Anaerobic Digestion of Cereal Rye Cover Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. AD Feedstocks, Inoculum, and Micronutrients
2.2. AD Experimental Setup
2.3. Sampling and Analytical Methods
2.4. Data Analysis
3. Results and Discussion
3.1. Analysis of Cereal Rye Biomass
3.2. Comparison of Cereal Rye Methane Yields
3.3. Pilot-Test Results
3.4. Effects of TS and Ensiling on AD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallander, S.; Smith, D.; Bowman, M.; Classsen, R. Cover Crop Trends, Programs, and Practices in the United States; U.S. Dept of Agriculture: Washington, DC, USA, 2021. [Google Scholar]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, J.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, A.; Mortensen, D.A.; Allen, M.K. The state of the cover crop nation and how to set realistic goals for the popular conservation practice. J. Soil Water Conserv. 2017, 72, 111A–115A. [Google Scholar] [CrossRef]
- Sykes, V.R.; Wilson, A.; Bates, G.; McIntosh, D.; McClure, A.T.; Raper, T.; Blair, R.; Walker, F. Cover Crop Variety Tests in Tennessee 2020; University of Tennessee: Knoxville, TN, USA, 2020; Available online: https://search.utcrops.com/ (accessed on 1 May 2022).
- Shao, X.; DiMarco, K.; Richard, T.L.; Lynd, L.R. Winter rye as a bioenergy feedstock: Impact of crop maturity on composition, biological solubilization and potential revenue. Biotechnol. Biofuels 2015, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, F.; Isbell, T.A.; Gesch, R.W.; Evangelista, R.L.; Alexopoulou, E.; Moser, B.; Monti, A. Turning a burden into an opportunity: Pennycress (Thlaspi arvense L.) a new oilseed crop for biofuel production. Biomass Bioenergy 2019, 130, 105354. [Google Scholar] [CrossRef]
- Alam, A.; Dwivedi, P. Modeling site suitability and production potential of carinata-based sustainable jet fuel in the Southeastern United States. J. Clean. Prod. 2019, 239, 117817. [Google Scholar] [CrossRef]
- Trejo-Pech, C.O.; Larson, J.A.; English, B.C.; Yu, T.E. Cost and profitability analysis of a prospective pennycress to sustainable aviation fuel supply chain in Southern USA. Energies 2019, 12, 3055. [Google Scholar] [CrossRef] [Green Version]
- Robertson, K.A. Biomass Potential in Sustainable Aviation Fuel Development: Switchgrass Production Optimization and Carinata Oilseed Enterprise Viability Analysis. Master’s Thesis, University of Tennessee Knoxville, Knoxville, TN, USA, 2020. [Google Scholar]
- Jarvis, B.; Romsdahl, T.B.; McGinn, M.G.; Nazarenus, T.J.; Cahoon, E.B.; Chapman, K.D.; Sedbrook, J.C. CRISPR/Cas9-induced fad2 and rod1 mutations stacked with fae1 confer high oleic acid seed oil in pennycress (Thlaspi arvense L.). Front. Plant Sci. 2021, 12, 652319. [Google Scholar] [CrossRef]
- Bhardwaj, H. Utilizing locally-produced canola to manufacture biodiesel. In Issues in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, VA, USA, 2007. [Google Scholar]
- Taheripour, F.; Sajedinia, E.; Karami, O. Oilseed cover crops for sustainable aviation fuels production and reduction in greenhouse gas emissions through land use savings. Front. Energy Res. 2022, 9, 790421. [Google Scholar] [CrossRef]
- BP. Nuseed and Bp Enter into Strategic Agreement to Accelerate Market Adoption of Nuseed Carinata As a Sustainable Low-Carbon Biofuel Feedstock; BP: London, UK, 2022. [Google Scholar]
- Shahi, N.; Joshi, G.; Min, B. Potential sustainable biomaterials derived from cover crops. BioResources 2020, 15, 5641–5652. [Google Scholar] [CrossRef]
- Senthilkumaran, A.; Babaei-Ghazvini, A.; Nicherson, M.T.; Acharya, B. Comparison of protein content, availability, and different properties of plant protein sources with their application in packaging. Polymers 2022, 14, 1065. [Google Scholar] [CrossRef] [PubMed]
- Patterson, N.; Tang, J.; Han, J.; Tavva, V.; Hertig, A.; Zhang, Z.; Ramseier, T.M.; Bohmert-Tararev, K.; Peroples, O.P.; Snell, K.D. Generation of High Polyhydroxybutryate Producing Oilseeds. U.S. Patent No 9,181,559, 10 November 2015. [Google Scholar]
- Blanco-Canqui, H.; Ruis, S.J.; Proctor, C.A.; Creech, C.F.; Drewnoski, M.E.; Redfearn, D.D. Harvesting cover crops for biofuel and livestock production: Another ecosystem service? Agron. J. 2020, 112, 2373–2400. [Google Scholar] [CrossRef]
- Miller, J. Cover Crop Biomass and Termination Considerations. Delaware Agrononmy Blog. 25 March 2022. Available online: https://sites.udel.edu/agronomy/2022/03/25/cover-crop-biomass-and-termination-considerations/ (accessed on 1 September 2022).
