Characterization of Lactic Acid-Producing Bacteria Isolated from Rumen: Growth, Acid and Bile Salt Tolerance, and Antimicrobial Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rumen Fluid Inoculum and Culture Medium
2.2. Enrichment, Isolation and Purification
2.3. DNA Sequencing and Identification
2.4. Growth, Gas and Organic Acid Production
2.5. Resistance to Acid and Bile Salt
2.6. The Bacteriostasis of the Post-Culture Medium
2.7. Data Analysis
3. Results
3.1. 16S rRNA Sequencing Identification and Homologous Analysis of E. avium, S. lutetiensis and S. equinus
3.2. Growth
3.3. Gas Production
3.4. VFAs and Lactic Acid Concentrations
3.5. pH Changes
3.6. Acid Resistance
3.7. Bile Salt Resistance Test
3.8. Bacteriostatic Performance Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P.; Singh, B.R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE 2018, 13, e0192978. [Google Scholar] [CrossRef] [PubMed]
- Hatti-Kaul, R.; Chen, L.; Dishisha, T.; Enshasy, H.E. Lactic acid bacteria: From starter cultures to producers of chemicals. FEMS Microbiol. Lett. 2018, 365, fny213. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, J.; Zhao, Y.; Lin, Z.; Ji, L.; Ma, X. Tibetan Pig-Derived Probiotic Lactobacillus amylovorus SLZX20-1 Improved Intestinal Function via Producing Enzymes and Regulating Intestinal Microflora. Front. Nutr. 2022, 9, 846991. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.C.; Todorov, S.D.; Chihib, N.-E.; Drider, D.; Nero, L.A. Lactic acid bacteria (LAB) and their bacteriocins as alternative biotechnological tools to control Listeria monocytogenes biofilms in food processing facilities. Mol. Biotechnol. 2018, 60, 712–726. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Biron, E.; Ben Said, L.; Subirade, M.; Fliss, I. Bacteriocin-Based Synergetic Consortia: A Promising Strategy to Enhance Antimicrobial Activity and Broaden the Spectrum of Inhibition. Microbiol. Spectr. 2022, 10, e00406-21. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, Y.; Wang, X.; Kong, L.; Johnston, L.J.; Lu, L.; Ma, X. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications. Crit. Rev. Food Sci. Nutr. 2022, 62, 783–797. [Google Scholar] [CrossRef]
- Chen, X.; Du, X.; Wang, W.; Zhang, J.; Sun, Z.; Liu, W.; Li, L.; Sun, T.; Zhang, H. Isolation and identification of cultivable lactic acid bacteria in traditional fermented milk of Tibet in China. Int. J. Dairy Technol. 2010, 63, 437–444. [Google Scholar] [CrossRef]
- Myer, P.R.; Smith, T.P.; Wells, J.E.; Kuehn, L.A.; Freetly, H.C. Rumen microbiome from steers differing in feed efficiency. PLoS ONE 2015, 10, e0129174. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.Y.; Shapiro, K.; Beneri, C.A.; Wilks-Gallo, L.S. Streptococcus lutetiensis neonatal meningitis with empyema. Access Microbiol. 2021, 3, 264. [Google Scholar] [CrossRef]
