Effects of Different Fiber Substrates on In Vitro Rumen Fermentation Characteristics and Rumen Microbial Community in Korean Native Goats and Hanwoo Steers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Animals, Rumen Fluid Collection, In Vitro Rumen Fermentation, and DM Degradation
2.3. Analysis of In Vitro Rumen Fermentation and DM Degradation
2.4. Quantification of Microbial DNA Copies from In Vitro Rumen Fermentation
2.5. Statistical Analysis
3. Results
3.1. Effect of Rice Hay and Cotton on In Vitro Rumen Fermentation Parameters
3.2. In Vitro DM Degradation of Rice Hay and Cotton
3.3. Microbial DNA Copies from In Vitro Rumen Fermentation of Rice Hay and Cotton
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.G.; Wang, M.; Tan, Z.L.; Tang, S.X.; Sun, Z.H.; Zhou, C.S.; Han, X.F. Effects of Rice Straw Particle Size on Chewing Activity, Feed Intake, Rumen Fermentation and Digestion in Goats. Asian-Australas. J. Anim. Sci. 2009, 22, 1256–1266. [Google Scholar] [CrossRef]
- Allen, M.S. Relationship Between Fermentation Acid Production in the Rumen and the Requirement for Physically Effective Fiber. J. Dairy Sci. 1997, 80, 1447–1462. [Google Scholar] [CrossRef]
- Yang, W.Z.; Beauchemin, K.A.; Rode, L.M. Effects of Grain Processing, Forage to Concentrate Ratio, and Forage Particle Size on Rumen PH and Digestion by Dairy Cows1. J. Dairy Sci. 2001, 84, 2203–2216. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Yang, W.Z. Effects of Physically Effective Fiber on Intake, Chewing Activity, and Ruminal Acidosis for Dairy Cows Fed Diets Based on Corn Silage. J. Dairy Sci. 2005, 88, 2117–2129. [Google Scholar] [CrossRef] [Green Version]
- Tafaj, M.; Kolaneci, V.; Junck, B.; Maulbetsch, A.; Steingass, H.; Drochner, W. Influence of Fiber Content and Concentrate Level on Chewing Activity, Ruminal Digestion, Digesta Passage Rate and Nutrient Digestibility in Dairy Cows in Late Lactation. Asian-Australas. J. Anim. Sci. 2005, 18, 1116–1124. [Google Scholar] [CrossRef]
- Rogers, G.M.; Poore, M.H.; Paschal, J.C. Feeding Cotton Products to Cattle. Vet. Clin. North Am. Food Anim. Pract. 2002, 18, 267–294. [Google Scholar] [CrossRef]
- Bernard, J.K.; Calhoun, M.C.; Martin, S.A. Effect of Coating Whole Cottonseed on Performance of Lactating Dairy Cows1. J. Dairy Sci. 1999, 82, 1296–1304. [Google Scholar] [CrossRef]
- Mabjeesh, S.J.; Galindez, J.; Kroll, O.; Arieli, A. The Effect of Roasting Nonlinted Whole Cottonseed on Milk Production by Dairy Cows. J. Dairy Sci. 2000, 83, 2557–2563. [Google Scholar] [CrossRef]
- Arieli, A. Effect of Whole Cottonseed on Energy Partitioning and Nitrogen Balance in Sheep. Anim. Sci. 1994, 58, 103–108. [Google Scholar] [CrossRef]
- Holter, J.E.; Hayes, H.H.; Urban, W.E.; Duthie, A.H. Energy Balance and Lactation Response in Holstein Cows Supplemented with Cottonseed with or Without Calcium Soap1, 2. J. Dairy Sci. 1992, 75, 1480–1494. [Google Scholar] [CrossRef]
