Effect of Fermentation on the Biochemical Parameters Antioxidant Capacity and Dispersed Composition of Plant Beverages Based on Barley and Hemp Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Ingredients
- -
- Propionix, a concentrated microbial mass of strain Propionibacterium freudenreichii subsp. shermanii KM 186 with activity 1010–1011 CFU/cm3;
- -
- Bacterial liquid concentrate of Bifidobacterium longum B 379M with activity 1011–1012 CFU/cm3.
2.2. Manufacturing of Fermented Grain-Based Beverages
2.3. Methods of Analyses
2.3.1. Analyses of Viscosity and Biochemical Composition
2.3.2. Investigation of Polyphenol Content and Antioxidant Activity
Extraction of Phenolic
Antioxidant Activity Analysis
- DPPH Radical (DPPH) Scavenging Activity Measurement
- Detection of Total Phenolic Content (TPC)
- Determination of Total Flavonoid Content (TFC)
2.3.3. Determination of Dispersed Composition
2.4. Statistical Analyses
3. Results and Discussion
3.1. Analysis of Viscosity and Biochemical Parameters of Fermented Beverages
3.2. Antioxidant Activity and Polyphenol Content in Fermented Beverages
3.3. Dispersed Composition of the Beverage Food System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beta, M.T.; Moghadasian, M.H. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem. 2016, 196, 90–97. [Google Scholar]
- Gozález-Aguilar, G.A.; Blancas-Benítez, F.J.; Sáyago-Ayerdi, S.G. Polyphenols associated with dietary fibers in plant foods: Molecular interactions and bioaccessibility. Cur. Opin. Food Sci. 2017, 13, 84–88. [Google Scholar] [CrossRef]
- Razak, D.L.A.; Rashid, N.Y.A.; Jamaluddin, A.; Sharifudin, S.A.; Long, K. Enhancement of phenolic acid content and antioxidant activity of rice bran fermented with Rhizopus oligosporus and Monascus purpureus. Biocatal. Agric. Biotechnol. 2015, 4, 33–38. [Google Scholar] [CrossRef]
- Nout, M.J.R. Rich nutrition from the poorest-cereal fermentations in Africa and Asia. Food Microbiol. 2009, 26, 685. [Google Scholar] [CrossRef] [PubMed]
- Dey, T.B.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar]
- Adebo, J.A.; Njobeh, P.B.; Gbashi, S.; Oyedeji, A.B.; Ogundele, O.M.; Oyeyinka, S.A.; Adebo, O.A. Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. Fermentation 2022, 8, 63. [Google Scholar] [CrossRef]
- Coda, R.; Di Cagno, R.; Gobbetti, M.; Rizzello, C.G. Sourdough lactic acid bacteria: Exploration of non-wheat cereal-based fermentation. Food Microbiol. 2014, 37, 51–58. [Google Scholar] [CrossRef]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef] [Green Version]
- Adebo, O.A.; Oyeyinka, S.A.; Adebiyi, J.A.; Feng, X.; Wilkin, J.D.; Kewuyemi, Y.O.; Abrahams, A.M.; Tugizimana, F. Application of gas chromatography–mass spectrometry (GC-MS)-based metabolomics for the study of fermented cereal and legume foods: A review. Int. J. Food Sci. Technol. 2021, 56, 1514–1534. [Google Scholar] [CrossRef]
- Chaves-Lopez, C.; Serio, A.; Grande-Tovar, C.D.; Cuervo-Mulet, R.; Delgado-Ospina, J.; Paparella, A. Traditional fermented foods and beverages from a microbiological and nutritional perspective: The Colombian Heritage. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1031–1048. [Google Scholar] [CrossRef] [Green Version]
