Development of Cistanche deserticola Fermented Juice and Its Repair Effect on Ethanol-Induced WRL68 Cell Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of C. deserticola Juice and Inoculum
2.3. Selection of Fermentation Strains and Determination of the Proportions of Strains
2.4. Optimization of the CFJ Fermentation Process Using the Response Surface Method
2.5. Measurement of Physicochemical Indicators
2.6. Assay of CFJ Cytotoxicity toward WRL68 Cells
2.7. Effect of CFJ on Repairing Ethanol-Induced WRL68 Cell Damage
2.8. Detection of Biochemical Indices
2.9. Statistical Analysis
3. Results
3.1. Selection of Fermentation Strains and Determination of the Proportions of Strains
3.2. Response Surface Experimental Results and Analysis of Variance
3.3. Cytotoxicity of CFJ and the Reparative Effect of CFJ on Alcohol-Induced WRL68 Cell Damage
3.4. Effects of CFJ on SOD and GSH-Px Activities and MDA Contents
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Cui, Q.; Ren, S.; Hao, D.; Morikawa, T.; Wang, D.; Liu, X.; Pan, Y. The hepatoprotective efficacy and biological mechanisms of three phenylethanoid glycosides from cistanches herba and their metabolites based on intestinal bacteria and network pharmacology. J. Nat. Med. 2021, 75, 784–797. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cao, L.; Zhao, Q.; Zhang, L.; Chen, J.; Liu, B.; Zhao, B. Preliminary characterizations, antioxidant and hepatoprotective activity of polysaccharide from Cistanche deserticola. Int. J. Biol. Macromol. 2016, 93, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, X.; Li, X.; Mao, T.; Liu, T. Anti-fatigue activity of gardenia yellow pigment and Cistanche phenylethanol glycosides mixture in hypoxia. Food Biosci. 2021, 40, 100902. [Google Scholar] [CrossRef]
- Morikawa, T.; Pan, Y.; Ninomiya, K.; Imura, K.; Matsuda, H.; Yoshikawa, M.; Yuan, D.; Muraoka, O. Acylated phenylethanoid oligoglycosides with hepatoprotective activity from the desert plant Cistanche tubulosa. Bioorg. Med. Chem. 2010, 18, 1882–1890. [Google Scholar] [CrossRef]
- Bao, X.; Bai, D.; Liu, X.; Wang, Y.; Zeng, L.; Wei, C.; Jin, W. Effects of the Cistanche tubulosa Aqueous Extract on the Gut Microbiota of Mice with Intestinal Disorders. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Ma, D.; Li, Y.; Yang, X.; Dai, H.; Zhang, L.; Fan, Q. Research progress of harvesting processing and concoction method of Cistanche origin. China Pharm. 2019, 30, 839–841. [Google Scholar]
- Wang, L.; Guo, Y.; He, B.; Zhang, Q. Effect of drying method on content Retention of effective components in Herba Cistanches. Resour. Dev. Mark. 2017, 33, 477–480. [Google Scholar]
- Marsh, A.J.; Hill, C.; Ross, R.P.; Cotter, P.D. Fermented beverages with health-promoting potential: Past and future perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Zhang, M.; Mujumdar, A.S.; Gao, Z. Recent research process of fermented plant extract: A review. Trends Food Sci. Technol. 2017, 65, 40–48. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, P.; Hu, B.; Xu, L.; Liu, S.; Yu, H.; Guo, Y.; Xie, Y.; Yao, W.; Qian, H. Correlation analysis reveals the intensified fermentation via lactobacillus plantarum improved the flavor of fermented noni juice. Food Biosci. 