- Karsten, H.; Milliron, R. Double-Cropping Winter Annuals and Corn Silage. Available online: https://www.agproud.com/articles/31868-double-cropping-winter-annuals-and-corn-silage (accessed on 1 September 2022).
- Sun, H.; Cui, X.; Li, R.; Guo, J.; Dong, R. Ensiling process for efficient biogas production from lignocellulosic substrates: Methods, mechanisms, and measures. Bioresour. Technol. 2021, 342, 125928. [Google Scholar] [CrossRef] [PubMed]
- Villa, R.; Rodriguez, L.O.; Fenech, C.; Anika, O.C. Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields. Renew. Sustain. Energy Rev. 2020, 134, 110401. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic digestion of food waste—Challenges and opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef]
- Ampese, L.; Sganzerla, W.G.; Ziero, H.D. Research progress, trends, and updates on anaerobic digestion technology: A bibliometric analysis. J. Clean. Prod. 2022, 331, 130004. [Google Scholar] [CrossRef]
- Bhatnagar, N.; Ryan, D.; Murphy, R.; Enright, A.M. A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential—Global and Irish perspective. Renew. Sustain. Energy Rev. 2022, 154, 111884. [Google Scholar] [CrossRef]
- Ervasti, S.; Kostensalo, J.; Tampio, E. Effects of seasonal and local co-feedstocks on the performance of continuous anaerobic digestion of cattle slurry. Bioresour. Technol. Rep. 2022, 19, 101207. [Google Scholar] [CrossRef]
- Yang, L.; Ge, X.; Wan, C.; Yu, F.; Li, Y. Progress and perspectives in converting biogas to transportation fuels. Renew. Sustain. Energy Rev. 2014, 40, 1133–1152. [Google Scholar] [CrossRef]
- Ge, X.; Yang, L.; Sheet, J.P.; Yu, Z.; Li, Y. Biological conversion of methane to liquid fuels: Status and opportunities. Biotechnol. Adv. 2014, 32, 1460–1475. [Google Scholar] [CrossRef]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2014, 44, 824–834. [Google Scholar] [CrossRef]
- Yang, L.; Kopsell, D.E.; Kottke, A.M.; Johnson, M.Q. Development of a cartridge design anaerobic digestion system for lignocellulosic biomass. Biosyst. Eng. 2017, 160, 134–139. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y. Anaerobic digestion of giant reed for methane production. Bioresour. Technol. 2014, 171, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Sawatdeenarunat, C.; Surendra, K.C.; Takara, D.; Oechsner, H.; Khanal, S.K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour. Technol. 2014, 178, 178–186. [Google Scholar] [CrossRef]
- Belle, A.; Lansing, S.; Mulbry, W.; Weil, R.R. Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters. Bioresour. Technol. 2015, 178, 230–237. [Google Scholar] [CrossRef]
- Feng, L.; Perschke, Y.; Fontaine, D.; Ward, A.J.; Eriksen, J.; Sorensen, P.; Moller, H.B. Co-ensiling of cover crops and barley straw for biogas production. Renew. Energy 2019, 142, 677–683. [Google Scholar] [CrossRef]
- Feng, L.; Perschke, Y.M.; Fontaine, D.; Nikolausz, M.; Ward, A.J.; Rocha, U.N.; Correa, F.B.; Eriksen, J.; Sorensen, P.; Moller, H.B. Anaerobic digestion of co-ensiled cover crop and barley straw: Effect of co-ensiling ratios, manure addition and impact on microbial community structure. Ind. Crops Prod. 2020, 144, 112025. [Google Scholar] [CrossRef]
- Vlierberghe, C.V.; Escudie, R.; Bernet, N.; Santa-Catalina, G.; Frederic, S.; Carrere, H. Conditions for efficient alkaline storage of cover crops for biomethane production. Bioresour. Technol. 2022, 348, 126722. [Google Scholar] [CrossRef]
- Vlierberghe, C.V.; Escudie, R.; Bernet, N.; Frederic, S.; Carrere, H. Long term alkaline storage and pretreatment process of cover crops for anaerobic digestion. Bioresour. Technol. 2021, 330, 124986. [Google Scholar] [CrossRef]
- Igos, E.; Golkowska, K.; Koster, D.; Vervisch, B.; Benetto, E. Using rye as cover crop for bioenergy production: An environmental and economic assessment. Biomass Bioenergy 2016, 95, 116–123. [Google Scholar] [CrossRef]
- AgMRC. Rye Profile. Available online: https://www.agmrc.org/commodities-products/grains-oilseeds/rye-profile (accessed on 15 October 2022).
