacteria via Bioprospecting, Genome Mining and Metabolic Engineering. Microb. Biotechnol. 2019, 12, 828–844. [Google Scholar] [CrossRef]
- Núñez-Montero, K.; Barrientos, L. Advances in Antarctic Research for Antimicrobial Discovery: A Comprehensive Narrative Review of Bacteria from Antarctic Environments as Potential Sources of Novel Antibiotic Compounds Against Human Pathogens and Microorganisms of Industrial Importance. Antibiotics 2018, 7, 90. [Google Scholar] [CrossRef]
- Zreda-Gostynska, G.; Kyle, P.R.; Finnegan, D.; Prestbo, K.M. Volcanic Gas Emissions from Mount Erebus and Their Impact on the Antarctic Environment. J. Geophys. Res. Solid. Earth 1997, 102, 15039–15055. [Google Scholar] [CrossRef]
- Chu, W.L.; Dang, N.L.; Kok, Y.Y.; Ivan Yap, K.S.; Phang, S.M.; Convey, P. Heavy Metal Pollution in Antarctica and Its Potential Impacts on Algae. Polar Sci. 2019, 20, 75–83. [Google Scholar] [CrossRef]
- Bhardwaj, L.; Chauhan, A.; Ranjan, A.; Jindal, T. Persistent Organic Pollutants in Biotic and Abiotic Components of Antarctic Pristine Environment. Earth Syst. Environ. 2018, 2, 35–54. [Google Scholar] [CrossRef]
- Sayed, A.M.; Hassan, M.H.A.; Alhadrami, H.A.; Hassan, H.M.; Goodfellow, M.; Rateb, M.E. Extreme Environments: Microbiology Leading to Specialized Metabolites. J. Appl. Microbiol. 2020, 128, 630–657. [Google Scholar] [CrossRef]
- Little, S.M.; Senhorinho, G.N.A.; Saleh, M.; Basiliko, N.; Scott, J.A.; Little, S.M.; Senhorinho, G.N.A.; Saleh, M.; Basiliko, N.; Scott, J.A. Antibacterial Compounds in Green Microalgae from Extreme Environments: A Review. Algae 2021, 36, 61–72. [Google Scholar] [CrossRef]
- Núñez-Montero, K.; Rojas-Villalta, D.; Barrientos, L. Antarctic Sphingomonas Sp. So64.6b Showed Evolutive Divergence within Its Genus, Including New Biosynthetic Gene Clusters. Front. Microbiol. 2022, 13, 4559. [Google Scholar] [CrossRef]
- Wierzchos, J.; DiRuggiero, J.; Vítek, P.; Artieda, O.; Souza-Egipsy, V.; Škaloud, P.; Tisza, M.J.; Davila, A.F.; Vílchez, C.; Garbayo, I.; et al. Adaptation Strategies of Endolithic Chlorophototrophs to Survive the Hyperarid and Extreme Solar Radiation Environment of the Atacama Desert. Front. Microbiol. 2015, 6, 934. [Google Scholar]
- Choudhari, S.; Lohia, R.; Grigoriev, A. Comparative Metagenome Analysis of an Alaskan Glacier. J. Bioinform. Comput. Biol. 2014, 12, 1441003. [Google Scholar] [CrossRef]
- Fermani, P.; Mataloni, G.; Van De Vijver, B. Soil Microalgal Communities on an Antarctic Active Volcano (Deception Island, South Shetlands). Polar Biol. 2007, 30, 1381–1393. [Google Scholar] [CrossRef]
- Cowan, D.A.; Chown, S.L.; Convey, P.; Tuffin, M.; Hughes, K.; Pointing, S.; Vincent, W.F. Non-Indigenous Microorganisms in the Antarctic: Assessing the Risks. Trends Microbiol. 2011, 19, 540–548. [Google Scholar] [CrossRef]
- Christodoulou, M.; Jokela, J.; Wahlsten, M.; Saari, L.; Economou-Amilli, A.; de Fiore, M.F.; Sivonen, K. Description of Aliinostoc Alkaliphilum Sp. Nov. (Nostocales, Cyanobacteria), a New Bioactive Metabolite-Producing Strain from Salina Verde (Pantanal, Brazil) and Taxonomic Distribution of Bioactive Metabolites in Nostoc and Nostoc-like Genera. Water 2022, 14, 2470. [Google Scholar]
- Balouch, H.; Demirbag, Z.; Zayadan, B.K.; Sadvakasaova, A.K.; Bolatkhan, K.; Gencer, D.; Civelek, D. Isolation, Identification, and Antimicrobial Activity of Psychrophilic Freshwater Microalgae Monoraphidium Sp. from Almaty Region. Int. J. Biol. Chem. 2020, 13, 14–23. [Google Scholar] [CrossRef]
