Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. ATR-FTIR Spectroscopy
2.3. X-ray Diffraction Measurement
3. Results and Discussions
3.1. ATR-FTIR Spectroscopy
3.1.1. Behavior of Hemicellulose in Both Non-Degraded and Degraded Samples
3.1.2. Behavior of Cellulose in Both Non-Degraded and Degraded Samples
3.1.3. Behavior of Lignin in Both Non-Degraded and Degraded Samples
Wavenumbers (cm−1) | Band Attributions | References |
---|---|---|
3750–3000 | OH: cellulose + hemicellulose + lignin (intra- + inter-molecular hydrogen bond) | [18,35,36] |
3278 | OH: allomorph cellulose (O6-H6···O3: intermolecular hydrogen-bonds in carbohydrates) | [18,19,20,44] |
3240 | OH: allomorph cellulose (O6-H6···O3: intermolecular hydrogen-bond in carbohydrate) | [18,19,20,44,67] |
3000–2850 | C-H aliphatic: CH2 + CH3 + CH in holocellulose + lignin | [36,52] |
2919; 2850 | as+sCH2 + as+sCH3: holocellulose + lignin | [18,19,44] |
2909, 2896 | C-Hmethylidene of holocellulose: overlapped bands | [20,44,64] |
1738 | C=O of hemicellulose: unconjugate carbonyl of acetyl and carboxyl and/or glucoronate; C=O esterified phenolic acid in lignin and/or ferulate | [38,39,40,42,43,62] |
1647 | C=O of diconjugate carbonyl ketone in lignin: quinone, o- or p-quinone, Ar-CO-Ar, Ar-CO-C=C | [18,44,49,65] |
1635–1621 | O-H of adsorbed water; hydrogen bond between hemicellulose-lignin | [12,20,35,45,49] |
1590, 1505 | Car = Car of lignin | [13,18,47] |
1462 | asCH3 of acetyl pyranose in hemicellulose; asCH3 of methoxyl in lignin; asCH2 of cellulose; asCH2 in lignin and carbohydrates | [13,18,20,35,44,46,63] |
1456 | CH2 in lignin + O-H of cellulose | [34,39,46,52] |
1425 | CH2: scissoring in crystalline cellulose; lignin; hemicellulose + lignin | [13,18,20,25,35,56] |
1375 | C-H: crystalline cellulose; sCH3: acetyl group in hemicellulose; oopO-H; O-H of carboxyl group | [18,19,20,22,35,36,52,56] |
1318 | CH2 of crystalline cellulose: wagging; CH2: rocking | [18,34,40,51,52,56] |
1268 | Car-O: guaiacyl skeleton in lignin + C-O of cellulose | [18,35,37,63] |
1223–1235 | Car-O syringyl skeleton in lignin + C-O-C ester groups in hemicellulose (xyloglucan)/lignin + C-O carboxyl group; O-H of carbohydrate and COOH | [18,35,36,37,41,49] |
1158–1163 | asC-O-C: bridge of -(1-4)-glycosidic in crystalline cellulose; C-O of glucopyranose; C-O-C of carbohydrate; C-H of carbohydrate | [18,35,36,37,47,51,52,54] |
1111 | C-O: alcohol in carbohydrate, C-O side chain lignin | [12,36,53,54,57] |
1019 | C-O: primary alcohol of carbohydrate; C-O- ether of cellulose or CH3-O in lignin; CH3-O- of ester and -O-4 linkages in lignin | [35,36,37,39,49,53,54] |
960 | oopC-Har: deformation mode in lignin | [36,37] |
898 | C-O-C of -(1-4)-glycosidic linkage: amorphous or crystalline; C-H: rocking of -glycosidic bonds; C-H holocellulose | [18,19,20,35,42,45,46,53,59,62] |
802 | C-Har: fingerprint of 1,2,4-trisubstituted aromatic of guaiacyl-lignin | [36,37,46,64,65] |
770 | oopO-H of allomorph crystalline cellulose | [18,19,20,51,67] |
709 | oopO-H of crystalline cellulose ; r(CH2)n rocking | [18,19,20,51,52,67] |
664 | oopO-H of cellulose; or cellulose/hemicellulose/lignin | [20,51,52,68] |
3.2. X-ray Diffraction Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saab, A.M.; Lampronti, I.; Borgatti, M.; Finotti, A.; Harb, F.; Safi, S.; Gambari, R. In vitro Evaluation of the anti-proliferative activities of the wood essential oils of three Cedrus species against K562 human chronic myelogenous leukaemia cells. Nat. Prod. Res. 2012, 26, 2227–2231. [Google Scholar] [CrossRef]
- Quezel, P. Réflexions sur L’évolution de la Flore et de la Végétation au Maghreb Méditerranéen [Reflections on the Evolution of Flora and Vegetation in the Mediterranean Maghreb]; Ibis: Paris, France, 2000. [Google Scholar]