- Wu, C.; Huang, J.; Zhou, R. Genomics of lactic acid bacteria: Current status and potential applications. Crit. Rev. Microbiol. 2017, 43, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liu, J.; Xu, H.; Li, W.; Zhang, J. L-Lactic acid fermentation by Enterococcus faecium: A new isolate from bovine rumen. Biotechnol. Lett. 2015, 37, 1379–1383. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Lee, M.; Lim, S.R.; Kwon, H.; Lee, Y.S.; Kim, J.H.; Seo, S. Diversity and antimicrobial resistance in the streptococcus bovis/streptococcus equinus complex (SBSEC) isolated from korean domestic ruminants. Microorganisms 2021, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A. Properties of adherent staphylococci isolated from the rumen wall in lambs. Vet. Med. 1993, 38, 107–113. [Google Scholar]
- Pompilio, A.; Di Bonaventura, G.; Gherardi, G. An overview on Streptococcus bovis/Streptococcus equinus complex isolates: Identification to the species/subspecies level and antibiotic resistance. Int. J. Mol. Sci. 2019, 20, 480. [Google Scholar] [CrossRef] [PubMed]
- Facklam, R. What happened to the Streptococci: Overview of Taxonomic and Nomenclature Changes. Clin. Microbiol. Rev. 2002, 15, 613–630. [Google Scholar] [CrossRef] [PubMed]
- Shabat, S.K.B.; Sasson, G.; Doron-Faigenboim, A.; Durman, T.; Yaacoby, S.; Berg Miller, M.E.; White, B.A.; Shterzer, N.; Mizrahi, I. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016, 10, 2958–2972. [Google Scholar] [CrossRef] [PubMed]
- Touret, T.; Oliveira, M.; Semedo-Lemsaddek, T. Putative probiotic lactic acid bacteria isolated from sauerkraut fermentations. PLoS ONE 2018, 13, e0203501. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Camboim, E.K.; Almeida, A.P.; Tadra-Sfeir, M.Z.; Junior, F.G.; Andrade, P.P.; McSweeney, C.S.; Melo, M.A.; Riet-Correa, F. Isolation and identification of sodium fluoroacetate degrading bacteria from caprine rumen in Brazil. Sci. World J. 2012, 2012, 178254. [Google Scholar] [CrossRef]
- Eschenlauer, S.; McKain, N.; Walker, N.; McEwan, N.; Newbold, C.; Wallace, R. Ammonia production by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the sheep rumen. Appl. Environ. Microbiol. 2002, 68, 4925–4931. [Google Scholar] [CrossRef] [PubMed]
- Weimer, P.; Cabral, L.D.S.; Cacite, F. Effects of ruminal dosing of Holstein cows with Megasphaera elsdenii on milk fat production, ruminal chemistry, and bacterial strain persistence. J. Dairy Sci. 2015, 98, 8078–8092. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, J.W.; Mittwer, T. The gram stain. Bacteriol. Rev. 1952, 16, 1–29. [Google Scholar] [CrossRef]
- Milanović, V.; Osimani, A.; Garofalo, C.; Belleggia, L.; Maoloni, A.; Cardinali, F.; Mozzon, M.; Foligni, R.; Aquilanti, L.; Clementi, F. Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. PLoS ONE 2020, 15, e0236190. [Google Scholar] [CrossRef]
- Datsomor, O.; Gou-Qi, Z.; Miao, L. Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics. Sci. Rep. 2022, 12, 1129. [Google Scholar] [CrossRef]