- Messina, C.M.; Renda, G.; Laudicella, V.A.; Trepos, R.; Fauchon, M.; Hellio, C.; Santulli, A. From Ecology to Biotechnology, Study of the Defense Strategies of Algae and Halophytes (from Trapani Saltworks, NW Sicily) with a Focus on Antioxidants and Antimicrobial Properties. Int. J. Mol. Sci. 2019, 20, 881. [Google Scholar] [CrossRef]
- Santos, N.O.; Oliveira, S.M.; Alves, L.C.; Cammarota, M.C. Methane Production from Marine Microalgae Isochrysis Galbana. Bioresour. Technol. 2014, 157, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Mahlia, T.M.I.; Kusumo, F. Optimization of Extraction of Lipid from Isochrysis Galbana Microalgae Species for Biodiesel Synthesis. Energy Sources Part. A Recovery Util. Environ. Eff. 2017, 39, 1167–1175. [Google Scholar] [CrossRef]
- Matos, J.; Afonso, C.; Cardoso, C.; Serralheiro, M.L.; Bandarra, N.M. Yogurt Enriched with Isochrysis Galbana: An Innovative Functional Food. Foods 2021, 10, 1458. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, F.; Li, H.; Zhao, S.; Liu, Q.; Lin, Y.; Wang, G.; Wu, J. Biodegradation of Phenol by Isochrysis Galbana Screened from Eight Species of Marine Microalgae: Growth Kinetic Models, Enzyme Analysis and Biodegradation Pathway. J. Appl. Phycol. 2019, 31, 445–455. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, H.; Guo, G.; Pu, Y.; Yan, B. The Isolation and Antioxidant Activity of Polysaccharides from the Marine Microalgae Isochrysis Galbana. Carbohydr. Polym. 2014, 113, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, N.; Sun, X.; Yu, H.; Zhou, C. Hydrolysis and Purification of ACE Inhibitory Peptides from the Marine Microalga Isochrysis Galbana. J. Appl. Phycol. 2015, 27, 351–361. [Google Scholar] [CrossRef]
- Mishra, N.; Mishra, N. Exploring the Biologically Active Metabolites of Isochrysis Galbana in Pharmaceutical Interest: An Overview. Int. J. Pharm. Sci. Res. 2018, 9, 2162–2174. [Google Scholar] [CrossRef]
- Hafsa, M.B.; Ismail, M.B.; Garrab, M.; Aly, R.; Gagnon, J.; Naghmouchi, K. Antimicrobial, Antioxidant, Cytotoxic and Anticholinesterase Activities of Water-Soluble Polysaccharides Extracted from Microalgae Isochrysis Galbana and Nannochloropsis Oculata. J. Serbian Chem. Soc. 2017, 82, 509–522. [Google Scholar] [CrossRef]
- Alsenani, F.; Tupally, K.R.; Chua, E.T.; Eltanahy, E.; Alsufyani, H.; Parekh, H.S.; Schenk, P.M. Evaluation of Microalgae and Cyanobacteria as Potential Sources of Antimicrobial Compounds. Saudi Pharm. J. 2020, 28, 1834–1841. [Google Scholar] [CrossRef]
- Molina-Cárdenas, C.A.; Lizárraga-Partida, M.L.; Guerrero, A.; del Pilar Sánchez-Saavedra, M. Biocontrol of Vibrio Vulnificus Strains Challenged with Isochrysis Galbana Cultures. J. Appl. Phycol. 2022, 34, 883–887. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Xu, S.M.; Cao, J.Y.; Wu, M.N.; Lin, J.H.; Zhou, C.X.; Zhang, L.; Zhou, H.B.; Li, Y.R.; Xu, J.L.; et al. Co-Cultivation of Isochrysis Galbana and Marinobacter Sp. Can Enhance Algal Growth and Docosahexaenoic Acid Production. Aquaculture 2022, 556, 738248. [Google Scholar] [CrossRef]
- Shaw, C.; Brooke, C.; Hawley, E.; Connolly, M.P.; Garcia, J.A.; Harmon-Smith, M.; Shapiro, N.; Barton, M.; Tringe, S.G.; Glavina del Rio, T.; et al. Phototrophic Co-Cultures from Extreme Environments: Community Structure and Potential Value for Fundamental and Applied Research. Front. Microbiol. 2020, 11, 572131. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, S.; Schumpp, O.; Bohni, N.; Bujard, A.; Azzollini, A.; Monod, M.; Gindro, K.; Wolfender, J.L. Detection of Metabolite Induction in Fungal Co-Cultures on Solid Media by High-Throughput Differential Ultra-High Pressure Liquid Chromatography–Time-of-Flight Mass Spectrometry Fingerprinting. J. Chromatogr. A 2013, 1292, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Balsa-Canto, E.; Alonso-del-Real, J.; Querol, A. Temperature Shapes Ecological Dynamics in Mixed Culture Fermentations Driven by Two Species of the Saccharomyces Genus. Front. Bioeng. Biotechnol. 2020, 8, 915. [Google Scholar]