- MCCC. Selector Tools. Available online: https://www.midwestcovercrops.org/selector-tool/ (accessed on 1 September 2022).
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Dechrugsa, S.; Kantachote, D.; Chaiprapat, S. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresour. Technol. 2013, 146, 101–108. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, F.; Li, Y. Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover. Bioresour. Technol. 2013, 144, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, O.P.; Visvanathan, C. Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester. Bioresour. Technol. 2012, 113, 294–302. [Google Scholar]
- Wang, S.; Li, F.; Wu, D.; Zhang, P.; Wang, H.; Tao, X.; Ye, J.; Nabi, M. Enzyme pretreatment enhancing biogas yield from corn stover: Feasibility, optimization, and mechanism analysis. J. Agric. Food Chem. 2018, 66, 10026–10032. [Google Scholar] [CrossRef] [PubMed]
- Lizasoain, J.; Trulea, A.; Gittinger, J.; Kral, I. Corn stover for biogas production: Effect of steam explosion pretreatment on the gas yields and on the biodegradation kinetics of the primary structural compounds. Bioresour. Technol. 2017, 244, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Behera, S.; Yadav, Y.K.; Kumar, S. Potential of wheat straw for biogas production using thermophiles. In Recent Advances in Bioenergy Research; Kumar, S., Ed.; Sardar Swaran Singh National Institute of Renewable Energy: Punjab, India, 2014; Volume 3. [Google Scholar]
- Mancini, G.; Papirio, S.; Lens, P.N.; Esposito, G. Increased biogas production from wheat straw by chemical pretreatments. Renew. Energy 2018, 119, 608–614. [Google Scholar] [CrossRef]
- Niu, H.; Kong, X.; Li, L.; Sun, Y.; Yuan, Z.; Zhou, X. Analysis of biogas produced from switchgrass by anaerobic digestion. Bioresoure 2015, 10, 7178–7187. [Google Scholar] [CrossRef] [Green Version]
- Masse, D.; Gilbert, Y.; Savoie, P.; Belanger, G. Methane yield from switchgrass harvested at different stages of development in Eastern Canada. Bioresour. Technol. 2010, 101, 9536–9541. [Google Scholar] [CrossRef]
- Menardo, S.; Bauer, A.; Theuretzbacher, F.; Piringer, G.; Nilsen, P.; Balsari, P.; Pavliska, O.; Amon, T. Biogas production from steam-exploded miscanthus and utilization of biogas energy and CO2 in greenhouses. Bioenergy Res. 2013, 6, 620–630. [Google Scholar] [CrossRef]
- Uellendahl, H.; Wang, G.; Moller, H.B.; Jorgensen, U.; Skiadas, I.; Gavala, H.; Ahring, B. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci. Technol. 2008, 58, 1841–1847. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Stute, J.; Shelley, K.; Mueller, D.; Wood, T. Planting Winter Rye after Corn Silage: Managing for Forage; University of Wisconsin (UW) Extension: Madison, WI, USA, 2017; Available online: https://fyi.extension.wisc.edu/forage/files/2017/06/Rye_090507_final-1.pdf (accessed on 1 September 2022).
- Reed, H.; Duiker, S.W. Exploring Summer Cover Crop Options; Penn State Extension: State College, PA, USA, 2021; Available online: https://extension.psu.edu/summer-cover-crop-options (accessed on 1 September 2022).
- EIA. Natural Gas Prices. 2022. Available online: https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm (accessed on 6 November 2022).