- Ruas, M.-P.; Ros, J.; Terral, J.-F.; Ivorra, S.; Andrianarinosy, H.; Ettahiri, A.S.; Fili, A.; Van Staëvel, J.-P. History and archaeology of the emblematic argan tree in the medieval Anti-Atlas Mountains (Morocco). Quat. Int. 2016, 404, 114–136. [Google Scholar] [CrossRef]
- Fidah, A.; Salhi, N.; Janah, T.; Rahouti, M.; Kabouchi, B.; El Alami, A.; Ziani, M.; Famiri, A. Comparative natural durability of four Mediterranean softwoods against wood decay fungi. J. Indian Acad. Wood Sci. 2016, 13, 132–137. [Google Scholar] [CrossRef]
- Sadiki, M.; Barkay, H.; Maryem, A.; Mohammed, E.; Saad, I.K.; Soumya, E. The Anti-Adherent Activity of Plants Extracts on Penicillium commune spores Causing Cedar Wood Decay. J. Adhes. 2016, 92, 295–305. [Google Scholar]
- Lluveras-Tenorio, A.; Andreotti, A.; Boujamid, A.; Castelvetro, V.; Ibnoussina, M.; Lorenzetti, G.; Raihane, M.; Salvadori, B.; Colombini, M.P. Characterization of the artist’s palette from the polychrome decorations of the El Bahia Palace doors (Marrakesh, Morocco). J. Cult. Herit. 2018, 33, 213–221. [Google Scholar] [CrossRef]
- El Hajjam, M.; Idrissi Kandri, N.; Harrach, A.; El Khomssi, A.; Zerouale, A. Physicochemical characterization of soft waste “Cedar” and hard waste “Mahogany”: Comparative study stud. Materials Today: Proceedings. 2019, 13, 803–811. [Google Scholar]
- Pandey, K.K. Study of the effect of photo-irradiation on the surface chemistry of wood. Polym. Degrad. Stab. 2005, 90, 9–20. [Google Scholar] [CrossRef]
- Rosu, D.; Teaca, C.-A.; Bodirlau, R.; Rosu, L. FTIR and color change of the modified wood as a result of artificial light irradiation. J. Photochem. Photobiol. B: Biol. 2010, 99, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Herrera, R.; Erdocia, X.; Llano-Ponte, R.; Labidi, J. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties. J. Anal. Appl. Pyrolysis 2014, 107, 256–266. [Google Scholar] [CrossRef]
- Mattonai, M.; Watanabe, A.; Shiono, A.; Ribechini, E. Degradation of wood by UV light: A study by EGA-MS and Py-GC/MS with on line irradiation system. J. Anal. Appl. Pyrolysis 2019, 139, 224–232. [Google Scholar] [CrossRef]
- Hajji, L.; Boukir, A.; Assouik, J.; Kerbal, A.; Kajjout, M.; Doumenq, P.; Carvalho, M.L. A Multi-Analytical Approach for the Evaluation of the Efficiency of the Conservation–Restoration Treatment of Moroccan Historical Manuscripts Dating to the 16th, 17th, and 18th Centuries. Appl. Spectrosc. 2015, 69, 920–938. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, D.; Lucejko, J.J.; Zoborowska, M.; Modugno, F.; Cantisani, E.; Mamoňová, M.; Colombini, M.P. The short term degradation of cellulosic pulp in lake water and peat soil: A multi-analytical study from the micro to the molecular level. Int. Biodeter. Biodegr. 2017, 116, 243–259. [Google Scholar] [CrossRef]
- A Blanchette, R. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Pandey, K.; Pitman, A. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Howell, C.; Hastrup, A.C.S.; Jara, R.; Larsen, F.H.; Goodell, B.; Jellison, J. Effects of hot water extraction and fungal decay on wood crystalline cellulose structure. Cellulose 2011, 18, 1179–1190. [Google Scholar] [CrossRef]
- Walsh-Korbs, Z.; Avérous, L. Recent developments in the conservation of materials properties of historical wood. Prog. Mater. Sci. 2019, 102, 167–221. [Google Scholar] [CrossRef]
- Boukir, A.; Fellak, S.; Doumenq, P. Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD). Heliyon 2019, 5, e02477. [Google Scholar] [CrossRef] [Green Version]
- Ling, Z.; Wang, T.; Makarem, M.; Cintrón, M.S.; Cheng, H.N.; Kang, X.; Bacher, M.; Potthast, A.; Rosenau, T.; King, H.; et al. Effects of ball milling on the structure of cotton cellulose. Cellulose 2019, 26, 305–328. [Google Scholar] [CrossRef]
