The Effect of E. coli Uridine-Cytidine Kinase Gene Deletion on Cytidine Synthesis and Transcriptome Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Primers, and Plasmids
2.2. Genetic Manipulation
2.3. Shake-Flask Fermentation
2.4. RNA-Seq Analysis
3. Results and Discussion
3.1. Effect of udk Deletion on Cytidine Production
3.2. Transcriptome Analysis of the Influence of Gene Deletion on the Cytidine-Producing Strain
3.3. Effect of Deleting udk on Pyrimidine Metabolism
3.4. Effect of Deleting udk on the Central Carbon Metabolism Pathway
3.5. Effect of Deleting udk on Reduction of Cofactor Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, H.; Liu, Y.; Zu, X.; Li, N.; Li, F.; Zhang, D. An enzymatic assay for high-throughput screening of cytidine-producing microbial strains. PLoS ONE 2015, 10, e0121612. [Google Scholar] [CrossRef] [PubMed]
- Galmarini, C.M.; Jordheim, L.; Dumontet, C. Pyrimidine nucleoside analogs in cancer treatment. Expert Rev. Anticancer. Ther. 2003, 3, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013, 12, 447–464. [Google Scholar] [CrossRef]
- Iglesias, L.E.; Lewkowicz, E.S.; Medici, R.; Bianchi, P.; Iribarren, A.M. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs. Biotechnol. Adv. 2015, 33, 412–434. [Google Scholar] [CrossRef] [PubMed]
- Garavaglia, M.; Rossi, E.; Landini, P. The pyrimidine nucleotide biosynthetic pathway modulates production of biofilm determinants in Escherichia coli. PLoS One 2012, 7, e31252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Liu, H.; Fang, H.; He, J.; He, X.; Yu, L. The New Strategy of Breeding Cytidine Excessive Biosynthesis Mutants by pyr Operon Rearrangement of Bacillus amyloliquefaciens. In Advances in Applied Biotechnology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 649–656. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Liu, L.; Ban, R. Improve uridine production by modifying related metabolic pathways in Bacillus subtilis. Biotechnol. Lett. 2020, 42, 551–555. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, S.-M.; Yuan, Z.-M.; Ban, R. Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis. Microb. Cell Factories 2015, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Chen, M.; Ma, C.; Zeng, A.-P. Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction. Metab. Eng. 2018, 47, 434–444. [Google Scholar] [CrossRef]
- You, J.; Yang, C.; Pan, X.; Hu, M.; Du, Y.; Osire, T.; Yang, T.; Rao, Z. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation. Bioresour. Technol. 2021, 333, 125228. [Google Scholar] [CrossRef]
- Shimaoka, M.; Kawasaki, H.; Takenaka, Y.; Kurahashi, O.; Matsui, H. Effects of edd and pgi disruptions on inosine accumulation in Escherichia coli. Biosci. Biotechnol. Biochem. 2005, 69, 1248–1255. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Fu, Y.; Gao, W.; Xian, M.; Zhao, G. Highly efficient biosynthesis of hypoxanthine in Escherichia coli and transcriptome-based analysisof the purine metabolism. ACS Synth. Biol. 2020, 9, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Orive-Milla, N.; Delmulle, T.; de Mey, M.; Faijes, M.; Planas, A. Metabolic engineering for glycoglycerolipids production in E. coli: Tuning phosphatidic acid and UDP-glucose pathways. Metab. Eng. 2020, 61, 106–119. [Google Scholar] [CrossRef]
- Fang, H.; Liu, H.; Chen, N.; Zhang, C.; Xie, X.; Xu, Q. Site-directed mutagenesis studies on the uridine monophosphate binding sites of feedback inhibition in carbamoyl phosphate synthetase and effects on cytidine production by Bacillus amyloliquefaciens. Can. J. Microbiol. 2013, 59, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Asahi, S.; Tsunemi, Y.; Izawa, M.; Doi, M. Cytidine Production by Mutants of Bacillus subtilis. Biosci. Biotechnol. Biochem. 1994, 58, 1399–1402. [Google Scholar] [CrossRef]
- Asahi, S.; Tsunemi, Y.; Izawa, M.; Doi, M. A 3-deazauracil-resistant mutant of Bacillus subtilis with increased production of cytidine. Biosci. Biotechnol. Biochem. 1995, 59, 915–916. [Google Scholar] [CrossRef] [Green Version]
- Doi, M.; Tsunemi, Y.; Asahi, S. Opimization of Conditions for Production of Uridine by a Mutant of Bacillus subtilis. J. Agric. Chem. Soc. Jpn. 2014, 58, 1608–1612. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, C.; Xie, X.; Xu, Q.; Zhou, Y.; Chen, N. Enhanced cytidine production by a recombinant Escherichia coli strain using genetic manipulation strategies. Ann. Microbiol. 2014, 64, 1203–1210. [Google Scholar] [CrossRef]
- Fan, X.; Wu, H.; Li, G.; Yuan, H.; Zhang, H.; Li, Y.; Xie, X.; Chen, N. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening. PLoS ONE 2017, 12, e0176545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, H.; Xie, X.; Xu, Q.; Zhang, C.; Chen, N. Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15. Biotechnol. Lett. 2013, 35, 245–251. [Google Scholar] [CrossRef]