- Ismartoyo, M. Effect of Feeding Whole Cottonseed as a Supplement on Digestibility and Rumen Fermentation Characteristics of Sheep. Bangladesh J. Anim. Sci. 2017, 46, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L. Digestibility of Cotton Lint Fiber and Whole Oilseeds by Ruminal Microorganisms. Anim. Feed Sci. Technol. 1995, 56, 231–242. [Google Scholar] [CrossRef]
- Bo, Y.K.; Yang, H.J.; Wang, W.X.; Liu, H.; Wang, G.Q.; Yu, X. Metabolisable Energy, In Situ Rumen Degradation and In Vitro Fermentation Characteristics of Linted Cottonseed Hulls, Delinted Cottonseed Hulls and Cottonseed Linter Residue. Asian-Australas. J. Anim. Sci. 2012, 25, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Reid, R.L.; Jung, G.A.; Cox-Ganser, J.M.; Rybeck, B.F.; Townsend, E.C. Comparative Utilization of Warm- and Cool-Season Forages by Cattle, Sheep and Goats. J. Anim. Sci. 1990, 68, 2986–2994. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.D.; Kawas, J.R.; Mahgoub, O.G. Fibre Digestion and Utilization in Goats. Small Rumin. Res. 2005, 60, 45–52. [Google Scholar] [CrossRef]
- Ramos, S.C.; Jeong, C.D.; Mamuad, L.L.; Kim, S.H.; Kang, S.H.; Kim, E.T.; Cho, Y.I.; Lee, S.S.; Lee, S.S. Diet Transition from High-Forage to High-Concentrate Alters Rumen Bacterial Community Composition, Epithelial Transcriptomes and Ruminal Fermentation Parameters in Dairy Cows. Animals 2021, 11, 838. [Google Scholar] [CrossRef] [PubMed]
- Asanuma, N.; Iwamoto, M.; Hino, T. Effect of the Addition of Fumarate on Methane Production by Ruminal Microorganisms In Vitro. J. Dairy Sci. 1999, 82, 780–787. [Google Scholar] [CrossRef]
- Miguel, M.A.; Lee, S.S.; Mamuad, L.L.; Choi, Y.J.; Jeong, C.D.; Son, A.; Cho, K.K.; Kim, E.T.; Kim, S.B.; Lee, S.S. Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium Saccharobutylicum. J. Microbiol. Biotechnol. 2019, 29, 1083–1095. [Google Scholar] [CrossRef]
- Soriano, A.P.; Mamuad, L.L.; Kim, S.-H.; Choi, Y.J.; Jeong, C.D.; Bae, G.S.; Chang, M.B.; Lee, S.S. Effect of Lactobacillus Mucosae on In Vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity. Asian-Australas. J. Anim. Sci. 2014, 27, 1562–1570. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Ramos, S.C.; Jeong, C.-D.; Mamuad, L.L.; Kim, S.H.; Son, A.R.; Miguel, M.A.; Islam, M.; Cho, Y.I.; Lee, S.S. Enhanced Ruminal Fermentation Parameters and Altered Rumen Bacterial Community Composition by Formulated Rumen Buffer Agents Fed to Dairy Cows with a High-Concentrate Diet. Agriculture 2021, 11, 554. [Google Scholar] [CrossRef]
