Effect of Live Yeasts (Pichia guilliermondii) on In Vitro Fermentation of Corn Stover as a Fibrous Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study
2.2. Additives
2.3. Experimental Treatments
2.4. Experimental Procedure
2.5. Analyses
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galindo, J.; Marrero, Y. Manipulación de la fermentación microbiana ruminal. Rev. Cubana Cienc. Agric. 2005, 39, 439–450. Available online: https://www.redalyc.org/articulo.oa?id=193017842006 (accessed on 2 December 2022).
- Durmic, Z.; Moate, P.J.; Eckard, R.; Revell, D.K.; Williams, R.; Vercoe, P.E. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agric. 2014, 94, 1191–1196. [Google Scholar] [CrossRef]
- Henry, D.D.; Ciriaco, F.M.; Kohmann, M. Effects of chitosan on nutrient digestibility, CH4 emissions, and in vitro fermentation in beef cattle. J. Anim. Sci. 2015, 93, 3539–3550. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Hernández, L.H.; Elghandour, M.M.Y.; Greiner, R.; Uchenna, Y.; Rivas-Cáceres, R.R.; Barros-Rodríguez, M.; Abdelfattah, Z.M. Environmental impact of yeast and exogenous xylanase on mitigating carbon dioxide and enteric methane production in ruminants. J. Clean. Prod. 2018, 189, 40–46. [Google Scholar] [CrossRef]
- Krehbiel, C.; Rust, S.R.; Zhang, G.; Gilliland, S. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 2003, 81, E120–E132. [Google Scholar] [CrossRef]
- Desnoyers, M.; Giger-Reverdin, S.; Bertin, G.; Duvaux-Ponter, C.; Sauvant, D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Ogunade, I.M.; Hackmann, T.J.; Staples, C.R.; Adesogan, A.T. Effects of the dose and viability of Saccharomyces cerevisiae. 1. Diversity of ruminal microbes as analyzed by Illumina MiSeq sequencing and quantitative PCR. J. Dairy Sci. 2017, 100, 325–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaucheyras-Durand, F.; Walker, N.D.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Karim, S.A. Effect of yeast cultures supplementation on live weight change, rumen fermentation, ciliate protozoa population, microbial hydrolytic enzymes status and slaughtering performance of growing lamb. Livest. Sci. 2011, 135, 17–25. [Google Scholar] [CrossRef]
- Elghandour, M.M.; Chagoyán, V.; Salem, A.Z.; Kholif, A.E.; Castañeda, J.S.; Camacho, L.M.; Cerrillo-Soto, M.A. Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Ital. J. Anim. Sci. 2014, 13, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Elghandour, M.M.; Vázquez, J.C.; Salem, A.Z.; Kholif, A.E.; Martínez Castañeda, J.S.; Camacho, L.M.; Buendía, G. In vitro fermentative capacity of equine fecal inocula of 9 fibrous forages in the presence of different doses of Saccharomyces cerevisiae. J. Equine Vet. Sci. 2014, 34, 619–625. [Google Scholar] [CrossRef]
- Elghandour, M.M.; Salem, A.Z.; Castañeda, J.S.; Camacho, L.M.; Kholif, A.E.; Chagoyán, J.C. Direct-fed microbes: A tool for improving the utilization of low quality roughages in ruminants. J. Integr. Agric. 2015, 14, 526–533. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Wang, E.; Zhang, S.; Wang, Q.; Zhang, Y.; Wang, Y.; Cao, Z.; Yang, H.; Want, W.; et al. Effects of Saccharomyces cerevisiae culture on ruminal fermentation, blood metabolism, and performance of high-yield dairy cows. Animals 2021, 11, 2401. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.Y.; Ren, L.P.; Zhou, Z.M.; Chang, Y.; Meng, Q.X. Comparison of active dry yeast (Saccharomyces cerevisiae) and yeast culture for growth performance, carcass traits, meat quality and blood indexes in finishing bulls. J. Anim. Sci. 2016, 87, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Tristant, D.; Moran, C.A. The efficacy of feeding a live probiotic yeast, Yea-Sacc, on the performance of lactating dairy cows. J. Appl. Anim. Nutr. 2015, 3, e12. [Google Scholar] [CrossRef]