- Yang, K.; Li, Z. Multistep construction of metabolically engineered Escherichia coli for enhanced cytidine biosynthesis. Biochem. Eng. J. 2019, 154, 107433. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, R.; Liu, L.; He, L.; Ban, R. Improvement of uridine production in Bacillus subtilis by metabolic engineering. Biotechnol. Lett. 2018, 40, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, J.; Huang, Y.; Wang, J. Recent developments in single-cell RNA-seq of microorganisms. Biophys. J. 2018, 115, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, S.; Park, J.; Lee, E.; Lee, J.-H.; Jeong, D.-W. Transcriptomic Analysis of Staphylococcus equorum KM1031, Isolated from the High-Salt Fermented Seafood Jeotgal, under Salt Stress. Fermentation 2022, 8, 403. [Google Scholar] [CrossRef]
- Pei, D.; Liu, Z.; Wu, W.; Hu, B. Transcriptome analyses reveal the utilization of nitrogen sources and related metabolic mechanisms of Sporosarcina pasteurii. PloS ONE 2021, 16. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Z.; Huang, C.; Zhang, Y.; Wang, Z.; Tang, Y.-J.; Chen, T.; Zhao, X. Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab. Eng. 2015, 31, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef] [Green Version]
- Oshima, T.; Aiba, H.; Masuda, Y.; Kanaya, S.; Sugiura, M.; Wanner, B.L.; Mori, H.; Mizuno, T. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol. Microbiol. 2002, 46, 281–291. [Google Scholar] [CrossRef]
- Liu, C.G.; Turnbough, C.L. Multiple control mechanisms for pyrimidine-mediated regulation of pyrBI operon expression in Escherichia coli K-12. J. Bacteriol. 1989, 171, 3337. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Chen, T.; Zhang, Z.; Chen, X.; Zhao, X. Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab. Eng. 2009, 11, 243–252. [Google Scholar] [CrossRef]
- Zakataeva, N.P.; Romanenkov, D.V.; Skripnikova, V.S.; Vitushkina, M.V.; Livshits, V.A.; Kivero, A.D.; Novikova, A.E. Wild-type and feedback-resistant phosphoribosyl pyrophosphate synthetases from Bacillus amyloliquefaciens: Purification, characterization, and application to increase purine nucleoside production. Appl. Microbiol. Biotechnol. 2012, 93, 2023–2033. [Google Scholar] [CrossRef]
- Jishage, M.; Dasgupta, D.; Ishihama, A. Mapping of the Rsd contact site on the sigma 70 subunit of Escherichia coli RNA polymerase. J. Bacteriol. 2001, 183, 2952–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Van Hoek, M.J.; Merks, R.M.H. Redox balance is key to explaining full vs. partial switching to low-yield metabolism. BMC Syst. Biol. 2012, 6, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauner, M.; Bailey, J.E.; Sauer, U. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol. Bioeng. 2001, 76, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Rossmo, K.; Harries, K. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 2004, 279, 6613–6619. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Lv, X.; Li, J.; Zhang, H.; Liu, Y.; Du, G.; Amaro, R.L.; Liu, L. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metab. Eng. 2021, 67, 330–346. [Google Scholar] [CrossRef]
Strain | OD600 | Glucose Consumption (g/L) | Cytidine Titre (g/L) | Glycoside Conversion Rate (%) |
---|---|---|---|---|
E. coli NXBG-11 | 0.92 ± 0.02 | 113.67 ± 1.70 | 1.64 ± 0.02 | 1.44 |
E. coli NXBG-12 | 1.01 ± 0.01 | 122.33 ± 2.62 | 2.10 ± 0.07 | 1.71 |
KEGG Pathway Classification | Number | Ratio (%) | |||
---|---|---|---|---|---|
Upregulated Genes | Downregulated Genes | Upregulated Genes | Downregulated Genes | ||
00910 | Nitrogen metabolism | 3 | 4 | 1.6 | 1.9 |
02060 | Phosphotransferase system | 9 | 2 | 4.7 | 0.9 |
00051 | Fructose and mannose metabolism | 9 | 7 | 4.7 | 3.3 |
00240 | Pyrimidine metabolism | 14 | 9 | 7.3 | 4.2 |
00190 | Oxidative phosphorylation | 12 | 2 | 6.2 | 0.9 |
00020 | Citrate cycle (TCA cycle) | 11 | 2 | 5.7 | 0.9 |
00250 | Alanine, aspartate, and glutamate metabolism | 8 | 5 | 4.1 | 2.4 |
00630 | Glyoxylate and dicarboxylate metabolism | 5 | 3 | 2.6 | 1.4 |
00620 | Pyruvate metabolism | 11 | 5 | 5.7 | 2.4 |
00010 | Glycolysis/gluconeogenesis | 4 | 10 | 2.1 | 4.7 |
00030 | Pentose phosphate pathway | 5 | 7 | 2.6 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Ye, T.; Zhang, X.; Ma, C.; Liu, H.; Fang, H. The Effect of E. coli Uridine-Cytidine Kinase Gene Deletion on Cytidine Synthesis and Transcriptome Analysis. Fermentation 2022, 8, 586. https://doi.org/10.3390/fermentation8110586
Liu F, Ye T, Zhang X, Ma C, Liu H, Fang H. The Effect of E. coli Uridine-Cytidine Kinase Gene Deletion on Cytidine Synthesis and Transcriptome Analysis. Fermentation. 2022; 8(11):586. https://doi.org/10.3390/fermentation8110586
Chicago/Turabian StyleLiu, Fengmin, Tong Ye, Xiangjun Zhang, Cong Ma, Huiyan Liu, and Haitian Fang. 2022. "The Effect of E. coli Uridine-Cytidine Kinase Gene Deletion on Cytidine Synthesis and Transcriptome Analysis" Fermentation 8, no. 11: 586. https://doi.org/10.3390/fermentation8110586
APA StyleLiu, F., Ye, T., Zhang, X., Ma, C., Liu, H., & Fang, H. (2022). The Effect of E. coli Uridine-Cytidine Kinase Gene Deletion on Cytidine Synthesis and Transcriptome Analysis. Fermentation, 8(11), 586. https://doi.org/10.3390/fermentation8110586