- Boukir, A.; Mehyaoui, I.; Fellak, S.; Asia, L.; Doumenq, P. The effect of the natural degradation process on the cellulose structure of Moroccan hardwood fiber: A survey on spectroscopy and structural properties. Mediterr. J. Chem. 2019, 8, 179. [Google Scholar] [CrossRef]
- Müller, U.; Rätzsch, M.; Schwanninger, M.; Steiner, M.; Zöbl, H. Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B: Biol. 2003, 69, 97–105. [Google Scholar] [CrossRef]
- Bejo, L.; Tolvaj, L.; Kannar, A.; Preklet, E. Effect of water leaching on photodegraded spruce wood monitored by IR spectroscopy. J. Photochem. Photobiol. A: Chem. 2019, 382, 111948. [Google Scholar] [CrossRef]
- Hakkou, M.; Pétrissans, M.; El Bakali, I.; Gérardin, P.; Zoulalian, A. Wettability changes and mass loss during heat treatment of wood. Holzforschung 2005, 59, 35–37. [Google Scholar] [CrossRef]
- Bennouna, F.; Sadiki, M.; Elabed, S.; Koraichi, S.I.; Lachkar, M. The Effect of Different Vegetable Oils on Cedar Wood Surface Energy: Theoretical and Experimental Fungal Adhesion. Int. J. Biomater. 2022, 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- De Caro, L.; Giannini, C.; Lassandro, R.; Scattarella, F.; Sibillano, T.; Matricciani, E.; Fanti, G. X-ray Dating of Ancient Linen Fabrics. Heritage 2019, 2, 171. [Google Scholar] [CrossRef] [Green Version]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Ruland, W. X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr. 1961, 14, 1180–1185. [Google Scholar] [CrossRef]
- French, A.D.; Cintron, M.S. Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 2013, 20, 583–588. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2013, 21, 885–896. [Google Scholar] [CrossRef]
- Nam, S.; French, A.D.; Condon, B.D.; Concha, M. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 2016, 135, 1–9. [Google Scholar] [CrossRef]
- Barnette, A.L.; Lee, C.; Bradley, L.C.; Schreiner, E.P.; Park, Y.B.; Shin, H.; Cosgrove, D.J.; Park, S.; Kim, S.H. Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr. Polym. 2012, 89, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Zhang, L.; Zhang, R.; Liu, G.; Cheng, G. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour. Technol. 2014, 151, 402–405. [Google Scholar] [CrossRef]
- Atalla, R.H.; Vanderhart, D.L. Native Cellulose-A Composite of Two Distinct Crystalline Forms. Science 1984, 223, 283–285. [Google Scholar] [CrossRef]
- Garskaite, E.; Karlsson, O.; Stankeviciute, Z.; Kareiva, A.; Jones, D.; Sandberg, D. Surface hardness and flammability of Na2SiO3and nano-TiO2reinforced wood composites. RSC Adv. 2019, 9, 27973–27986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhicheng, J.; Jian, Y.; Jianmei, L.; Ting, H.; Changwei, H. Promoting Effect of Sodium Chloride on the Solubilization and Depolymerization of Cellulose from Raw Biomass Materials in Water. ChemSusChem 2015, 8, 1901–1907. [Google Scholar]
- Popescu, C.-M.; Gradinariu, P.; Popescu, M.-C. Structural analysis of lime wood biodegraded by white rot fungi through infrared and two dimensional correlation spectroscopy techniques. J. Mol. Struct. 2016, 1124, 78–84. [Google Scholar] [CrossRef]
- Traoré, M.; Kaal, J.; Cortizas, A.M. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Sci. Technol. 2017, 52, 487–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Wang, C.; Shi, H.; Zhou, W.; Zhang, Q.; Chen, X. Combination of steam explosion pretreatment and anaerobic alkalization treatment to improve enzymatic hydrolysis of Hippophae rhamnoides. Bioresour. Technol. 2019, 289, 121693. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, K.; Balaji, A.; Ramanujam, N. Extraction of cellulose nanofibers from cocos nucifera var aurantiaca peduncle by ball milling combined with chemical treatment. Carbohydr. Polym. 2019, 212, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Yadav, J.; Kumar, R.; Tesarova, D.; Ekielski, A.; Mishra, P.K. On the rapid and non-destructive approach for wood identification using ATR-FTIR spectroscopy and chemometric methods. Vib. Spectrosc. 2020, 110, 103097. [Google Scholar] [CrossRef]