- Zhang, H.B.; Zhang, P.Y.; Ye, J.; Wu, Y.; Fang, W.; Gou, X.Y.; Zeng, G.M. Improvement of methane production from rice straw with rumen fluid pretreatment: A feasibility study. Int. Biodeterior. Biodegr. 2016, 113, 9–16. [Google Scholar] [CrossRef]
- Baumgardt, B.R. Practical Observations on the Quantitative Analysis of Free Volatile Fatty Acids (VFA) in Aqueous Solutions by Gas-Liquid Chromatography; Department of Dairy Science, University of Wisconsin: Madison, WI, USA, 1964. [Google Scholar]
- Talib, N.; Mohamad, N.E.; Yeap, S.K.; Hussin, Y.; Aziz, M.N.M.; Masarudin, M.J.; Sharifuddin, S.A.; Hui, Y.W.; Ho, C.L.; Alitheen, N.B. Isolation and characterization of Lactobacillus spp. from kefir samples in Malaysia. Molecules 2019, 24, 2606. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Zhu, J.; Gong, S.; Liu, H.; Yu, H. Antimicrobial Characteristics of Lactic Acid Bacteria Isolated from Homemade Fermented Foods. Biomed. Res. Int. 2018, 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Datta, R.; Henry, M. Lactic acid: Recent advances in products, processes and technologies—A review. J. Chem. Technol. 2006, 81, 1119–1129. [Google Scholar] [CrossRef]
- Reuben, R.; Roy, P.; Sarkar, S.; Alam, A.R.U.; Jahid, I. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. J. Dairy Sci. 2020, 103, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Szutowska, J.; Gwiazdowska, D. Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Arch. Microbiol. 2021, 203, 975–988. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, W.; Chen, S.; Shao, T.; Tao, X.; Yuan, X. Effect of Lactic Acid Bacteria on the Fermentation Quality and Mycotoxins Concentrations of Corn Silage Infested with Mycotoxigenic Fungi. Toxins 2021, 13, 699. [Google Scholar] [CrossRef]
- Casper, D.P.; Hultquist, K.M.; Acharya, I.P. Lactobacillus plantarum GB LP-1 as a direct-fed microbial for neonatal calves. J. Dairy Sci. 2021, 104, 5557–5568. [Google Scholar] [CrossRef]
- Williams, N.T. Probiotics. Am. J. Health Syst. Pharm. 2010, 67, 449–458. [Google Scholar] [CrossRef]
- Russo, P.; Iturria, I.; Mohedano, M.L.; Caggianiello, G.; Rainieri, S.; Fiocco, D.; Angel Pardo, M.; López, P.; Spano, G. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl. Microbiol. Biotechnol. 2015, 99, 3479–3490. [Google Scholar] [CrossRef] [PubMed]
- Hai, D.; Kong, L.; Lu, Z.; Huang, X.; Bie, X. Inhibitory effect of different chicken-derived lactic acid bacteria isolates on drug resistant Salmonella SE47 isolated from eggs. Lett. Appl. Microbiol. 2021, 73, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhao, J.; Zhang, R.; Yu, R.; Guo, T.; Kong, J. Molecular Analysis of Glutamate Decarboxylases in Enterococcus avium. Front. Microbiol. 2021, 12, 691–968. [Google Scholar] [CrossRef]
- Nascimento Agarussi, M.C.; Gomes Pereira, O.; Paula, R.A.d.; Silva, V.P.d.; Santos Roseira, J.P.; Fonseca e Silva, F. Novel lactic acid bacteria strains as inoculants on alfalfa silage fermentation. Sci. Rep. 2019, 9, 8007. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, İ.; Kızılşimşek, M. Effects of lactic acid bacteria inoculation in pre-harvesting period on fermentation and feed quality properties of alfalfa silage. Asian-Australas. J. Anim. 2020, 33, 245. [Google Scholar] [CrossRef]