- Kim, S.H.; Ramos, S.C.; Jeong, C.D.; Mamuad, L.L.; Park, K.K.; Cho, Y.I.; Son, A.; Lee, S.S. Growth Performance and Blood Profiles of Hanwoo Steers at Fattening Stage Fed Korean Rice Wine Residue. J. Anim. Sci. Technol. 2020, 62, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.; Mamuad, L.; Ramos, S.; Ku, M.J.; Jeong, C.D.; Kim, S.H.; Cho, Y.I.; Lee, S.S. Effects of Using Different Roughages in the Total Mixed Ration Inoculated with or without Coculture of Lactobacillus Acidophilus and Bacillus Subtilis on in Vitro Rumen Fermentation and Microbial Population. Anim. Biosci. 2020, 34, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Van Emon, M.L.; Loy, D.D.; Hansen, S.L. Determining the Preference, in Vitro Digestibility, in Situ Disappearance, and Grower Period Performance of Steers Fed a Novel Algae Meal Derived from Heterotrophic Microalgae. J. Anim. Sci. 2015, 93, 3121–3129. [Google Scholar] [CrossRef] [Green Version]
- Denman, S.E.; McSweeney, C.S. Development of a Real-Time PCR Assay for Monitoring Anaerobic Fungal and Cellulolytic Bacterial Populations within the Rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Sylvester, J.T.; Karnati, S.K.R.; Yu, Z.; Morrison, M.; Firkins, J.L. Development of an Assay to Quantify Rumen Ciliate Protozoal Biomass in Cows Using Real-Time PCR. J. Nutr. 2004, 134, 3378–3384. [Google Scholar] [CrossRef] [Green Version]
- Koike, S.; Kobayashi, Y. Development and Use of Competitive PCR Assays for the Rumen Cellulolytic Bacteria: Fibrobacter Succinogenes, Ruminococcus Albus and Ruminococcus Flavefaciens. FEMS Microbiol. Lett. 2001, 204, 361–366. [Google Scholar] [CrossRef]
- Newbold, C.J.; Ramos-Morales, E. Review: Ruminal Microbiome and Microbial Metabolome: Effects of Diet and Ruminant Host. Animal 2020, 14, s78–s86. [Google Scholar] [CrossRef] [Green Version]
- Huws, S.A.; Creevey, C.J.; Oyama, L.B.; Mizrahi, I.; Denman, S.E.; Popova, M.; Muñoz-Tamayo, R.; Forano, E.; Waters, S.M.; Hess, M.; et al. Addressing Global Ruminant Agricultural Challenges through Understanding the Rumen Microbiome: Past, Present, and Future. Front. Microbiol. 2018, 9, 2161. [Google Scholar] [CrossRef]
- Moon, Y.H.; Ok, J.U.; Lee, S.J.; Ha, J.K.; Lee, S.S. A Comparative Study on the Rumen Microbial Populations, Hydrolytic Enzyme Activities and Dry Matter Degradability between Different Species of Ruminant. Anim. Sci. J. 2010, 81, 642–647. [Google Scholar] [CrossRef]
- Difford, G.F.; Plichta, D.R.; Løvendahl, P.; Lassen, J.; Noel, S.J.; Højberg, O.; Wright, A.-D.G.; Zhu, Z.; Kristensen, L.; Nielsen, H.B.; et al. Host Genetics and the Rumen Microbiome Jointly Associate with Methane Emissions in Dairy Cows. PLOS Genet. 2018, 14, e1007580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toral, P.G.; Bernard, L.; Belenguer, A.; Rouel, J.; Hervás, G.; Chilliard, Y.; Frutos, P. Comparison of Ruminal Lipid Metabolism in Dairy Cows and Goats Fed Diets Supplemented with Starch, Plant Oil, or Fish Oil. J. Dairy Sci. 2016, 99, 301–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Navarro, S.A.; Lopez, R.; Sankey, C.; Capitan, B.M.; Holland, B.P.; Balstad, L.A.; Krehbiel, C.R. Comparative Digestibility by Cattle versus Sheep: Effect of Forage Quality1,2. J. Anim. Sci. 2014, 92, 1621–1629. [Google Scholar] [CrossRef]