- Dunker, S.; Althammer, J.; Pohnert, G.; Wilhelm, C. A Fateful Meeting of Two Phytoplankton Species—Chemical vs. Cell-Cell-Interactions in Co-Cultures of the Green Algae Oocystis Marsonii and the Cyanobacterium Microcystis Aeruginosa. Microb. Ecol. 2017, 74, 22–32. [Google Scholar] [CrossRef]
- Minin, A.; Blatov, I.; Lebedeva, V.; Tiukhai, M.; Pozdina, V.; Byzov, I.; Zubarev, I. Novel Cost-Efficient Protein-Based Membrane System for Cells Cocultivation and Modeling the Intercellular Communication. Biotechnol. Bioeng. 2022, 119, 1033–1042. [Google Scholar] [CrossRef]
- Paul, C.; Mausz, M.A.; Pohnert, G. A Co-Culturing/Metabolomics Approach to Investigate Chemically Mediated Interactions of Planktonic Organisms Reveals Influence of Bacteria on Diatom Metabolism. Metabolomics 2013, 9, 349–359. [Google Scholar]
- Briand, E.; Reubrecht, S.; Mondeguer, F.; Sibat, M.; Hess, P.; Amzil, Z.; Bormans, M. Chemically Mediated Interactions between Microcystis and Planktothrix: Impact on Their Growth, Morphology and Metabolic Profiles. Environ. Microbiol. 2018, 21, 1552–1566. [Google Scholar] [CrossRef]
- Boruta, T. A Bioprocess Perspective on the Production of Secondary Metabolites by Streptomyces in Submerged Co-Cultures. World J. Microbiol. Biotechnol. 2021, 37, 171. [Google Scholar]
- Trontel, A.; Batusic, A.; Gusic, I.; Slavica, A.; Novak, S. Production of D-and L-Lactic Acid by Mono-and Mixed Cultures of Lactobacillus sp. Food Technol. Biotechnol. 2011, 49, 75–82. [Google Scholar]
- Jangra, M.; Belur, P.D.; Oriabinska, L.B.; Dugan, O.M. Multistrain Probiotic Production by Co-Culture Fermentation in a Lab-Scale Bioreactor. Eng. Life Sci. 2016, 16, 247–253. [Google Scholar] [CrossRef]
- Mavituna, F.; Luti, K.J.K.; Gu, L. In Search of the E. Coli Compounds That Change the Antibiotic Production Pattern of Streptomyces Coelicolor During Inter-Species Interaction. Enzym. Microb. Technol. 2016, 90, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Temkin, M.I.; Carlson, C.M.; Stubbendieck, A.L.; Currie, C.R.; Stubbendieck, R.M. High Throughput Co-Culture Assays for the Investigation of Microbial Interactions. J. Vis. Exp. 2019, 152, e60275. [Google Scholar] [CrossRef]
- Jackson, S.A.; Borchert, E.; O’Gara, F.; Dobson, A.D.W. Metagenomics for the Discovery of Novel Biosurfactants of Environmental Interest from Marine Ecosystems. Curr. Opin. Biotechnol. 2015, 33, 176–182. [Google Scholar] [CrossRef]
- Al-Amoudi, S.; Razali, R.; Essack, M.; Amini, M.S.; Bougouffa, S.; Archer, J.A.C.; Lafi, F.F.; Bajic, V.B. Metagenomics as a Preliminary Screen for Antimicrobial Bioprospecting. Gene 2016, 594, 248–258. [Google Scholar] [CrossRef]
- Sonowal, S.; Ahmed, R.; Chikkaputtaiah, C.; Basar, E.; Velmurugan, N. A Comprehensive Characterization of Culturable Endophytic Bacteria of Paris Polyphylla and Their Potential Role in Microalgal Growth in Co-Culture. Appl. Soil. Ecol. 2022, 174, 104410. [Google Scholar] [CrossRef]