- Tintner, J.; Smidt, E.; Aumüller, C.; Martin, P.; Ottner, F.; Wriessnig, K.; Reschreiter, H. Taphonomy of prehistoric bark in a salt environment at the archaeological site in Hallstatt, Upper Austria–An analytical approach based on FTIR spectroscopy. Vib. Spectrosc. 2018, 97, 39–43. [Google Scholar] [CrossRef]
- Trilokesh, C.; Uppuliri, K.B. Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci. Rep. 2019, 9, 16709. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Gan, T.; Su, C.; Han, Y.; Liu, Z.; Cao, Y. Structural characterization and antioxidant activity of water-soluble lignin-carbohydrate complexes (LCCs) isolated from wheat straw. Int. J. Biol. Macromol. 2020, 161, 315–324. [Google Scholar] [CrossRef]
- Broda, M.; Popescu, C.-M. Natural decay of archaeological oak wood versus artificial degradation processes—An FT-IR spectroscopy and X-ray diffraction study. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2018, 209, 280–287. [Google Scholar] [CrossRef]
- Hajji, L.; Boukir, A.; Assouik, J.; Pessanha, S.; Figueirinhas, J.; Carvalho, M.L. Artificial aging paper to assess long-term effects of conservative treatment. Monitoring by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and energy dispersive X-ray fluorescence (EDXRF). Microchem. J. 2016, 124, 646–656. [Google Scholar] [CrossRef]
- Dahlem, M.A.; Borsoi, C.; Hansen, B.; Catto, A.L. Evaluation of different methods for extraction of nanocellulose from yerba mate residues. Carbohydr. Polym. 2019, 218, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, S.; Özgenç, Ö.; Boyacı, I.H.; Yıldız, Ü.C.; Erişir, E. Examination of the chemical changes in spruce wood degraded by brown-rot fungi using FT-IR and FT-Raman spectroscopy. Vib. Spectrosc. 2016, 85, 202–207. [Google Scholar] [CrossRef]
- Santoni, I.; Callone, E.; Sandak, A.; Sandak, J.; Dirè, S. Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance. Carbohydr. Polym. 2015, 117, 710–721. [Google Scholar] [CrossRef]
- Lehto, J.; Louhelainen, J.; Huttunen, M.; Alén, R. Spectroscopic Analysis of hot-water- and dilute-acid-extracted hardwood and softchips, Spectrochim. Acta. Part A 2017, 184, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Kesari, K.; Leppänen, M.; Ceccherini, S.; Seitsonen, J.; Väisänen, S.; Altgen, M.; Johansson, L.-S.; Maloney, T.; Ruokolainen, J.; Vuorinen, T. Chemical characterization and ultrastructure study of pulp fibers. Mater. Today Chem. 2020, 17, 100324. [Google Scholar] [CrossRef]
- Schwanninger, M.; Rodrigues, J.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Abidi, N.; Cabrales, L.; Haigler, C.H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym. 2014, 100, 9–16. [Google Scholar] [CrossRef]
- Acharya, S.; Hu, Y.; Moussa, H.; Abidi, N. Preparation and characterization of transparent cellulose films using an improved cellulose dissolution process. J. Appl. Polym. Sci. 2017, 134, 44871. [Google Scholar] [CrossRef]
- Noda, I. Two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses of time-dependent ATR IR spectra of d-glucose anomers undergoing mutarotation process in water. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2018, 197, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Li, T.; Xu, P.; Zeng, G.; Chen, M.; Lai, C.; Cheng, M.; Guo, X.; Chen, S.; Li, Z. Deciphering the Fenton-reaction-aid lignocellulose degradation pattern by Phanerochaete chrysosporium with ferroferric oxide nanomaterials: Enzyme secretion, straw humification and structural alteration. Bioresour. Technol. 