- Aso, Y.; Hashimoto, A.; Ohara, H. Engineering Lactococcus lactis for D-lactic acid production from starch. Curr. Microbiol. 2019, 76, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Kung Jr, L.; Shaver, R.; Grant, R.; Schmidt, R. Silage review: Interpretation of chemical, microbial, and organoleptic components of silage. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Daniel, J.; Weiß, K.; Custódio, L.; Neto, A.S.; Santos, M.; Zopollatto, M.; Nussio, L. Occurrence of volatile organic compounds in sugarcane silages. Anim. Feed Sci. Technol. 2013, 185, 101–105. [Google Scholar] [CrossRef]
- Muck, R.; Nadeau, E.; McAllister, T.; Contreras-Govea, F.; Santos, M.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Li, D.X.; Wang, X.K.; Lin, Y.L.; Zhang, Q.; Chen, X.Y.; Yang, F.Y. Fermentation quality and aerobic stability of mulberry silage prepared with lactic acid bacteria and propionic acid. J. Anim. Sci. 2019, 90, 513–522. [Google Scholar] [CrossRef]
- Guo, X.; Zheng, P.; Zou, X.; Chen, X.; Zhang, Q. Influence of Pyroligneous Acid on Fermentation Parameters, CO2 Production and Bacterial Communities of Rice Straw and Stylo Silage. Front. Microbiol. 2021, 12, 1862. [Google Scholar] [CrossRef] [PubMed]
- Cibis, K.G.; Gneipel, A.; König, H. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants. J. Biotechnol. 2016, 220, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Uegaki, R.; Kawano, K.; Ohsawa, R.; Kimura, T.; Yamamura, K. Effect of different silage storing conditions on the oxygen concentration in the silo and fermentation quality of rice. J. Agric. Food Chem. 2017, 65, 4877–4882. [Google Scholar] [CrossRef]
- Kaewpila, C.; Gunun, P.; Kesorn, P.; Subepang, S.; Thip-Uten, S.; Cai, Y.; Pholsen, S.; Cherdthong, A.; Khota, W. Improving ensiling characteristics by adding lactic acid bacteria modifies in vitro digestibility and methane production of forage-sorghum mixture silage. Sci. Rep. 2021, 11, 1968. [Google Scholar] [CrossRef]
- Schmithausen, A.J.; Deeken, H.F.; Gerlach, K.; Trimborn, M.; Weiß, K.; Büscher, W.; Maack, G.-C. Greenhouse gas formation during the ensiling process of grass and lucerne silage. J. Environ. Manag. 2022, 304, 114–142. [Google Scholar] [CrossRef]
- Yang, E.; Fan, L.; Yan, J.; Jiang, Y.; Doucette, C.; Fillmore, S.; Walker, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018, 8, 10. [Google Scholar] [CrossRef]
- Cantafora, D.A.A.; Attili, A.; Corradini, S.G.; De Luca, C.; Minervini, G.; DiBiase, A.; Angelico, M. Relationships between bile salts hydrophilicity and phospholipid composition in rile of various animal species. Comp. Biochem. Physiol. 1986, 83, 551–554. [Google Scholar] [CrossRef]