2021, 43, 101234. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, J.; Fan, L.; Qin, Z.; Chen, Q.; Zhao, L. Antioxidant properties of a vegetable-fruit beverage fermented with two Lactobacillus plantarum. Food Sci. Biotechnol. 2018, 27, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Srijita, S.; Didier, M.; Gargi, D. Principal component analysis for clustering probiotic-fortified beverage matrices efficient in elimination of Shigella sp. Fermentation 2018, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Du, N.; Wang, Q. Determination of Phenylethanoid Glycosides in Total Cistanchis Glycoside Capsule by UV Spectrophotometry. J. Xinjiang Med. Univ. 2002, 25, 407–408. [Google Scholar]
- Yang, J.B.; Huang, J.L. Optimization of Preparation Process of Sugarcane Lactobacillus Beverage. Food Res. Dev. 2020, 41, 75–78. [Google Scholar]
- Dong, X.; Zhang, X.; Zhao, W.; Nie, C.; Song, Y. Protective roles of hop proanthocyanidins on alcohol-induced sh-sy5y cell damage. J. Am. Soc. Brew. Chem. 2019, 78, 1–9. [Google Scholar] [CrossRef]
- Hashemi, S.; Jafarpour, D. Fermentation of bergamot juice with lactobacillus plantarum strains in pure and mixed fermentations: Chemical composition, antioxidant activity and sensorial properties. LWT-Food Sci. Technol. 2020, 131, 109803. [Google Scholar] [CrossRef]
- Tada, S.; Katakura, Y.; Ninomiya, K.; Shioya, S. Fed-batch coculture of lactobacillus kefiranofaciens with saccharomyces cerevisiae for effective production of kefiran. J. Biosci. Bioeng. 2007, 103, 557–562. [Google Scholar] [CrossRef]
- Zhang, C.; Quek, S.Y.; Fu, N.; Su, Y.; Chen, X.D. Storage stability and in vitro digestion of microencapsulated powder containing fermented noni juice and probiotics. Food Biosci. 2020, 37, 100740. [Google Scholar] [CrossRef]
- Espirito-Santo, A.P.; Carlin, F.; Renard, C.M.G.C. Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth?—A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics. Food Res. Int. 2015, 78, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F. Mechanism of the Influence of Bioavailability of Cinnamon Phenylethanol Glycosides and Its Improvement Based on Nanocarriers; Zhejiang University: Zhenjiang, China, 2018. [Google Scholar]
- Xie, J.; Liu, Y.; Ke, J. Research progress on the synthesis of phenylethanol glycosides. Chin. Tradit. Herb. Drugs 2019, 50, 5109–5116. [Google Scholar]
- Li, J.; Wen, L.; Luo, X.; Feng, C.; Li, X. Study on the change of SOD activity in three—Stage fermentation and natural fermentation. Light Ind. Sci. Technol. 2016, 32, 4–5,33. [Google Scholar]
- Liu, C.H.; Jin, Z.D.; Han, B.R. Antioxidant activity of polysaccharide fup-1 from fritillaria ussuriensis maxim in d-galactose-induced aging mouse model. Food Sci. 2011, 32, 285–288. [Google Scholar]
- Guo, Z.; Fan, N.; Tian, H.; Teng, F.; Li, M.; Li, Y.; Wang, Z.; Jiang, L. Protective effects of flavonoids from millet bran on H2O2-induced oxidative stress injury in HepG2 cells. Food Sci. 2020, 41, 159–165. [Google Scholar]