- Ruiz, O.; Castillo, Y.; Arzola, C.; Burrola, E.; Salinas, J.; Corral, A.; Hume, M.E.; Murillo, M.; Itza, M. Effects of Candida norvegensis live cells on in vitro oat straw rumen fermentation. Asian Australians. J. Anim. Sci. 2016, 29, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Castillo, Y.; Ruiz-Barrera, O.; Burrola-Barraza, M.E.; Marrero-Rodriguez, Y.; Salinas-Chavira, J.; Angulo-Montoya, C.; Corral-Luna, A.; Arzola-Alvarez, C.; Itza-Ortiz, M.; Camarillo, J. Isolation and characterization of yeasts from fermented apple bagasse as additives for ruminant feeding. Braz. J. Microbiol. 2016, 47, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Bayat, A.R.; Kairenius, P.; Stefa´nski, T.; Leskinen, H.; Comtet-Marre, S.; Forano, E.; Chaucheyras-Durand, F.; Shingfield, K.J. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J. Dairy Sci. 2015, 98, 3166–3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oeztuerk, H.; Emre, B.; Breves, G. Effects of hydrolysed yeasts on ruminal fermentation in the rumen simulation technique (Rusitec). Vet. Med. 2016, 61, 195–203. [Google Scholar] [CrossRef] [Green Version]
- AlZahal, O.; Dionissopoulos, L.; Laarman, A.H.; McBride, N.W.; McBride, B.W. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. J. Dairy Sci. 2014, 97, 7751–7763. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.M.; Kraft, J.; Karneszos, T.P.; Greenwood, S.L. The effects of dietary yeast and yeast-derived extracts on rumen microbiota and their function. Anim. Feed Sci. Technol. 2022, 294, 115476. [Google Scholar] [CrossRef]
- Marrero, Y.; Burrola-Barraza, M.E.; Castillo, Y.; Basso, L.C.; Rosa, C.A.; Ruiz, O.; González- Rodríguez, E. Identification of Levica yeasts as a potential ruminal microbial additive. Czech J. Anim. Sci. 2013, 58, 460–469. Available online: https://www.agriculturejournals.cz/publicFiles/101977.pdf (accessed on 4 October 2022). [CrossRef] [Green Version]
- Sánchez, M.I.; Santos, A.; Dustet, J.C.; Guerra, G.; León, T.; Argüelles, J.; Ramos-Leal, M.; Manzano, A.M.; Casado, G.; Gómez, B. Estudio fisiológico de una cepa de levadura con potencialidades para el enriquecimiento proteico del bagazo de caña de azúcar. Rev. CENIC Cienc. Biol. 2007, 38, 39–43. Available online: https://www.redalyc.org/articulo.oa?id=181221557004 (accessed on 6 September 2022).
- AOAC. Association Official Analytical Chemists. In Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Rockville, MD, USA, 2005; p. 486. [Google Scholar]
- McDougall, E.I. Studies on ruminant saliva 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1274641/pdf/biochemj00946-0114.pdf (accessed on 8 October 2021). [CrossRef] [PubMed] [Green Version]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Castillo, R.F.; Villalobos, G.; Domínguez, D.; Ortega, J.Á. Effect of the dietary level of cull pinto beans (Phaseolus vulgaris) on ruminal fermentation, kinetics, and digestibility of hair lambs. Braz. J. Anim. Sci. 2017, 46, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Galyean, M.L. Analysis of volatile fatty acids in rumen fluid. In Laboratory Procedures in Animal Nutrition Research; Animal Nutrition Laboratory, Department of Animal and Food Science, Texas Tech. University: Lubbock, TX, USA, 1980; pp. 161–162. [Google Scholar]
- Van Soest, P.V. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- SAS, Institute. User´s Guide: Statistics. V9.3; Statistical Analysis System Institute: Cary, NC, USA, 2011. [Google Scholar]
- Oeztuerk, H.; Schroeder, B.; Beyerbach, M.; Breves, G. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. J. Dairy Sci. 2005, 88, 2594–2600. [Google Scholar] [CrossRef]
- Marrero, Y.; Galindo, J.; Elías, A.; Moreira, O.; Cueto, M. Efecto de preparados biológicos con levaduras viables en la población microbiana ruminal e indicadores fermentativos en vacas que consumen dietas fibrosas. Rev. Cubana Cienc. Agric. 2006, 40, 339–348. Available online: https://www.redalyc.org/articulo.oa?id=193017723013 (accessed on 10 March 2022).
- Galindo, J.; Marrero, Y.; González, N.; Sosa, A.; Miranda, A.L.; Aldana, A.I.; Moreira, O.; Bocourt, R.; Delgado, D.; Torres, V.; et al. Efecto de preparados con levaduras Saccharomyces cerevisiae and LEVICA-25 viables en los metanógenos and metanogénesis ruminal in vitro. Rev. Cubana Cienc. Agric. 2010, 44, 273–279. Available online: https://www.redalyc.org/articulo.oa?id=193015664010 (accessed on 12 April 2022).