- Petrova, P.; Petrov, K. Lactic acid fermentation of cereals and pseudocereals: Ancient nutritional biotechnologies with modern applications. Nutrients 2020, 12, 1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adebiyi, J.A.; Kayitesi, E.; Adebo, O.A.; Changwa, R.; Njobeh, P.B. Food fermentation and mycotoxin detoxification: An African perspective. Food Control 2019, 106, 106731. [Google Scholar] [CrossRef]
- Brandt, M.J. Starter cultures for cereal-based foods. Food Microbiol. 2014, 37, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Adebo, O.A.; Njobeh, P.B.; Adeboye, A.S.; Adebiyi, J.A.; Sobowale, S.S.; Ogundele, O.M.; Kayitesi, E. Advances in fermentation technology for novel food products. In Innovations in Technologies for Fermented Food and Beverage Industries; Panda, S., Shetty, P., Eds.; Springer: London, UK, 2018; pp. 71–87. [Google Scholar]
- Ferri, M.; Isabella Serrazanetti, D.; Tassoni, A.; Baldissarri, M.; Gianotti, A. Improving the functional and sensorial profile of cereal-based fermented foods by selecting Lactobacillus plantarum strains via a metabolomics approach. Food Res. Int. 2016, 89, 1095–1105. [Google Scholar] [CrossRef]
- Olagunju, O.F.; Ezekiel, O.O.; Ogunshe, A.O.; Oyeyinka, S.A.; Ijabadeniyi, O.A. Effects of fermentation on proximate composition, mineral profile and antinutrients of tamarind Tamarindus indica L. seed in the production of daddawa-type condiment. LWT-Food Sci. Technol. 2018, 90, 455–459. [Google Scholar] [CrossRef]
- Kreisz, S.; Arendt, E.K.; Hübner, F.; Zarnkov, M. Cereal-based gluten-free functional drinks. In Gluten Free Cereal Products and Beverages; Arendt, E.K., Dal Bello, F., Eds.; Food Science and Technology International Series; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2008; pp. 373–391. [Google Scholar]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- He, S.; Hekmat, S. Sensory evaluation of non-dairy probiotic beverages. J. Food Res. 2014, 4, 186. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, M.F.; Manzoor, A.; Siddique, R.; Ahmad, N. Nutritional and sensory properties of cashew seed (Anacardium occidentale) milk. Mod. Concepts Dev. Agron. 2017, 1, MCDA 000501. [Google Scholar]
- Makinde, M.F.; Adebile, V.T. Influence of processing treatments on quality of vegetable milk from almond (Terminalia catappa) kernels. Acta Sci. Nutr. Health 2018, 2, 37–52. [Google Scholar]
- Bernat, N.; Chafer, M.; Chiralt, A.; Gonzalez-Martınez, C. Hazelnut milk fermentation using probiotic Lactobacillus rhamnosus GG and inulin. Int. J. Food Sci. Technol. 2014, 49, 2553–2562. [Google Scholar] [CrossRef]
- Vasudha, S.; Mishra, H.N. Non-dairy probiotic beverages. Int. Food Res. J. 2013, 20, 7–15. [Google Scholar]
- Barbosa, M.L.S.; de Alencar, E.R.; dos Santos Leandro, E.; Borges, R.M.; Mendonça, M.A.; de Souza Ferreira, W.F. Characterization of fermented beverages made with soybean and Brazil nut hydrosoluble extracts. Int. J. Gastron. Food Sci. 2020, 21, 100228. [Google Scholar] [CrossRef]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. J. Funct. Foods. 2015, 15, 106–115. [Google Scholar] [CrossRef]
- Ghosh, K.; Ray, M.; Adak, A.; Halder, S.K.; Das, A.; Jana, A.; Parua, S.; Vágvölgyi, C.; Mohapatra, P.K.D.; Pati, B.R.; et al. Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage. Bioresour. Technol. 2015, 188, 161–168. [Google Scholar] [CrossRef]
- Luana, N.; Rossana, C.; Curiel, J.A.; Kaisa, P.; Marco, G.; Rizzello, C.G. Manufacture and characterization of a yogurt-like beverage made with oat flakes fermented by selected lactic acid bacteria. Int. J. Food Microbiol. 2014, 185, 17–26. [Google Scholar] [CrossRef]
