Effects of Mulberry Branch and Leaves Silage on Microbial Community, Rumen Fermentation Characteristics, and Milk Yield in Lactating Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet and Animal Management
2.2. Samples Collection and Chemical Analysis
2.3. Statistical Analysis
3. Results
3.1. Milk Yield and Composition
3.2. Rumen Fermentation Characteristics
3.3. Ruminal Bacterial Communities
3.4. Correlation Analysis between the Ruminal Microbiome and Fermentation Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, J.; Yan, B.; Wang, X.Q.; Liu, J.X. Nutritional evaluation of mulberry leaves as feeds for ruminants. Livest. Res. Rural Dev. 2000, 12, 9–16. [Google Scholar]
- Sánchez, M. Mulberry: An exceptional forage available almost worldwide. World Rev. Anim. Prod. 2002, 93, 36–46. [Google Scholar]
- Hejcman, M.; Hejcmanová, P.; Pavlů, V.; Thorhallsdottir, A.G. Forage quality of leaf fodder from the main woody species in Iceland and its potential use for livestock in the past and present. Grass Forage Sci. 2016, 71, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Doran, M.; Laca, E.; Sainz, R. Total tract and rumen digestibility of mulberry foliage (Morus alba), alfalfa hay and oat hay in sheep. Anim. Feed Sci. Technol. 2007, 138, 239–253. [Google Scholar] [CrossRef]
- Salinas-Chavira, J.; Castillo-Martínez, O.; Ramirez-Bribiesca, J.E.; Mellado, M. Effect of increasing levels of white mulberry leaves (Morus alba) on ruminal dry matter degradability in lambs. Trop. Anim. Health Prod. 2011, 43, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.C.; Verstegen, M.W.A.; Hendriks, W.H.; Pham, K.C. The Nutritive Value of Mulberry Leaves (Morus alba) and Partial Replacement of Cotton Seed in Rations on the Performance of Growing Vietnamese Cattle. Asian-Australas. J. Anim. Sci. 2011, 24, 1233–1242. [Google Scholar] [CrossRef]
- Cui, Z.; Meng, Q.; Ma, W.; Zhang, X.; Zhou, Z.; Ren, L. Diversity of the Intestinal Bacteria of Cattle Fed on Diets with Different Doses of Gelatinized Starch-Urea. Indian J. Microbiol. 2015, 55, 269–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, B.; Tao, H.; Zhang, X.; Guo, J.; Cui, K.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian Australas. J. Anim. Sci. 2018, 31, 1259–1266. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Huang, S.; Si, J.; Zhang, J.; Gaowa, N.; Sun, X.; Lv, J.; Liu, G.; He, Y.; Wang, W.; et al. Effects of Paper Mulberry Silage on the Milk Production, Apparent Digestibility, Antioxidant Capacity, and Fecal Bacteria Composition in Holstein Dairy Cows. Animals 2020, 10, 1152. [Google Scholar] [CrossRef]
- Niu, Y.; Meng, Q.; Li, S.; Ren, L.; Zhou, B.; Schonewille, T.; Zhou, Z. Effects of Diets Supplemented with Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Ruminal Bacterial and Archaeal Community Composition of Finishing Steers. PLoS ONE 2016, 11, e0156836. [Google Scholar] [CrossRef]
- Li, Y.; Meng, Q.; Zhou, B.; Zhou, Z. Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on the fecal bacterial community composition in finishing steers. BMC Microbiol. 2017, 17, 97. [Google Scholar] [CrossRef]
- Li, Y.; Lv, M.; Wang, J.; Tian, Z.; Yu, B.; Wang, B.; Liu, J.; Liu, H. Dandelion (Taraxacum mongolicum Hand.-Mazz.) Supplementation-Enhanced Rumen Fermentation through the Interaction between Ruminal Microbiome and Metabolome. Microorganisms 2020, 9, 83. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990; Volume I. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Shen, J.; Chai, Z.; Song, L.; Liu, J.; Wu, Y. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J. Dairy Sci. 2012, 95, 5978–5984. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.-L.; Liu, J.-X.; Ye, J.-A.; Wu, Y.-M.; Guo, Y.-Q. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol. 2005, 120, 333–339. [Google Scholar] [CrossRef]