2019, 276, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Amoroso, L.; Muratore, G.; Ortenzi, M.A.; Gazzotti, S.; Limbo, S.; Piergiovanni, L. Fast Production of Cellulose Nanocrystals by Hydrolytic-Oxidative Microwave-Assisted Treatment. Polymers 2020, 12, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Liu, Y.; French, A.D.; Lee, C.M.; Kim, S.H. Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers. Cellulose 2017, 25, 49–64. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Popescu, M.-C.; Vasile, C. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy. Int. J. Biol. Macromol. 2011, 48, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, J.; Zhang, X.; Tan, T. The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose. Bioresour. Technol. 2015, 193, 164–170. [Google Scholar] [CrossRef]
- Hajji, L.; Boukir, A.; Assouik, J.; Lakhiari, H.; Kerbal, A.; Doumenq, P.; Mille, G.; De Carvalho, M.L. Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM–EDS). Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2015, 136, 1038–1046. [Google Scholar] [CrossRef]
- Sullivan, A.; Ball, R. Thermal decomposition and combustion chemistry of cellulosic biomass. Atmos. Environ. 2012, 47, 133–141. [Google Scholar] [CrossRef]
- Lucejko, J.J.; Tamburini, D.; Zborowska, M.; Babiński, L.; Modugno, F.; Colombini, M.P. Oak wood degradation processes induced by the burial environment in the archaeological site of Biskupin (Poland). Herit. Sci. 2020, 8, 1–12. [Google Scholar] [CrossRef]
- Macchioni, N.; Pizzo, B.; Bernabei, M.; Visintin, G. Dating trials of wooden historic artefacts through FT-IR spectroscopy. J. Cult. Herit. 2020, 43, 303–310. [Google Scholar] [CrossRef]
- Boukir, A.; Guiliano, M.; Asia, L.; El Hallaoui, A.; Mille, G. A fraction to fraction study of photo-oxidation of BAL 150 crude oil asphaltenes. Analusis 1998, 26, 358–364. [Google Scholar] [CrossRef]
- Boukir, A.; Aries, E.; Guiliano, M.; Asia, L.; Doumenq, P.; Mille, G. Subfractionation, characterization and photooxidation of crude oil resins. Chemosphere 2001, 43, 279–286. [Google Scholar] [CrossRef]
- Zhao, J.; Xiuwen, W.; Hu, J.; Liu, Q.; Shen, D.; Xiao, R. Thermal degradation of softwood lignin and harwood lignin by TG-FTIR and Py-GC/MS. Polym. Degrad. Stabil. 2014, 108, 133–138. [Google Scholar] [CrossRef]
- Santos, S.M.; Carbajo, J.M.; Quintana, E.; Ibarra, D.; Gomez, N.; Ladero, M.; Eugenio, M.E.; Villar, J.C. Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr. Polym. 2015, 116, 173–181. [Google Scholar] [CrossRef]
- Foster, E.J.; Moon, R.J.; Agarwal, U.P.; Bortner, M.J.; Bras, J.; Camarero-Espinosa, S.; Chan, K.J.; Clift, M.J.D.; Cranston, E.D.; Eichhorn, S.J.; et al. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679. [Google Scholar] [CrossRef] [Green Version]
- Tomé, L.C.; Brandão, L.; Mendes, A.; Silvestre, A.; Neto, C.; Gandini, A.; Freire, C.S.R.; Marrucho, I. Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose 2010, 17, 1203–1211. [Google Scholar] [CrossRef]
- Cairul, M.; Mohd, I.; Abadi, V.; Katas, H. Purification, Characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydr. Polym. 2014, 99, 180–189. [Google Scholar]
- Ju, X.; Bowden, M.; Brown, E.E.; Zhang, X. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr. Polym. 2015, 123, 476–481. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Varela, I.; Pereira, M.; Mendonça, R.T. Determination of polymorphic changes in cellulose from Eucalyptus spp. fibres after alkalization. Cellulose 2018, 25, 6831–6845. [Google Scholar] [CrossRef]
- Carrillo-Varela, I.; Retamal, R.; Pereira, M.; Mendonça, R.T. Structure and reactivity of cellulose from bleached kraft pulps of different Eucalyptus species upgraded to dissolving pulp. Cellulose 2019, 26, 5731–5744. [Google Scholar] [CrossRef]