- Prieto, A.I.; Ramos-Morales, F.; Casadesus, J. Repair of DNA damage induced by bile salts in Salmonella enterica. Genetics 2006, 174, 575–584. [Google Scholar] [CrossRef]
- Missotten, J.; Michiels, J.; Goris, J.; Herman, L.; Heyndrickx, M.; De Smet, S.; Dierick, N. Screening of two probiotic products for use in fermented liquid feed. Livest. Sci. 2007, 108, 232–235. [Google Scholar] [CrossRef]
- Guo, X.; Chen, J.; Sun, H.; Luo, L.; Gu, Y.; Yi, Y.; Wang, X.; Shan, Y.; Liu, B.; Zhou, Y. Mining, heterologous expression, purification and characterization of 14 novel bacteriocins from Lactobacillus rhamnosus LS-8. Int. J. Biol. 2020, 164, 2162–2176. [Google Scholar] [CrossRef] [PubMed]
- Benmouna, Z.; Dalache, F.; Zadi-Karam, H.; Karam, N.-E.; Vuotto, C. Ability of Three Lactic Acid Bacteria to Grow in Sessile Mode and to Inhibit Biofilm Formation of Pathogenic Bacteria. In Advances in Microbiology, Infectious Diseases and Public Health; Donelli, G., Ed.; Springer: Cham, Switzerland, 2020; Volume 1282, pp. 105–114. [Google Scholar] [CrossRef]
Species | Strain Code | Acetic Acid | Propionic Acid | Butyric Acid | Lactic Acid | LA/ACA 1 |
---|---|---|---|---|---|---|
Enterococcus avium | EA1 | 47.11 F | 11.3 CDE | 0.14 C | 80.63 F | 1.71 F |
EA2 | 56.37 A | 8.83 E | 0.20 C | 76.24 G | 1.35 G | |
EA3 | 53.88 B | 13.08 ABCD | 0.20 C | 120.11 E | 2.23 E | |
Streptococcus lutetiensis | SL1 | 49.56 DE | 10.79 DE | 0.19 C | 31.17 J | 0.63 F |
SL2 | 50.97 CD | 11.62 BCDE | 0.13 C | 45.13 I | 0.89 H | |
SL3 | 47.73 EF | 15.19 A | 0.15 C | 70.55 B | 1.48 G | |
Streptococcus equinus | SE1 | 47.59 EF | 14.9 AB | 0.76 B | 145.53 C | 3.06 B |
SE2 | 48.13 EF | 14.43 ABC | 0.14 C | 207.04 B | 4.30 A | |
SE3 | 52.26 BC | 10.69 DE | 0.13 C | 219.77 A | 4.21 A | |
SE4 | 51.64 BCD | 11.2 CDE | 0.34 C | 130.03 D | 2.52 D | |
SE5 | 47.53 EF | 10.9 DE | 1.1 A | 120.21 E | 2.53 D | |
SE6 | 41.39 G | 13.51 ABCD | 0.22 C | 117.01 E | 2.83 C | |
SEM | 0.79 | 0.45 | 0.06 | 11.61 | 1.16 | |
p-value | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 |
Strain Code | pH 6.8 Control | pH 6 | pH 5 | pH 4 | SEM | p-Value |
---|---|---|---|---|---|---|
Enterococcus avium | ||||||
EA1 | 1.75 Aa | 1.71 BCDa | 1.78 Aa | 0.29 Bb | 0.20 | <0.01 |
EA2 | 1.72 Aa | 1.63 CDa | 1.59 Cda | 0.47 Abb | 0.19 | 0.01 |
EA3 | 1.68 Aa | 1.65 BCDab | 1.51 Deb | 0.26 Abc | 0.18 | <0.01 |
Streptococcus lutetiensis | ||||||
SL1 | 1.66 Aa | 1.62 Cda | 1.71 ABCa | 0.06 Bb | 0.20 | <0.01 |
SL2 | 1.69 Ab | 2.35 Aa | 1.74 Abb | 0.15 Abc | 0.25 | <0.01 |
SL3 | 1.67 Ac | 2.12 Aba | 1.75 Ab | 0.11 Bd | 0.23 | <0.01 |
Streptococcus equinus | ||||||
SE1 | 1.65 Aa | 1.76 Bca | 1.70 ABCa | 0.75 Ab | 0.14 | <0.01 |
SE2 | 1.68 Aa | 1.25 Da | 1.55 Dea | 0.33 Abb | 0.21 | 0.03 |
SE3 | 1.36 Bb | 2.13 Aba | 1.70 ABCb | 0.12 Bc | 0.23 | <0.01 |
SE4 | 1.70 Ab | 2.08 ABCa | 1.62 BCDb | 0.19 Abc | 0.22 | <0.01 |
SE5 | 1.73 Ab | 1.89 ABCa | 1.45 Ec | 0.14 Bd | 0.21 | <0.01 |
SE6 | 1.67 Aa | 1.98 ABCa | 1.80 Aa | 0.41 Abb | 0.20 | <0.01 |
SEM | 0.13 | 0.06 | 0.02 | 0.28 | ||