- Broderick, G.; Kang, J. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Dong, Z.H.; Wang, S.; Zhao, J.; Li, J.; Shao, T. Effects of additives on the fermentation quality, in vitro digestibility and aerobic stability of mulberry (Morus alba L.) leaves silage. Asian-Australas. J. Anim. Sci. 2020, 33, 1292–1300. [Google Scholar] [CrossRef] [Green Version]
- Bauman, D.; Mellenberger, R.; Ingle, D. Metabolic Adaptations in Fatty Acid and Lactose Biosynthesis by Sheep Mammary Tissue during Cessation of Lactation. J. Dairy Sci. 1974, 57, 719–723. [Google Scholar] [CrossRef]
- Jenkins, T. Lipid Metabolism in the Rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef]
- Zhan, J.; Liu, M.; Su, X.; Zhan, K.; Zhang, C.; Zhao, G. Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows. Asian-Australas. J. Anim. Sci. 2017, 30, 1416–1424. [Google Scholar] [CrossRef]
- Hassan, F.-U.; Arshad, M.A.; Li, M.; Rehman, M.S.-U.; Loor, J.J.; Huang, J. Potential of Mulberry Leaf Biomass and Its Flavonoids to Improve Production and Health in Ruminants: Mechanistic Insights and Prospects. Animals 2020, 10, 2076. [Google Scholar] [CrossRef] [PubMed]
- Rico, E.; Mathews, A.; Lovett, J.; Haughey, N.; McFadden, J. Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge. J. Dairy Sci. 2016, 99, 8817–8830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jami, E.; Mizrahi, I. Composition and Similarity of Bovine Rumen Microbiota across Individual Animals. PLoS ONE 2012, 7, e33306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Hou, Y.; Yang, H.; Shi, R.; Wu, C.; Hou, Y.; Zhao, G. Effects of Forage Sources on Rumen Fermentation Characteristics, Performance, and Microbial Protein Synthesis in Midlactation Cows. Asian-Australas. J. Anim. Sci. 2014, 27, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Purushe, J.; The North American Consortium for Rumen Bacteria; Fouts, D.E.; Morrison, M.; White, B.A.; Mackie, R.I.; Coutinho, P.M.; Henrissat, B.; Nelson, K.E. Comparative Genome Analysis of Prevotella ruminicola and Prevotella bryantii: Insights into Their Environmental Niche. Microb. Ecol. 2010, 60, 721–729. [Google Scholar] [CrossRef]
- Evans, N.J.; Brown, J.M.; Murray, R.D.; Getty, B.; Birtles, R.J.; Hart, C.A.; Carter, S.D. Characterization of Novel Bovine Gastrointestinal Tract Treponema Isolates and Comparison with Bovine Digital Dermatitis Treponemes. Appl. Environ. Microbiol. 2011, 77, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Pitta, D.W.; Pinchak, W.E.; Indugu, N.; Vecchiarelli, B.; Sinha, R.; Fulford, J.D. Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat. Front. Microbiol. 2016, 7, 689. [Google Scholar] [CrossRef] [Green Version]
- Alam, F.; Shafique, Z.; Amjad, S.T.; Bin Asad, M.H.H. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytother. Res. 2019, 33, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Jami, E.; White, B.A.; Mizrahi, I. Potential Role of the Bovine Rumen Microbiome in Modulating Milk Composition and Feed Efficiency. PLoS ONE 2014, 9, e85423. [Google Scholar] [CrossRef]
- Indugu, N.; Vecchiarelli, B.; Baker, L.D.; Ferguson, J.D.; Vanamala, J.K.P.; Pitta, D.W. Comparison of rumen bacterial communities in dairy herds of different production. BMC Microbiol. 2017, 17, 190. [Google Scholar] [CrossRef]
Item | Treatment 1 | ||
---|---|---|---|
C | L | H | |
Ingredient (% of DM) | |||
Alfalfa hay | 15.96 | 13.69 | 11.81 |
Oat hay | 3.73 | 5.20 | 7.05 |
Mulberry silage | 0 | 5.31 | 10.47 |
Corn silage | 22.68 | 18.32 | 13.30 |
Cotton seed | 5.47 | 5.45 | 5.44 |
Beet pulp | 4.82 | 4.81 | 4.80 |
Maize meal | 10.64 | 10.61 | 10.59 |
Flaked corn | 14.19 | 14.15 | 14.12 |
Soybean meal | 13.28 | 13.24 | 13.21 |
Rapeseed meal | 2.87 | 2.86 | 2.86 |
Extruded soybean | 1.12 | 1.12 | 1.11 |
DDGS 2 | 0.74 | 0.74 | 0.74 |