- Huston, J.E.; Rector, B.S.; Ellis, W.C.; Allen, M.L. Dynamics of Digestion in Cattle, Sheep, Goats and Deer. J. Anim. Sci. 1986, 62, 208–215. [Google Scholar] [CrossRef]
- Playne, M.J. Differences between Cattle and Sheep in Their Digestion and Relative Intake of a Mature Tropical Grass Hay. Anim. Feed Sci. Technol. 1978, 3, 41–49. [Google Scholar] [CrossRef]
- Hofmann, R.R. Evolutionary Steps of Ecophysiological Adaptation and Diversification of Ruminants: A Comparative View of Their Digestive System. Oecologia 1989, 78, 443–457. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H. Rumen Microbial Community Composition Varies with Diet and Host, but a Core Microbiome Is Found across a Wide Geographical Range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Jung, J.Y.; Oh, Y.K.; Lee, S.S.; Madsen, E.L.; Jeon, C.O. Comparative Survey of Rumen Microbial Communities and Metabolites across One Caprine and Three Bovine Groups, Using Bar-Coded Pyrosequencing and 1H Nuclear Magnetic Resonance Spectroscopy. Appl. Environ. Microbiol. 2012, 78, 5983–5993. [Google Scholar] [CrossRef] [Green Version]
- Kopečný, J.; Zorec, M.; Mrázek, J.; Kobayashi, Y.; Marinšek-Logar, R. Butyrivibrio Hungatei Sp. Nov. and Pseudobutyrivibrio Xylanivorans Sp. Nov., Butyrate-Producing Bacteria from the Rumen. Int. J. Syst. Evol. Microbiol. 2003, 53, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, G.N.; Moore, E.R.B. Lipid Metabolism and the Rumen Microbial Ecosystem. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 2245–2257. [Google Scholar]
- Zhu, Z.; Hang, S.; Mao, S.; Zhu, W. Diversity of Butyrivibrio Group Bacteria in the Rumen of Goats and Its Response to the Supplementation of Garlic Oil. Asian-Australas. J. Anim. Sci. 2014, 27, 179–186. [Google Scholar] [CrossRef]
- Lee, M.; Jeong, S.; Seo, J.; Seo, S. Changes in the Ruminal Fermentation and Bacterial Community Structure by a Sudden Change to a High-Concentrate Diet in Korean Domestic Ruminants. Asian-Australas. J. Anim. Sci. 2019, 32, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Xu, Q.; Wang, L.; Wang, J.; Guo, W.; Zhou, M. The Impact of Diet on the Composition and Relative Abundance of Rumen Microbes in Goat. Asian-Australas. J. Anim. Sci. 2016, 30, 531–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerner, K.C.; White, B.A. Assessment of the Endo-1,4-Beta-Glucanase Components of Ruminococcus Flavefaciens FD-1. Appl. Environ. Microbiol. 1990, 56, 1844–1850. [Google Scholar] [CrossRef] [PubMed]
Chemical Composition (%) | RH | CF |
---|---|---|
Moisture | 7.76 | 4.39 |
Crude protein | 2.74 | 1.44 |
Ether extract | 1.64 | 0.39 |
Crude fiber | 40.80 | 84.88 |
Crude ash | 8.59 | 1.50 |
Acid detergent fiber | 44.98 | 85.33 |
Neutral detergent fiber | 75.68 | 87.91 |
Target Micro-Organisms | Primer Sequence (5 → 3′) | References |
---|---|---|
General bacteria | Forward: CGGCAACGAGCGCAACCC | [26] |
Reverse: CCATTGTAGCACGTGTGTAGCC | ||
Total fungi | Forward: GAGGAAGTAAAAGTCGTAACAAGGTTTC | [26] |
Reverse: CAAATTCACAAAGGGTAGGATGATT | ||