p-value | 0.02 | <0.01 | <0.01 | 0.04 |
Strain Code | Bile Salt | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | 0.1% | 0.2% | 0.3% | |||
Enterococcus avium | ||||||
EA1 | 1.65 BCa | 1.44 CDb | 1.39 BCDb | 1.40 Bb | 0.03 | <0.01 |
EA2 | 1.58 BC | 1.52 BC | 1.51 ABC | 1.51 B | 0.05 | 0.98 |
EA3 | 1.46 Ca | 1.41 CDa | 1.28 Db | 1.32 Bb | 0.023 | 0.04 |
Streptococcus lutetiensis | ||||||
SL1 | 1.43 C | 1.43 CD | 1.35 CD | 1.47 B | 0.04 | 0.78 |
SL2 | 1.83 ABa | 1.53 ABCb | 1.61 Ab | 1.43 Bb | 0.05 | <0.01 |
SL3 | 1.80 ABa | 1.61 ABa | 1.62 Aa | 1.57 Ab | 0.05 | 0.02 |
Streptococcus equinus | ||||||
SE1 | 1.86 ABa | 1.62 ABb | 1.51 ABCb | 1.52 Bb | 0.05 | <0.01 |
SE2 | 1.59 BC | 1.62 AB | 1.44 ABCD | 1.48 B | 0.03 | 0.14 |
SE3 | 1.86 ABa | 1.59 ABb | 1.53 ABb | 1.41 Bb | 0.05 | <0.01 |
SE4 | 1.84 ABa | 1.55 Db | 1.56 ABb | 1.49 Bb | 0.08 | 0.01 |
SE5 | 1.95 Aa | 1.67 Aab | 1.38 BCDb | 1.53 Bb | 0.08 | 0.04 |
SE6 | 1.81 ABa | 1.65 ABb | 1.57 ABbc | 1.54 Bc | 0.04 | <0.01 |
SEM | 0.04 | 0.02 | 0.02 | 0.03 | ||
p-value | <0.01 | <0.01 | <0.01 | 0.03 |
Strain Code | Diameter Zone Inhibition (mm) 1 | |
---|---|---|
Escherichia coli | Staphylococcus aureus | |
Enterococcus avium | ||
EA1 | 12.60 BCD (+) | 12.79 CD (+) |
EA2 | 12.87 BC (+) | 13.70 CD (+) |
EA3 | 15.27 B (+) | 14.20 C (+) |
Streptococcus lutetiensis | ||
SL1 | 12.07 CD (+) | 12.47 CD (+) |
SL2 | (-) | 13.93 CD (+) |
SL3 | 10.70 DE (+) | 11.80 D (+) |
Streptococcus equinus | ||
SE1 | 16.00 A (+) | 13.33 CD (+) |
SE2 | 12.83 BC (+) | 17.30 A (+) |
SE3 | 14.43 AB (+) | 13.83 CD (+) |
SE4 | 14.90 C (+) | 16.53 AB (+) |
SE5 | 14.43 AB (+) | 14.60 BC (+) |
SE6 | 12.20 CD (+) | 13.40 CD (+) |
SEM | 0.34 | 0.31 |
p-value | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, G.; Jiang, H.; Zong, Y.; Datsomor, O.; Kou, L.; An, Y.; Zhao, J.; Miao, L. Characterization of Lactic Acid-Producing Bacteria Isolated from Rumen: Growth, Acid and Bile Salt Tolerance, and Antimicrobial Function. Fermentation 2022, 8, 385. https://doi.org/10.3390/fermentation8080385
Hu G, Jiang H, Zong Y, Datsomor O, Kou L, An Y, Zhao J, Miao L. Characterization of Lactic Acid-Producing Bacteria Isolated from Rumen: Growth, Acid and Bile Salt Tolerance, and Antimicrobial Function. Fermentation. 2022; 8(8):385. https://doi.org/10.3390/fermentation8080385
Chicago/Turabian StyleHu, Guanghui, Hui Jiang, Yujie Zong, Osmond Datsomor, Linlin Kou, Yujie An, Jingwen Zhao, and Lin Miao. 2022. "Characterization of Lactic Acid-Producing Bacteria Isolated from Rumen: Growth, Acid and Bile Salt Tolerance, and Antimicrobial Function" Fermentation 8, no. 8: 385. https://doi.org/10.3390/fermentation8080385
APA StyleHu, G., Jiang, H., Zong, Y., Datsomor, O., Kou, L., An, Y., Zhao, J., & Miao, L. (2022). Characterization of Lactic Acid-Producing Bacteria Isolated from Rumen: Growth, Acid and Bile Salt Tolerance, and Antimicrobial Function. Fermentation, 8(8), 385. https://doi.org/10.3390/fermentation8080385