- Dabina-Bicka, I.; Karklina, D.; Kruma, Z. Polyphenols and vitamin E as potential antioxidants in barley and malt. In Proceedings of the 6th Baltic Conference on Food Science and Technology “FOODBALT-2011”, Jelgava, Latvia, 5–6 May 2011. [Google Scholar]
- Martins, E.M.F.; Ramos, A.M.; Vanzela, E.S.L.; Stringheta, P.C.; de Oliveira Pinto, C.L.; Martins, J.M. Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Res. Int. 2013, 51, 764–770. [Google Scholar] [CrossRef]
- Wang, T.; He, F.; Chen, G. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J. Funct. Foods 2014, 7, 101–111. [Google Scholar] [CrossRef]
- Mikulcová, V.; Kašpárková, V.; Humpolíček, P.; Buňková, L. Formulation, Characterization and Properties of Hemp Seed Oil and Its Emulsions. Molecules 2017, 22, 700. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Rui, X.; Xing, G.; Wu, H.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Solid state fermentation with Cordyceps militaris SN-18 enhanced antioxidant capacity and DNA damage protective effect of oats (Avena sativa L.). J. Funct. Foods 2015, 16, 58. [Google Scholar] [CrossRef]
- Wu, H.; Chai, Z.; Hutabarat, R.P.; Zeng, Q.; Niu, L.; Li, D.; Yu, H.; Huang, W. Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Res. Int. 2019, 122, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Assaad, H.I.; Zhou, L.; Carroll, R.J.; Wu, G. Rapid publication-ready MS-Word tables 597 for one-way ANOVA. Springer Plus 2014, 3, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helland, M.H.; Wicklund, T.; Narvhus, J.A. Growth and metabolism of selected strains of probiotic bacteria, in maize porridge with added malted barley. Int. J. Food Microbiol. 2004, 91, 305. [Google Scholar] [CrossRef] [PubMed]
- Shulepova, O.V.; Sannikova, N.V.; Kovaleva, O.V. Evaluation of the biochemical composition of grain of various varieties of spring barley depending on the pre-sowing treatment in the conditions of the forest-steppe zone of the Trans-Urals. Bull. Michurinsk State Agrar. Univ. 2021, 1, 63–69. [Google Scholar]
- Costa, K.K.F.D.; Garcia, M.C.; Ribeiro, K.D.O.; Soares Junior, M.S.; Caliari, M. Rheological properties of fermented rice extract with probiotic bacteria and different concentrations of waxy maize starch. LWT-Food Sci. Technol. 2016, 72, 71–77. [Google Scholar] [CrossRef]
- Onyimba, I.A.; Ogbonna, C.I.C.; Akueshi, C.O.; Chukwu, C.O.C. Changes in the nutrient composition of brewery spent grain subjected to solid state natural fermentation. Niger. J. Biotechnol. 2009, 20, 55–60. [Google Scholar]
- Ogodo, A.C.; Ugbogu, O.C.; Onyeagba, R.A.; Okereke, H.C. Microbiological quality, proximate composition and in vitro starch/protein digestibility of Sorghum bicolor flour fermented with lactic acid bacteria consortia. Chem. Biol. Technol. Agric. 2019, 6, 7. [Google Scholar] [CrossRef]
- Nivetha, N.; Suvarna, V.C.; Abhishek, R.U. Reduction of phenolics, tannins and cyanogenic glycosides contents in fermented beverage of linseed (Linum usitatissimum). Int. J. Food Ferment. Technol. 2018, 8, 185–190. [Google Scholar] [CrossRef]
- Arigò, A.; Česla, P.; Šilarová, P.; Calabrò, M.L.; Česlová, L. Development of extraction method for characterization of free and bonded polyphenols in barley (Hordeum vulgare L.) grown in Czech Republic using liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 245, 829–837. [Google Scholar] [CrossRef]