Total protozoa | Forward: GCTTTCGWTGGTAGTGTATT | [27] |
Reverse: CTTGCCCTCYAATCGTWCT | ||
Ruminococcus albus | Forward: CCCTAAAAGCAGTCTTAGTTCG | [28] |
Reverse: CCTCCTTGCGGTTAGAACA | ||
Ruminococcus flavefaciens | Forward: CGAACGGAGATAATTTGAGTTTACTTAGG | [26] |
Reverse: CGGTCTCTGTATGTTATGAGGTATTACC | ||
Fibrobacter succinogenes | Forward: GTTCGGAATTACTGGGCGTAAA | [26] |
Reverse: CGCCTGCCCCTGAACTATC | ||
Butyrivibrio fibrisolvens | Forward: TAACATGAGAGTTTGATCCTGGCTC | [26] |
Reverse: CGTTACTCACCCGTCCGC |
Parameters | Treatment (1) | SEM (2) | p Value (3) | ||||||
---|---|---|---|---|---|---|---|---|---|
Korean Native Goats | Hanwoo Steers | ||||||||
Time (h) | RH | CF | RH | CF | S | T | S × T | ||
Total gas (mL) | 6 | 6.67 | 3.67 | 5.33 | 1.33 | 0.938 | 0.108 | 0.009 | 0.635 |
12 | 18.33 | 12.67 | 12.33 | 6.33 | 0.554 | <0.001 | <0.001 | 0.789 | |
24 | 22.67 | 13.67 | 33.67 | 28.00 | 0.721 | <0.001 | <0.001 | 0.061 | |
pH | 6 | 6.35 c | 6.41 b | 6.51 a | 6.41 b | 0.015 | 0.002 | 0.271 | 0.003 |
12 | 6.47 | 6.51 | 6.31 | 6.37 | 0.014 | <0.001 | 0.020 | 0.479 | |
24 | 6.37 | 6.41 | 6.20 | 6.23 | 0.014 | <0.001 | 0.106 | 0.815 | |
NH3-N (mg/dL) (4) | 6 | 11.9a | 10.05 | 7.34 | 7.18 | 0.585 | <0.001 | 0.148 | 0.213 |
12 | 15.55 | 15.11 | 9.51 | 11.04 | 0.962 | 0.001 | 0.595 | 0.350 | |
24 | 14.64 | 16.29 | 11.23 | 10.88 | 1.282 | 0.013 | 0.655 | 0.491 | |
Acetate (mol/100 mol) | 6 | 61.24 | 59.64 | 61.15 | 62.03 | 0.588 | 0.115 | 0.594 | 0.094 |
12 | 62.43 | 60.63 | 61.38 | 60.23 | 0.340 | 0.143 | 0.011 | 0.491 | |
24 | 57.99 | 60.70 | 57.45 | 60.47 | 0.436 | 0.460 | 0.001 | 0.758 | |
Propionate (mol/100 mol) | 6 | 22.94 ab | 23.66 ab | 24.26 a | 22.52 b | 0.310 | 0.882 | 0.233 | 0.014 |
12 | 23.36 c | 24.82 b | 26.46 a | 26.18 a | 0.239 | 0.001 | 0.131 | 0.038 | |
24 | 28.87 b | 26.36 c | 31.97 a | 27.21 bc | 0.506 | 0.007 | 0.001 | 0.007 | |
Butyrate (mol/100 mol) | 6 | 15.83 | 16.70 | 14.58 | 15.45 | 0.700 | 0.163 | 0.317 | 0.994 |
12 | 14.22 ab | 14.55 a | 12.16 c | 13.59 b | 0.166 | 0.025 | 0.002 | <0.001 | |
24 | 13.14 a | 12.95 a | 10.59 b | 12.33 a | 0.325 | 0.003 | 0.070 | 0.031 | |
A/P ratio | 6 | 2.52 b | 2.67a | 2.76 a | 2.52 b | 0.040 | 0.404 | 0.411 | 0.005 |
12 | 2.44 | 2.68 | 2.30 | 2.32 | 0.038 | 0.003 | 0.063 | 0.102 | |
24 | 2.30 | 2.01 | 2.22 | 1.80 | 0.047 | 0.019 | <0.001 | 0.224 | |
Total VFAs (mmol/L) | 6 | 34.62 | 32.79 | 25.75 | 25.02 | 0.411 | <0.001 | 0.018 | 0.240 |
12 | 40.44 a | 36.55 b | 31.40 c | 29.68 c | 0.259 | <0.001 | <0.001 | 0.007 | |
24 | 44.67 | 42.43 | 40.04 | 38.47 | 1.189 | 0.007 | 0.151 | 0.785 |
Parameter | Time (h) | Treatment (1) | SEM (2) | p Value (3) | |||||
---|---|---|---|---|---|---|---|---|---|
Korean Native Goats | Hanwoo Steers | ||||||||
RH | CF | RH | CF | S | T | S × T | |||
DM degradation (%) | 6 | 5.81 | 1.32 | 5.92 | 1.18 | 0.691 | 0.456 | 0.001 | 0.545 |
12 | 9.34 | 2.53 | 9.03 | 3.29 | 0.483 | 0.068 | <0.001 | 0.188 | |