- Canon, F.; Nidelet, T.; Guédon, E.; Thierry, A.; Gagnaire, V. Understanding the Mechanisms of Positive Microbial Interactions That Benefit Lactic Acid Bacteria Co-Cultures. Front. Microbiol. 2020, 11, 2088. [Google Scholar]
- Torres-Monroy, I.; Ullrich, M.S. Identification of Bacterial Genes Expressed during Diatom-Bacteria Interactions Using an in Vivo Expression Technology Approach. Front. Mar. Sci. 2018, 5, 200. [Google Scholar]
- Stahl, A.; Ullrich, M.S. Proteomics Analysis of the Response of the Marine Bacterium Marinobacter Adhaerens HP15 to the Diatom Thalassiosira Weissflogii. Aquat. Microb. Ecol. 2016, 78, 65–79. [Google Scholar] [CrossRef]
- Perera, I.A.; Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Combined Inorganic Nitrogen Sources Influence the Release of Extracellular Compounds That Drive Mutualistic Interactions in Microalgal-bacterial Co-Cultures. J. Appl. Phycol. 2022, 34, 1311–1322. [Google Scholar]
- Salvatore, M.M.; Carraturo, F.; Salbitani, G.; Rosati, L.; De Risi, A.; Andolfi, A.; Salvatore, F.; Guida, M.; Carfagna, S. Biological and Metabolic Effects of the Association between the Microalga Galdieria Sulphuraria and the Fungus Penicillium Citrinum. Sci. Rep. 2023, 13, 1789. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Q.; Hu, K.; Wang, G.; Shi, K. A Coculture of Enterobacter and Comamonas Species Reduces Cadmium Accumulation in Rice. Mol. Plant-Microbe Interact. 2023, 36, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Martinez, J.N.; Lichtenberg, M.; Trampe, E.; Kühl, M.; Tank, M.; Haruta, S.; Nishihara, A.; Hanada, S.; Thiel, V. In-Situ Metatranscriptomic Analyses Reveal the Metabolic Flexibility of the Thermophilic Anoxygenic Photosynthetic Bacterium Chloroflexus Aggregans in a Hot Spring Cyanobacteria-Dominated Microbial Mat. Microorganisms 2021, 9, 652. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Guo, T.; Ren, M.; Chen, L.; Song, X.; Zhang, W. Cross-Feeding between Cyanobacterium Synechococcus and Escherichia Coli in an Artificial Autotrophic–Heterotrophic Coculture System Revealed by Integrated Omics Analysis. Biotechnol. Biofuels Bioprod. 2022, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Villalta, D.; Gómez-Espinoza, O.; Murillo-Vega, F.; Villalta-Romero, F.; Guerrero, M.; Guillén-Watson, R.; Núñez-Montero, K. Insights into Co-Cultivation of Photosynthetic Microorganisms for Novel Molecule Discovery and Enhanced Production of Specialized Metabolites. Fermentation 2023, 9, 941. https://doi.org/10.3390/fermentation9110941
Rojas-Villalta D, Gómez-Espinoza O, Murillo-Vega F, Villalta-Romero F, Guerrero M, Guillén-Watson R, Núñez-Montero K. Insights into Co-Cultivation of Photosynthetic Microorganisms for Novel Molecule Discovery and Enhanced Production of Specialized Metabolites. Fermentation. 2023; 9(11):941. https://doi.org/10.3390/fermentation9110941
Chicago/Turabian StyleRojas-Villalta, Dorian, Olman Gómez-Espinoza, Francinie Murillo-Vega, Fabián Villalta-Romero, Maritza Guerrero, Rossy Guillén-Watson, and Kattia Núñez-Montero. 2023. "Insights into Co-Cultivation of Photosynthetic Microorganisms for Novel Molecule Discovery and Enhanced Production of Specialized Metabolites" Fermentation 9, no. 11: 941. https://doi.org/10.3390/fermentation9110941
APA StyleRojas-Villalta, D., Gómez-Espinoza, O., Murillo-Vega, F., Villalta-Romero, F., Guerrero, M., Guillén-Watson, R., & Núñez-Montero, K. (2023). Insights into Co-Cultivation of Photosynthetic Microorganisms for Novel Molecule Discovery and Enhanced Production of Specialized Metabolites. Fermentation, 9(11), 941. https://doi.org/10.3390/fermentation9110941