- Moya, D.; Calsamiglia, S.; Ferret, A.; Blanch, M.; Fandiño, J.I.; Castillejos, L.; Yoon, I. Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers. J. Anim. Sci. 2009, 87, 2874–2881. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Ranilla, M.J.; Saro, C.; Tejido, M.L.; Carro, M.D. Influence of increasing doses of a yeast hydrolyzate obtained from sugarcane processing on in vitro rumen fermentation of two different diets and bacterial diversity in batch cultures and Rusitec fermenters. Anim. Feed Sci. Technol. 2017, 232, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.I.; Javaid, S.; Ansar, M.S. Effects of yeast (Saccharomyces cerevisiae) supplementation on intake, digestibility, rumen fermentation and milk yield in Nili-Ravi buffaloes. Iranian. J. Vet. Res. 2018, 19, 96–100. [Google Scholar] [CrossRef]
- Cherdthong, A.; Prachumchai, R.; Supapong, C.; Khonkhaeng, B.; Wanapat, M.; Foiklang, S.; Milintawisamai, N.; Gunun, N.; Gunun, P.; Chanjula, P.; et al. Inclusion of yeast waste as a protein source to replace soybean meal in concentrate mixture on ruminal fermentation and gas kinetics using in vitro gas production technique. Ani. Prod. Sci. 2019, 59, 1682–1688. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Fonty, G. Effects and modes of action of live yeasts in the rumen. Biologia (Bratislava) 2006, 61, 741–750. [Google Scholar] [CrossRef]
- Guedes, C.M.; Gonçalves, D.; Rodrigues, M.A.M.; Dias-da-Silva, A. Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silage in cows. Anim. Feed Sci. Technol. 2008, 145, 27–40. [Google Scholar] [CrossRef]
- Chaucheyras, F.; Fonty, G.; Bertin, G.; Salmon, J.M.; Gouet, P. Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can. J. Microbiol. 1996, 42, 927–933. [Google Scholar] [CrossRef]
- Ferriere, Y. Evaluación del Efecto de Levaduras Comerciales Sobre la Fermentación Ruminal and Digestibilidad de Los Nutrientes Mediante un Sistema de Medición de Gas In Vitro. Bachelor’s Thesis, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 2017. Available online: http://dspace.espoch.edu.ec/bitstream/123456789/7155/1/17T1472.pdf (accessed on 17 May 2022).
- Suntara, C.; Cherdthong, A.; Uriyapongson, S.; Wanapat, M.; Chanjula, P. Effects of ruminal crabtree-negative yeast ensiled rice straw on feed intake, rumen fermentation, and performance in tropical crossbred lactating Holstein cows. Sci. Rep. 2021, 1, 1–23. [Google Scholar] [CrossRef]
- Ángeles, C.; Mendoza, M.; Cobos, P.; Crosby, G.; Castrejón, P. Comparison of two commercial yeast cultures (Saccharomyces cerevisiae) on ruminal fermentation and digestion in sheep fed on corn-stover diet. Small Rum. Res. 1999, 31, 45–50. [Google Scholar] [CrossRef]
- Crosby, M.M.; Mendoza, G.D.; Bárcena, R.; González, S.; Aranda, E. Influence of Saccharomyces cerevisiae dose on ruminal fermentation and digestion in sheep fed a corn stover diet. J. Appl. Anim. Res. 2011, 21, 19. [Google Scholar] [CrossRef]
- Tang, S.X.; Tayo, G.O.; Tan, Z.L.; Sun, Z.H.; Shen, L.X.; Zhou, C.S.; Xiao, W.J.; Ren, G.P.; Han, X.F.; Shen, S.B. Effects of yeast culture and fibrolytic enzyme supplementation on in vitro fermentation characteristics of low-quality cereal straws. J. Anim. Sci. 2008, 86, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Barragán, R.M.; Ruiz, V.A.; Ramírez, R.R.; Serrano, J.A.R.; González, A.L. Efecto de la adición de un cultivo de levaduras y de la ración sobre la degradación in vitro y productividad de corderos Pelibuey. Técnica Pecu. México 2009, 47, 41–53. Available online: https://www.redalyc.org/articulo.oa?id=61312109008 (accessed on 15 June 2022).