- Mohamed, L.K.; Sulieman, M.A.; Yagoub, A.E.A.; Mohammed, M.A.; Alhuthayli, H.F.; Ahmed, I.A.M.; Almaiman, S.A.; Alfawaz, M.A.; Osman, M.A.; Hassan, A.B. Changes in Phytochemical Compounds and Antioxidant Activity of Two Irradiated Sorghum (Sorghum bicolor (L.) Monech) Cultivars during the Fermentation and Cooking of Traditional Sudanese Asida. Fermentation 2022, 8, 60. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Jiang, H.; Yang, K.; Li, X.; Wang, S.; Yao, H.; Wang, R.; Li, S.; Gu, Y.; Lei, P.; et al. Nutritional Function and Flavor Evaluation of a New Soybean Beverage Based on Naematelia aurantialba Fermentation. Foods 2022, 11, 272. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Drozłowska, E.; Siedlecka, P.; Mężyńska, M.; Bartkowiak, A. Preparation and characterization of novel flaxseedoil cake yogurt-like plant milk fortified with inulin. J. Food Nutr. Res. 2020, 59, 61–70. [Google Scholar]
- Łopusiewicz, Ł.; Drozłowska, E.; Siedlecka, P.; Mężyńska, M.; Bartkowiak, A.; Sienkiewicz, M.; Zielińska-Bliźniewska, H.; Kwiatkowski, P. Development, characterization, and bioactivity of non-dairy kefir-like fermented beverage based on flaxseed oilcake. Foods 2019, 8, 544. [Google Scholar] [CrossRef] [Green Version]
- Chavan, M.; Gat, Y.; Harmalkar, M.; Waghmare, R. Development of non-dairy fermented probiotic drink based on germinated and ungerminated cereals and legume. LWT 2018, 91, 339–344. [Google Scholar] [CrossRef]
- Chin, Y.L.; Chai, K.F.; Chen, W.N. Upcycling of brewers’ spent grains via solid-state fermentation for the production of protein hydrolysates with antioxidant and techno-functional properties. Food Chem. 2022, 13, 100184. [Google Scholar] [CrossRef]
- Rocchetti, G.; Miragoli, F.; Zacconi, C.; Lucini, L.; Rebecchi, A. Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds. Food Res. Int. 2019, 119, 886–894. [Google Scholar] [CrossRef]
- Wu, H.; Liu, H.-N.; Ma, A.-M.; Zhou, J.Z.; Xia, X.-D. Synergetic effects of Lactobacillus plantarum and Rhizopus oryzae on physicochemical, nutritional and antioxidant properties of whole-grain oats (Avena sativa L.) during solid-state fermentation. LWT 2022, 154, 112687. [Google Scholar] [CrossRef]
- Hu, Y.-T.; Ting, Y.; Hu, J.-Y.; Hsieh, S. Techniques and methods to study functional characteristics of emulsion systems. J. Food Drug Anal. 2017, 25, 16–26. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Reed, S.S.; Obando-Ulloa, J.M.; Boue, S.M.; Cole, M.R. Green Processing, Germinating and Wet Milling Brown Rice (Oryza sativa) for Beverages: Physicochemical Effects. Foods 2020, 9, 1016. [Google Scholar] [CrossRef] [PubMed]
Designation of Samples | Plant Milk from Barley Grain, % | Plant Milk from Hemp Seeds, % | Bifidobacterium longum Concentrate, % | Propionibacterium freudenreichii Concentrate, % |
---|---|---|---|---|
Unfermented barley milk | 100 | – | – | – |
Barley milk, fermented by Bif. longum | 98 | – | 2 | – |
Barley milk, fermented by Pr. freudenreichii | 98 | – | – | 2 |
Barley milk, fermented by Bif. longum and Pr. freudenreichi | 98 | – | 1 | 1 |
Unfermented hemp milk | – | 100 | – | – |
Hemp milk, fermented by Bif. longum | – | 98 | 2 | – |
Hemp milk, fermented by Pr. freudenreichii | – | 98 | – | 2 |
Hemp milk, fermented by Bif. longum and Pr. freudenreichi | – | 98 | 1 | 1 |