- Zhao, X.; Liu, J.; Hu, Y.; Fan, Y.; Wang, D.; Yuan, J.; Xu, L.; Cui, L.; Jing, Z. Optimization on condition of glycyrrhetinic acid liposome by RSM and the research of its immunological activity. Int. J. Biol. Macromol. 2012, 51, 299–304. [Google Scholar] [CrossRef]
No. | L. reuteri X1 (%) | P. pentosaceus X2 (%) | S. thermophilus X3 (%) | B. animalis X4 (%) | L. casei X5 (%) | L. acidophilus X6 (%) |
---|---|---|---|---|---|---|
1 | 18 | 13 | 9 | 21 | 13 | 28 |
2 | 19 | 17 | 15 | 14 | 10 | 26 |
3 | 20 | 21 | 4 | 24 | 7 | 24 |
4 | 21 | 25 | 10 | 17 | 4 | 22 |
5 | 22 | 12 | 16 | 27 | 1 | 20 |
6 | 23 | 16 | 5 | 20 | 15 | 18 |
7 | 24 | 20 | 11 | 18 | 13 | 16 |
8 | 25 | 24 | 17 | 23 | 9 | 14 |
9 | 26 | 11 | 6 | 16 | 6 | 29 |
10 | 27 | 15 | 12 | 26 | 3 | 27 |
11 | 28 | 19 | 18 | 19 | 0 | 25 |
12 | 29 | 23 | 7 | 12 | 14 | 23 |
13 | 30 | 10 | 13 | 22 | 11 | 21 |
14 | 31 | 14 | 19 | 15 | 8 | 19 |
15 | 32 | 18 | 8 | 25 | 5 | 17 |
16 | 33 | 22 | 14 | 18 | 2 | 15 |
Factors | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
A. Total soluble solid content (° Brix) | 9 | 10 | 11 |
B. Fermentation time (h) | 20 | 24 | 28 |
C. Inoculum amount (×106 CFU/mL) | 3 | 4 | 5 |
No. | Strains | pH | SOD Activity (U/mL) | CPhGs (mg/mL) | Sensory Evaluation (Score) |
---|---|---|---|---|---|
Decoction of cistanche | 5.32 ± 0.00 a | 401.26 ± 0.00 h | 3.73 ± 0.00 a | / | |
1 | L. fermentum | 4.11 ± 0.01 i | 462.42 ± 2.07 c | 3.13 ± 0.01 e | 88.70 ± 1.19 d |
2 | S. thermophilus | 4.19 ± 0.02 h | 414.60 ± 2.78 fg | 3.45 ± 0.02 b | 86.60 ± 1.36 e |
3 | S. cerevisiae | 4.13 ± 0.01 i | 443.66 ± 1.21 d | 3.18 ± 0.01 d | 88.20 ± 1.25 de |
4 | L. casei | 4.58 ± 0.04 f | 426.44 ± 3.63 e | 3.47 ± 0.03 b | 87.20 ± 1.60 e |
5 | P.pentosaceus | 3.78 ± 0.01 k | 495.48 ± 4.79 ab | 3.16 ± 0.04 de | 89.40 ± 1.02 d |
6 | B. animalis | 3.89 ± 0.03 jk | 491.03 ± 2.00 b | 3.22 ± 0.01 d | 92.20 ± 0.98 b |
7 | K. marxianus | 4.59 ± 0.04 f | 437.83 ± 3.30 de | 3.30 ± 0.03 c | 84.30 ± 0.90 f |
8 | L. reuteri | 3.79 ± 0.03 k | 503.63 ± 2.48 a | 3.14 ± 0.00 e | 86.10 ± 1.58 e |
9 | S. cerevisiae boulardii | 5.28 ± 0.02 b | 410.11 ± 2.55 g | 3.35 ± 0.01 c | 82.00 ± 1.48 g |
10 | L. acidophilus | 4.35 ± 0.01 g | 454.27 ± 2.76 c | 3.02 ± 0.02 f | 94.00 ± 0.77 a |
11 | L. bulgaricus | 3.96 ± 0.02 j | 486.87 ± 4.32 b | 3.13 ± 0.01 e | 91.10 ± 0.94 c |
12 | W. kandleri | 4.79 ± 0.00 e | 420.36 ± 2.28 ef | 3.36 ± 0.04 c | 86.20 ± 0.98 e |
13 | L. rhamnosus | 4.91 ± 0.02 d | 441.39 ± 8.66 d | 3.11 ± 0.03 ef | 84.10 ± 1.14 f |
14 | T. delbrueckii | 5.06 ± 0.02 c | 416.93 ± 3.01 f | 3.35 ± 0.04 c | 88.50 ± 1.28 de |
15 | L. paracasei | 4.95 ± 0.02 d | 439.13 ± 3.42 d | 3.20 ± 0.02 d | 84.30 ± 1.79 f |
No. | L. reuteri X1 (%) | P. pentosaceus X2 (%) | S. thermophilus X3 (%) | B. animalis X4 (%) | L. casei X5 (%) | L. acidophilus X6 (%) | SOD Activity (U/mL) |
---|---|---|---|---|---|---|---|
1 | 18 | 13 | 9 | 21 | 13 | 28 | 503.84 |
2 | 19 | 17 | 15 | 14 | 10 | 26 | 525.28 |
3 | 20 | 21 | 4 | 24 | 7 | 24 | 482.40 |
4 | 21 | 25 | 10 | 17 | 4 | 22 | 544.96 |
5 | 22 | 12 | 16 | 27 | 1 | 20 | 514.56 |
6 | 23 | 16 | 5 | 20 | 15 | 18 | 498.56 |
7 | 24 | 20 | 11 | 18 | 13 | 16 | 528.14 |