- Chaucheyras-Durand, F.; Ameilbonne, A.; Bichat, A.; Mosoni, P.; Ossa, F.; Forano, E. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. J. Appl. Microb. 2015, 120, 560–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farghaly, M.M.; Hamdon, H.A. Effects of live yeast (Saccharomyces cerevisiae) supplementation on nutrient digestibility, rumen fermentation and rumen microbial population count in sheep. Egyptian. J. Ani. Prod. 2018, 55, 51–56. Available online: https://ejap.journals.ekb.eg/article_93255_2dad9ab5131ec40cbea3aa5e70e68c86.pdf (accessed on 15 May 2022).
- Ando, S.; Nishiguchi, Y.; Hayasaka, K.; Lefuji, H.; Takahashi, J. Effects of Candida utilis treatment on the nutrient value of rice bran and the effect of Candida utilis on the degradation of forages in vitro. Asian-Australas. J. Anim. Sci. 2006, 19, 806–811. [Google Scholar] [CrossRef]
- Marrero, Y.; Castillo, Y.; Ruiz, O.; Burrola, E.; Angulo, C. Feeding of yeast (Candida spp.) improves in vitro ruminal fermentation of fibrous substrates. J. Integr. Agric. 2015, 14, 514–519. [Google Scholar] [CrossRef]
- Roa, V.M.L.; Bárcena-Gama, J.R.; González, S.; Mendoza, S.; Ortega, G.; Garcia, E. Effect of fiber source and a yeast culture Saccharomyces cerevisiae on digestion and the environment in the rumen of cattle. Anim. Feed Sci. Technol. 1997, 64, 327–336. [Google Scholar] [CrossRef]
- Dawson, K.A.; Tricarico, J. The evolution of yeast cultures-20 years of research. Navigating from Niche Markets to Mainstream. In Proceedings of the Alltech’s European, Middle Eastern and African Lecture Tour, Stamford, UK, 20 November 2002; pp. 26–43. [Google Scholar]
- Dawson, K.A.; Hopkins, D.M. Differential effects of live yeast on the cellulolytic activities of anaerobic ruminal bacteria. J. Anim. Sci. 1991, 69, 531. [Google Scholar]
- Miller-Webster, T.; Hoover, W.H.; Holt, M.; Nocek, J.E. Influence of yeast culture on ruminal microbial metabolism in continuous culture. J. Dairy Sci. 2002, 85, 2009–2014. [Google Scholar] [CrossRef]
- Oeztuerk, H. Effects of live and autoclaved yeast cultures on ruminal fermentation in vitro. J. Anim. Feed Sci. 2009, 18, 142–150. [Google Scholar] [CrossRef]
- Kowalik, B.; Skomiał, J.; Pająk, J.J.; Taciak, M.; Majewska, M.; Bełżecki, G. Population of ciliates, rumen fermentation heifers fed diets supplemented with yeast (Saccharomyces cerevisiae) preparation. Anim. Sci. Pap. 2012, 30, 329–338. Available online: https://www.igbzpan.pl/uploaded/FSiBundleContentBlockBundleEntityTranslatableBlockTranslatableFilesElement/filePath/413/pp329-338.pdf (accessed on 25 April 2022).
- Lila, Z.A.; Mohammed, N.; Yasui, T.; Kurokawa, Y.; Kanda, S.; Itabashi, H. Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 2004, 82, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.K.; Kim, S.W.; Kim, M.H.; Upadhaya, S.D.; Kam, D.K.; Ha, J.K. Direct-fed microbials for ruminant animals. Asian-Australasian. J. Anim. Sci. 2010, 23, 1657–1667. [Google Scholar] [CrossRef]
- Newbold, C.J.; Wallace, R.J. Mode of action of the yeast Sacchavomyces cerevisiae as a feed additive for ruminants. British. J. Nutr. 1996, 76, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Chaucheyras-Durand, F.; Chevaux, E.; Martin, C.; Forano, E. Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. In Probiotic in Animals; Rigobelo, E.C., Ed.; Intech: Rijeka, Croatia, 2012; pp. 119–152. [Google Scholar]