- Manzato, L.; Rabelo, L.C.A.; de Souza, S.M.; da Silva, C.G.; Sanches, E.A.; Rabelo, D.; Mariuba, L.A.M.; Simonsen, J. New approach extraction of cellulose tucuma’s endocarp and its structural characterization. J. Mol. Struct. 2017, 1143, 229–234. [Google Scholar] [CrossRef]
- Yin, J.; Yuan, T.; Lu, Y.; Song, K.; Li, H.; Zhao, G.; Yin, Y. Effect of compression combined with steam treatment on the porosity, chemical composition and cellulose crystalline structure of wood cell walls. Carbohyd. Polym. 2017, 155, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, B.; Mu, C.; Lin, W. Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydr. Polym. 2011, 84, 881–886. [Google Scholar] [CrossRef]
- Kim, U.-J.; Kuga, S. Ion-exchange chromatography by dicarboxyl cellulose gel. J. Chromatogr. A 2001, 919, 29–37. [Google Scholar] [CrossRef]
- Shimur, R.; Nishiok, A.; Kano, I.; Kod, T.; Nishio, T. Novel method for producing amorphous cellulose only by milling. Carbohyd. Polym. 2014, 102, 645–648. [Google Scholar] [CrossRef]
- Rojas, J.; López, A.; Gamboa, Y.; González, C.; Montoya, F. Assessment of processing and polymorphic form effect on the powder and tableting properties of microcrystalline celluloses I and II. Chem. Pharm. Bull. 2011, 59, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Nishiyam, Y.; Sugiyam, J.; Chanzy, H.; Langan, P. Crystal Structure and Hydrogen Bonding System in Cellulose I_α from Synchrotron X-ray and Neutron Fiber Diffraction. J. Amer. Chem. Soc. 2003, 125, 14300–14306. [Google Scholar] [CrossRef]
- Redlinger-Pohn, J.D.; Petkovšek, M.; Gordeyeva, K.; Zupanc, M.; Gordeeva, A.; Zhang, Q.; Dular, M.; Söderberg, L.D. Cavitation Fibrillation of Cellulose Fiber. Biomacromolecules 2022, 23, 847–862. [Google Scholar] [CrossRef] [PubMed]
- del Cerro, D.R.; Koso, T.V.; Kakko, T.; King, A.W.T.; Kilpeläinen, I. Crystallinity reduction and enhancement in the chemical reactivity of cellulose by non-dissolving pre-treatment with tetrabutylphosphonium acetate. Cellulose 2020, 27, 5545–5562. [Google Scholar] [CrossRef] [Green Version]
- Mudedla, S.K.; Vuorte, M.; Veijola, E.; Marjamaa, K.; Koivula, A.; Linder, M.B.; Arola, S.; Sammalkorpi, M. Effect of oxidation on cellulose and water structure: A molecular dynamics simulation study. Cellulose 2021, 28, 3917–3933. [Google Scholar] [CrossRef]
Sample | Description of Analyzed Part | Age (Century) |
---|---|---|
A | non-degraded | 21st |
A’ | degraded | |
B | non-degraded | 19th |
B’ | degraded | |
C | non-degraded | 17th |
C’ | degraded | |
D | non-degraded | 16th |
D’ | degraded |
Sample | Description of Analyzed Part | Crystallinity Index CrI (%) | Crystallite Seize D002 (nm) |
---|---|---|---|
A | non-degraded | 51.77 | 0.083 |
A’ | degraded | 36.12 | 0.040 |
B | non-degraded | 47.65 | 0.047 |
B’ | degraded | 28.50 | 0.129 |
C | non-degraded | 45.03 | 0.037 |
C’ | degraded | 26.30 | 0.050 |
D | non-degraded | 44.74 | 0.045 |
D’ | degraded | 20.19 | 0.042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouramdane, Y.; Fellak, S.; El Mansouri, F.; Boukir, A. Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD). Fermentation 2022, 8, 698. https://doi.org/10.3390/fermentation8120698
Bouramdane Y, Fellak S, El Mansouri F, Boukir A. Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD). Fermentation. 2022; 8(12):698. https://doi.org/10.3390/fermentation8120698
Chicago/Turabian StyleBouramdane, Yousra, Somia Fellak, Fouad El Mansouri, and Abdellatif Boukir. 2022. "Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD)" Fermentation 8, no. 12: 698. https://doi.org/10.3390/fermentation8120698
APA StyleBouramdane, Y., Fellak, S., El Mansouri, F., & Boukir, A. (2022). Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD). Fermentation, 8(12), 698. https://doi.org/10.3390/fermentation8120698