- Vu, H.; Nyuyen, L.; Wang, Q.; Ngo, H.; Liu, Q.; Zhang, X.; Nghiem, L. Hydrogen sulphide management in anaerobic digestion: A critical review on input control, process regulation, and post-treatment. Bioresour. Technol. 2021, 346, 126634. [Google Scholar] [CrossRef] [PubMed]
- Calabro, P.S.; Fazzino, F.; Sidari, R.; Zema, D.A. Optimization of orange peel waste ensiling for sustainable anaerobic digestion. Renew. Energy 2020, 154, 849–862. [Google Scholar] [CrossRef]
- Kreuger, E.; Nges, I.A.; Bjornsson, L. Ensiling of crops for biogas production: Effects on methane yield and total solids determination. Biotechnol. Biofuels 2011, 4, 44. [Google Scholar] [CrossRef] [PubMed]
Cereal Rye | Bottom | Middle | Top | |||
---|---|---|---|---|---|---|
TS, % | VS, % | TS, % | VS, % | TS, % | VS, % | |
Elbon | 93.02 ± 0.17 | 86.21 ± 0.24 | 94.21 ± 0.61 | 87.60 ± 0.04 | 94.25 ± 0.61 | 87.08 ± 0.02 |
Wheeler | 94.20 ± 0.03 | 84.49 ± 0.03 | 95.10 ± 0.00 | 86.18 ± 0.33 | 95.58 ± 0.36 | 88.69 ± 0.05 |
PH2019 | 97.12 ± 0.24 | 89.01 ± 0.69 | 95.79 ± 0.57 | 88.21 ± 0.29 | 96.83 ± 0.50 | 90.66 ± 0.78 |
Wrens Abruzzi | 96.27 ± 0.43 | 89.54 ± 0.63 | 96.09 ± 0.25 | 89.73 ± 0.38 | 96.29 ± 0.13 | 89.12 ± 0.21 |
Winter Grazer | 96.74 ± 0.43 | 87.29 ± 0.22 | 97.49 ± 0.31 | 90.78 ± 0.15 | 98.03 ± 0.46 | 91.58 ± 0.21 |
ISURF Mix | 96.20 ± 0.11 | 88.77 ± 0.37 | 96.43 ± 0.01 | 87.48 ± 0.15 | 96.77 ± 0.22 | 89.93 ± 0.04 |
Conditions | NH4-N mg/L | pH | Alkalinity mg/L CaCO3 | |
---|---|---|---|---|
Non-ensiled | 15% TS | 260.83 ± 42.29 | 8.38 ± 0.05 | 430.92 ± 30.84 |
10%TS | 641.67 ± 29.17 | 8.56 ± 0.04 | 501.60 ± 16.46 | |
8% TS | 865.00 ± 70.89 | 7.79 ± 0.02 | 507.53 ± 13.31 | |
6% TS | 142.50 ± 6.29 | 7.64 ± 0.08 | 489.67 ± 22.62 | |
Ensiled | 15% TS | 5.00 ± 5.00 | 5.20 ± 0.05 | 302.15 ± 8.37 |
10%TS | 20.00 ± 7.64 | 5.03 ± 0.01 | 328.47 ± 18.29 | |
8% TS | 40.00 ± 7.65 | 7.73 ± 0.11 | 667.20 ± 24.86 | |
6% TS | 36.67 ± 6.01 | 7.75 ± 0.05 | 569.10 ± 7.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Lamont, L.D.; Sedbrook, J.C.; Heller, N.J.; Kopsell, D.E. Anaerobic Digestion of Cereal Rye Cover Crop. Fermentation 2022, 8, 617. https://doi.org/10.3390/fermentation8110617
Yang L, Lamont LD, Sedbrook JC, Heller NJ, Kopsell DE. Anaerobic Digestion of Cereal Rye Cover Crop. Fermentation. 2022; 8(11):617. https://doi.org/10.3390/fermentation8110617
Chicago/Turabian StyleYang, Liangcheng, Lucas D. Lamont, John C. Sedbrook, Nicholas J. Heller, and David E. Kopsell. 2022. "Anaerobic Digestion of Cereal Rye Cover Crop" Fermentation 8, no. 11: 617. https://doi.org/10.3390/fermentation8110617
APA StyleYang, L., Lamont, L. D., Sedbrook, J. C., Heller, N. J., & Kopsell, D. E. (2022). Anaerobic Digestion of Cereal Rye Cover Crop. Fermentation, 8(11), 617. https://doi.org/10.3390/fermentation8110617