Nutrient | Dry Matter (%) |
---|---|
Acid detergent fiber | 37.75 |
Ash | 8.35 |
Neutral detergent fiber | 67.2 |
Crude protein | 5.90 |
Crude fiber | 31.07 |
Dry matter | 91.44 |
Total sugars | 13.34 |
Variable 1 | Treatment | SE | p-Value | |||
---|---|---|---|---|---|---|
Control | Levica 27 | Treat | Time | Treat × Time | ||
pH | ||||||
0 | 6.88 a | 6.91 a | 0.05 | 0.1 | <0.0001 | 0.68 |
6 | 6.70 b | 6.73 b | ||||
12 | 6.87 a | 6.92 a | ||||
24 | 6.94 a | 6.94 a | ||||
NH3-N (mmol/mL) | ||||||
0 | 15.74 d | 7.81 d | 4.18 | 0.82 | <0.0001 | 0.91 |
6 | 30.50 c | 33.42 c | ||||
12 | 107.46 b | 98.07 b | ||||
24 | 113.97 a | 119.78 a | ||||
NDF 2 (%) | ||||||
6 | 64.26 a | 63.18 a | 3.08 | 0.17 | 0.005 | 0.68 |
12 | 63.75 ab | 60.40 ab | ||||
24 | 58.57 b | 57.66 b | ||||
ADF (%) | ||||||
6 | 35.59 | 34.88 | 2.05 | 0.71 | 0.12 | 0.85 |
12 | 35.57 | 34.98 | ||||
24 | 33.14 | 33.50 | ||||
IVDMD (%) | ||||||
6 | 36.79 b | 37.88 b | 3.09 | 0.17 | 0.005 | 0.68 |
12 | 37.33 ab | 40.67 ab | ||||
24 | 42.49 a | 43.40 a | ||||
IVNDFD (%) | ||||||
6 | 26.41 b | 27.94 b | 2.73 | 0.24 | 0.02 | 0.93 |
12 | 28.28 ab | 29.99 ab | ||||
24 | 30.98 a | 31.76 a | ||||
IVADFD (%) | ||||||
6 | 12.96 b | 15.05 b | 3.75 | 0.16 | 0.01 | 0.92 |
12 | 15.69 ab | 18.66 ab | ||||
24 | 19.73 a | 21.26 a |
Volatile Fatty Acids1 | Treatment Control Levica 27 | SE | p-Value | |
Acetic | ||||
0 h | 5.9 c | 5.9 | 0.50 | 0.03 |
6 h | 6.7 c | 7.6 c | ||
12 h | 8.8 c | 12.2 b | ||
24 h | 18.6 a | 18.0 a | ||
Propionic | ||||
0 h | 1.1 d | 1.1 d | 0.07 | <0.0001 |
6 h | 2.3 c | 2.5 c | ||
12 h | 2.1 c | 4.2 b | ||
24 h | 6.1 a | 6.3 a | ||
Butyric | ||||
0 h | 0.5 c | 0.5 c | 0.31 | 0.0008 |
6 h | 1.6 bc | 1.7 bc | ||
12 h | 1.5 bc | 2.8 b | ||
24 h | 10.9 a | 7.2 a | ||
Total VFAs | ||||
0 h | 7.4 d | 7.4 d | 0.59 | 0.0005 |
6 h | 10.7 cd | 11.7 c | ||
12 h | 12.5 c | 19.2 b | ||
24 h | 35.5 a | 31.4 a | ||
C2:C3 | ||||
0 h | 5.3 a | 5.3 a | 0.22 | 0.01 |
6 h | 2.9 c | 3.0 c | ||
12 h | 4.1 b | 2.9 c | ||
24 h | 3.1 c | 2.9 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Mora, B.; Ruiz-Barrera, O.; Castillo Rangel, F.; Castillo-Castillo, Y. Effect of Live Yeasts (Pichia guilliermondii) on In Vitro Fermentation of Corn Stover as a Fibrous Substrate. Fermentation 2023, 9, 17. https://doi.org/10.3390/fermentation9010017
González Mora B, Ruiz-Barrera O, Castillo Rangel F, Castillo-Castillo Y. Effect of Live Yeasts (Pichia guilliermondii) on In Vitro Fermentation of Corn Stover as a Fibrous Substrate. Fermentation. 2023; 9(1):17. https://doi.org/10.3390/fermentation9010017
Chicago/Turabian StyleGonzález Mora, Bexy, Oscar Ruiz-Barrera, Francisco Castillo Rangel, and Yamicela Castillo-Castillo. 2023. "Effect of Live Yeasts (Pichia guilliermondii) on In Vitro Fermentation of Corn Stover as a Fibrous Substrate" Fermentation 9, no. 1: 17. https://doi.org/10.3390/fermentation9010017
APA StyleGonzález Mora, B., Ruiz-Barrera, O., Castillo Rangel, F., & Castillo-Castillo, Y. (2023). Effect of Live Yeasts (Pichia guilliermondii) on In Vitro Fermentation of Corn Stover as a Fibrous Substrate. Fermentation, 9(1), 17. https://doi.org/10.3390/fermentation9010017