Indicators | Designation of Samples | |||
---|---|---|---|---|
B | BBif | BPr | BBifPr | |
Dynamic viscosity, mPa·s | 2.29 ± 0.005 a | 2.97 ± 0.001 b | 2.79 ± 0.004 b | 3.36 ± 0.005 c |
Lactic acid content, g/100 mL | 0.18 ± 0.005 a | 0.81 ± 0.007 b | 0.99 ± 0.006 bc | 1.17 ± 0.008 c |
Dry matter content, % | 3.86 ± 0.054 a | 4.42 ± 0.067 ac | 4.96 ± 0.063 b | 4.68 ± 0.072 c |
Including: | ||||
Protein content, % | 1.38 ± 0.021 a | 1.67 ± 0.023 b | 1.77 ± 0.034 b | 1.68 ± 0.030 b |
Fat content, % | 0.38 ± 0.003 a | 0.35 ± 0.003 a | 0.35 ± 0.004 a | 0.40 ± 0.004 a |
Carbohydrate content, % | 1.89 ± 0.025 a | 2.16 ± 0.044 ab | 2.56 ± 0.030 bc | 2.38 ± 0.032 c |
Indicators | Designation of Samples | |||
H | HBif | HPr | HBifPr | |
Dynamic viscosity, mPa·s | 0.85 ± 0.002 a | 1.01 ± 0.003 b | 0.99 ± 0.005 b | 1.21 ± 0.002 c |
Lactic acid content, g/100 mL | 0.17 ± 0.005 a | 0.75 ± 0.006 b | 1.08 ± 0.006 bc | 0.99 ± 0.007 c |
Dry matter content, % | 4.67 ± 0.048 a | 6.31 ± 0.059 b | 5.77 ± 0.050 c | 6.55 ± 0.067 b |
Including: | ||||
Protein content, % | 1.67 ± 0.040 a | 2.25 ± 0.056 b | 2.06 ± 0.045 b | 2.34 ± 0.068 b |
Fat content, % | 1.35 ± 0.020 a | 1.77 ± 0.034 b | 1.56 ± 0.030 a | 1.82 ± 0.041 b |
Carbohydrate content, % | 1.42 ± 0.024 a | 1.86 ± 0.042 bc | 1.68 ± 0.025 b | 1.81 ± 0.030 c |
Designation of Samples | DPPH Activity, % | Content of Polyphenols, mg GAE/g | Content of Flavonoids, mg EQ/g |
---|---|---|---|
Unfermented barley milk | 71.03 ± 2.45 a | 1.17 ± 0.04 ab | 0.105 ± 0.012 d |
Barley milk, fermented by Bif. longum | 85.54 ± 4.25 b | 1.23 ± 0.05 bc | 0.105 ± 0.013 d |
Barley milk, fermented by Pr. freudenreichii | 88.70 ± 3.54 bc | 1.27 ± 0.04 c | 0.110 ± 0.014 d |
Barley milk, fermented by Bif. longum and Pr. freudenreichi | 100.72 ± 5.36 c | 1.24 ± 0.05 bc | 0.140 ± 0.015 f |
Unfermented hemp milk | 64.12 ± 3.22 a | 1.13 ± 0.03 a | 0.029 ± 0.009 a |
Hemp milk, fermented by Bif. longum | 84.35 ± 5.53 b | 1.17 ± 0.03 ab | 0.044 ± 0.010 b |
Hemp milk, fermented by Pr. freudenreichii | 82.79 ± 4.85 b | 1.20 ± 0.04 b | 0.078 ± 0.011 c |
Hemp milk, fermented by Bif. Longum and Pr. freudenreichi | 97.95 ± 6.62 c | 1.17 ± 0.04 ab | 0.109 ± 0.013 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merenkova, S.; Fatkullin, R.; Kalinina, I. Effect of Fermentation on the Biochemical Parameters Antioxidant Capacity and Dispersed Composition of Plant Beverages Based on Barley and Hemp Seeds. Fermentation 2022, 8, 384. https://doi.org/10.3390/fermentation8080384
Merenkova S, Fatkullin R, Kalinina I. Effect of Fermentation on the Biochemical Parameters Antioxidant Capacity and Dispersed Composition of Plant Beverages Based on Barley and Hemp Seeds. Fermentation. 2022; 8(8):384. https://doi.org/10.3390/fermentation8080384
Chicago/Turabian StyleMerenkova, Svetlana, Rinat Fatkullin, and Irina Kalinina. 2022. "Effect of Fermentation on the Biochemical Parameters Antioxidant Capacity and Dispersed Composition of Plant Beverages Based on Barley and Hemp Seeds" Fermentation 8, no. 8: 384. https://doi.org/10.3390/fermentation8080384
APA StyleMerenkova, S., Fatkullin, R., & Kalinina, I. (2022). Effect of Fermentation on the Biochemical Parameters Antioxidant Capacity and Dispersed Composition of Plant Beverages Based on Barley and Hemp Seeds. Fermentation, 8(8), 384. https://doi.org/10.3390/fermentation8080384