8 | 25 | 24 | 17 | 23 | 9 | 14 | 557.44 |
9 | 26 | 11 | 6 | 16 | 6 | 29 | 550.48 |
10 | 27 | 15 | 12 | 26 | 3 | 27 | 536.00 |
11 | 28 | 19 | 18 | 19 | 0 | 25 | 525.28 |
12 | 29 | 23 | 7 | 12 | 14 | 23 | 549.95 |
13 | 30 | 10 | 13 | 22 | 11 | 21 | 520.07 |
14 | 31 | 14 | 19 | 15 | 8 | 19 | 561.15 |
15 | 32 | 18 | 8 | 25 | 5 | 17 | 504.73 |
16 | 33 | 22 | 14 | 18 | 2 | 15 | 546.99 |
No. | Levels of Independent Factors | Response | ||
---|---|---|---|---|
A. Total Soluble Solid Content (° Brix) | B. Time (h) | C. Inoculation Amount (×106 CFU/mL) | SOD Activity (U/mL) | |
1 | 11 | 20 | 4 | 566.76 |
2 | 10 | 20 | 3 | 590.89 |
3 | 10 | 20 | 5 | 596.41 |
4 | 9 | 24 | 5 | 619.58 |
5 | 10 | 24 | 4 | 614.75 |
6 | 10 | 28 | 5 | 550.15 |
7 | 9 | 24 | 3 | 611.84 |
8 | 9 | 28 | 4 | 609.83 |
9 | 10 | 24 | 4 | 580.67 |
10 | 9 | 20 | 4 | 604.33 |
11 | 10 | 24 | 4 | 600.29 |
12 | 11 | 28 | 4 | 561.18 |
13 | 11 | 24 | 5 | 519.76 |
14 | 11 | 24 | 3 | 557.50 |
15 | 10 | 28 | 3 | 504.60 |
16 | 10 | 24 | 4 | 494.29 |
17 | 10 | 24 | 4 | 620.68 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 25,787.68 | 9 | 2865.30 | 59.87 | <0.0001 | ** |
A TSS content | 10,345.19 | 1 | 10,345.19 | 216.17 | <0.0001 | ** |
B. Fermentation time | 6782.40 | 1 | 6782.40 | 141.72 | <0.0001 | ** |
C. Inoculation amount | 2529.06 | 1 | 2529.06 | 52.85 | 0.0002 | ** |
AB | 49.56 | 1 | 49.56 | 1.04 | 0.3427 | |
AC | 62.12 | 1 | 62.12 | 1.30 | 0.2921 | |
BC | 18.40 | 1 | 18.40 | 0.3846 | 0.5548 | |
A² | 2172.88 | 1 | 2172.88 | 45.40 | 0.0003 | ** |
B² | 2104.51 | 1 | 2104.51 | 43.97 | 0.0003 | ** |
C² | 1108.69 | 1 | 1108.69 | 23.17 | 0.0019 | ** |
Residual | 335.00 | 7 | 47.86 | |||
Lack of Fit | 98.15 | 3 | 32.72 | 0.5526 | 0.6732 | Not significant |
Pure Error | 236.85 | 4 | 59.21 | |||
Cor Total | 26,122.68 | 16 |
Groups | SOD (U/mg Prot) | MDA (nmol/mg Prot) | GSH-Px (U/mg Prot) |
---|---|---|---|
Control group | 15.26 ± 0.27 | 0.69 ± 0.05 | 38.69 ± 0.64 |
Damaged group | 8.37 ± 0.45 ## | 1.36 ± 0.06 ## | 23.34 ± 0.38 ## |
Low dose (50 µL/mL CFJ) | 10.32 ± 0.39 * | 1.03 ± 0.03 * | 28.08 ± 0.10 ** |
Medium dose (100 µL/mL CFJ) | 14.37 ± 0.45 ** | 0.88 ± 0.04 * | 34.57 ± 0.61 ** |
High dose (150 µL/mL CFJ) | 12.19 ± 0.37 ** | 0.96 ± 0.04 * | 32.55 ± 0.73 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Wang, L. Development of Cistanche deserticola Fermented Juice and Its Repair Effect on Ethanol-Induced WRL68 Cell Damage. Fermentation 2022, 8, 178. https://doi.org/10.3390/fermentation8040178
Yang Z, Wang L. Development of Cistanche deserticola Fermented Juice and Its Repair Effect on Ethanol-Induced WRL68 Cell Damage. Fermentation. 2022; 8(4):178. https://doi.org/10.3390/fermentation8040178
Chicago/Turabian StyleYang, Zhenzhen, and Liang Wang. 2022. "Development of Cistanche deserticola Fermented Juice and Its Repair Effect on Ethanol-Induced WRL68 Cell Damage" Fermentation 8, no. 4: 178. https://doi.org/10.3390/fermentation8040178
APA StyleYang, Z., & Wang, L. (2022). Development of Cistanche deserticola Fermented Juice and Its Repair Effect on Ethanol-Induced WRL68 Cell Damage. Fermentation, 8(4), 178. https://doi.org/10.3390/fermentation8040178