24 | 16.57 a | 7.36 b | 19.47 a | 15.93 b | 0.964 | 0.001 | <0.001 | 0.027 |
Target Microorganism | Time (h) | Treatment (1) | SEM (2) | p Value (3) | |||||
---|---|---|---|---|---|---|---|---|---|
Korean Native Goats | Hanwoo Steers | ||||||||
RH | CF | RH | CF | S | T | S × T | |||
General Bacteria | 6 | 8.33 | 8.32 | 7.80 | 7.82 | 0.066 | <0.001 | 0.923 | 0.809 |
12 | 8.39 | 8.49 | 7.70 | 7.87 | 0.036 | <0.001 | 0.024 | 0.443 | |
24 | 8.53 | 8.41 | 7.85 | 7.87 | 0.045 | <0.001 | 0.337 | 0.239 | |
Protozoa | 6 | 6.44 | 6.42 | 7.74 | 7.46 | 0.103 | <0.001 | 0.213 | 0.301 |
12 | 6.21 | 6.04 | 7.11 | 7.00 | 0.077 | <0.001 | 0.227 | 0.774 | |
24 | 5.80 | 5.64 | 6.05 | 5.53 | 0.084 | 0.476 | 0.008 | 0.094 | |
Total Fungi | 6 | 0.81 | 1.92 | 1.50 | 1.51 | 0.339 | 0.724 | 0.188 | 0.198 |
12 | 1.18 | 0.79 | 1.71 | 0.93 | 0.311 | 0.398 | 0.161 | 0.617 | |
24 | 0.94 | 0.89 | 1.16 | 0.90 | 0.240 | 0.683 | 0.587 | 0.724 | |
Butyrivibrio fibrisolvens | 6 | 7.65 | 7.55 | 7.91 | 7.89 | 0.082 | 0.009 | 0.539 | 0.689 |
12 | 7.69 | 7.63 | 7.84 | 8.01 | 0.064 | 0.005 | 0.450 | 0.128 | |
24 | 7.88 b | 7.58 c | 8.16 a | 8.15 a | 0.053 | <0.001 | 0.039 | 0.049 | |
Fibrobacter succinogenes | 6 | 1.68 | 1.93 | 4.54 | 4.70 | 0.107 | <0.001 | 0.121 | 0.725 |
12 | 2.95 | 4.16 | 4.66 | 5.35 | 0.126 | <0.001 | <0.001 | 0.112 | |
24 | 3.95 c | 6.09 a | 5.48 b | 6.26 a | 0.136 | <0.001 | <0.001 | 0.001 | |
Ruminococcus albus | 6 | 6.15 | 7.06 | 5.58 | 5.81 | 0.261 | 0.041 | 0.166 | 0.388 |
12 | 6.84 | 6.04 | 5.74 | 5.73 | 0.195 | 0.012 | 0.101 | 0.106 | |
24 | 7.36 | 7.21 | 7.10 | 6.00 | 0.268 | 0.046 | 0.079 | 0.164 | |
Ruminococcus flavifaciens | 6 | 3.14 c | 3.73 a | 3.24 b | 3.20 b | 0.107 | 0.111 | 0.054 | 0.032 |
12 | 4.64 | 4.70 | 3.15 | 3.11 | 0.079 | <0.001 | 0.866 | 0.587 | |
24 | 5.22 a | 5.05 a | 4.34 b | 3.62 c | 0.088 | <0.001 | 0.001 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Sung, H.-G. Effects of Different Fiber Substrates on In Vitro Rumen Fermentation Characteristics and Rumen Microbial Community in Korean Native Goats and Hanwoo Steers. Fermentation 2022, 8, 611. https://doi.org/10.3390/fermentation8110611
Kim S-H, Sung H-G. Effects of Different Fiber Substrates on In Vitro Rumen Fermentation Characteristics and Rumen Microbial Community in Korean Native Goats and Hanwoo Steers. Fermentation. 2022; 8(11):611. https://doi.org/10.3390/fermentation8110611
Chicago/Turabian StyleKim, Seon-Ho, and Ha-Guyn Sung. 2022. "Effects of Different Fiber Substrates on In Vitro Rumen Fermentation Characteristics and Rumen Microbial Community in Korean Native Goats and Hanwoo Steers" Fermentation 8, no. 11: 611. https://doi.org/10.3390/fermentation8110611
APA StyleKim, S. -H., & Sung, H. -G. (2022). Effects of Different Fiber Substrates on In Vitro Rumen Fermentation Characteristics and Rumen Microbial Community in Korean Native Goats and Hanwoo Steers. Fermentation, 8(11), 611. https://doi.org/10.3390/fermentation8110611