Concentrate 3 | 4.5 | 4.5 | 4.5 |
Chemical composition | |||
DM, % of feed | 48.29 | 48.61 | 48.50 |
CP, % of DM | 16.73 | 16.86 | 16.88 |
NDF, % of DM | 29.55 | 28.60 | 28.29 |
ADF, % of DM | 17.33 | 17.12 | 17.06 |
EE, % of DM | 5.59 | 5.34 | 5.27 |
Ash, % of DM | 7.52 | 7.30 | 7.45 |
NEL 4, Mcal/kg DM | 1.77 | 1.78 | 1.78 |
Items 1 | Proportion, % | Items | Proportion, % |
---|---|---|---|
pH | 4.89 | Lactic acid (g/kg DM) | 15.04 |
DM | 28.93 | Acetate (g/kg DM) | 10.58 |
CP, % of DM | 14.95 | Propionate (g/kg DM) | 2.75 |
EE, % of DM | 5.40 | Butyrate (g/kg DM) | - |
ADF, % of DM | 25.70 | NH3-N (g/kg Total N) | 25.01 |
NDF, % of DM | 37.18 | ||
Ash, % of DM | 9.10 | ||
Ca, % of DM | 0.70 | ||
P, % of DM | 0.27 |
Item 1 | Treatment 2 | SEM | p Value | ||||
---|---|---|---|---|---|---|---|
C | L | H | Treat | Week | T × W | ||
DMI, kg/d | 22.90 | 22.82 | 22.68 | 0.08 | 0.52 | - | - |
Milk yield, kg/d | |||||||
Raw | 36.34 b | 36.54 b | 38.21 a | 1.34 | 0.27 | <0.01 | 0.51 |
4% FCM | 36.86 b | 37.31 b | 39.10 a | 0.72 | 0.36 | 0.31 | 0.79 |
ECM | 41.57 b | 42.05 b | 44.19 a | 0.74 | 0.15 | <0.01 | 0.71 |
Protein | 1.30 | 1.31 | 1.39 | 0.03 | 0.13 | 0.04 | 0.65 |
Fat | 1.49 b | 1.51 b | 1.59 a | 0.03 | 0.05 | <0.01 | 0.15 |
Lactose | 1.79 a | 1.73 b | 1.84 a | 0.04 | 0.12 | <0.01 | 0.03 |
Milk composition, % | |||||||
Protein | 3.55 | 3.65 | 3.63 | 0.04 | 0.14 | <0.01 | 0.93 |
Fat | 4.10 b | 4.14 a | 4.16 a | 0.09 | 0.66 | <0.01 | 0.03 |
Lactose | 4.76 | 4.79 | 4.78 | 0.26 | 0.66 | <0.01 | 0.92 |
SCC, 103/mL | 152.47 | 146.86 | 129.22 | 17.96 | 0.68 | 0.75 | 0.61 |
MUN, mg/dL | 12.44 b | 12.81 a | 12.85 a | 0.21 | 0.32 | <0.01 | <0.01 |
4% FCR | 1.61 b | 1.63 b | 1.72 a | 0.03 | 0.10 | <0.01 | 0.24 |
Item | Treatment | SEM | p Value | ||
---|---|---|---|---|---|
C | L | H | |||
pH | 6.31 | 6.19 | 6.26 | 0.03 | 0.29 |
NH3-H, mg/dL | 11.92 | 12.23 | 12.33 | 0.43 | 0.92 |
VFA, mmol/L | |||||
Total VFA | 134.13 | 131.57 | 133.50 | 1.66 | 0.57 |
Acetate (A) | 85.42 a | 81.57 b | 80.69 b | 1.05 | 0.08 |
Propionate (P) | 27.74 b | 30.56 a | 30.96 a | 0.58 | 0.04 |
Butyrate | 17.23 | 17.82 | 17.33 | 0.33 | 0.75 |
Isobutyrate | 1.85 | 1.66 | 1.81 | 0.06 | 0.39 |
Valerate | 1.99 | 1.88 | 1.76 | 0.05 | 0.15 |
Isovalerate | 1.17 | 1.17 | 1.15 | 0.03 | 0.95 |
A/P | 2.89 a | 2.61 b | 2.64 b | 0.05 | 0.02 |
Item | Treatments 1 | SEM | p Value | ||
---|---|---|---|---|---|
C | L | H | |||
Sob | 1189.67 | 1193.83 | 1146.17 | 23.83 | 0.69 |
Ace | 1466.43 | 1481.10 | 1440.86 | 24.00 | 0.81 |
Chao | 1461.27 | 1486.94 | 1454.22 | 26.60 | 0.88 |
Shannon | 5.65 | 5.64 | 5.45 | 0.07 | 0.46 |
Simpson | 0.02 | 0.02 | 0.02 | <0.01 | 0.45 |
Coverage | 0.99 | 0.98 | 0.99 | <0.01 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, J.; Mei, J.; Huang, L.; Liu, H. Effects of Mulberry Branch and Leaves Silage on Microbial Community, Rumen Fermentation Characteristics, and Milk Yield in Lactating Dairy Cows. Fermentation 2022, 8, 86. https://doi.org/10.3390/fermentation8020086
Li Y, Wang J, Mei J, Huang L, Liu H. Effects of Mulberry Branch and Leaves Silage on Microbial Community, Rumen Fermentation Characteristics, and Milk Yield in Lactating Dairy Cows. Fermentation. 2022; 8(2):86. https://doi.org/10.3390/fermentation8020086
Chicago/Turabian StyleLi, Yan, Jiaqi Wang, Jie Mei, Lingxia Huang, and Hongyun Liu. 2022. "Effects of Mulberry Branch and Leaves Silage on Microbial Community, Rumen Fermentation Characteristics, and Milk Yield in Lactating Dairy Cows" Fermentation 8, no. 2: 86. https://doi.org/10.3390/fermentation8020086
APA StyleLi, Y., Wang, J., Mei, J., Huang, L., & Liu, H. (2022). Effects of Mulberry Branch and Leaves Silage on Microbial Community, Rumen Fermentation Characteristics, and Milk Yield in Lactating Dairy Cows. Fermentation, 8(2), 86. https://doi.org/10.3390/fermentation8020086