Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review
Abstract
:1. Introduction
2. General Characteristics of Heat-Treated Biomass
3. Municipal Solid Waste (MSW)
3.1. Food/Kitchen Waste
3.2. WAS
4. Animal Manure Biomass
4.1. Pig/Swine Manure
4.2. Cattle/Dairy Manure
4.3. Chicken/Poultry Manure
5. Algae
6. Lignocellulosic Biomass (LIGB)
7. Energy Balance
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
AD | Anaerobic digestion | LTPT | Low-temperature pretreatment |
CHP | Combined heat and power | MSW | Municipal Solid Waste |
CM | Cattle manure | NEP | Net energy production |
CHM | Chicken manure | ODS | Organic dry sludge |
COD | Chemical oxygen demand | OFMSW | Organic fraction of MSW |
DM | Dairy manure | OLR | Organic loading rat |
FW | Food waste | PM | Pig manure |
GHG | Greenhouse gases | SM | Swine manure |
HP | Heat pretreatment | TCOD | Total COD |
HRT | Hydraulic retention time | TS | Total solids |
HTPT | High temperature pretreatment | VFA | Volatile fatty acid |
KW | Kitchen waste | VS | Volatile solids |
LIGB | Lignocellulosic biomass | WAS | Waste activated sludge |
References
- Cozma, A.; Negrea, M.; Cuc, L.; Poiana, M.; Micu, L. Impact of Domestic Organic Waste and Agricultural Technologies on Environmental Pollution. Agro Bul. AGIR 2010, 7, 23–28. [Google Scholar]
- Westerman, P.W.; Bicudo, J.R. Management Considerations for Organic Waste Use in Agriculture. Bioresour. Technol. 2005, 96, 215–221. [Google Scholar] [CrossRef]
- Schüch, A.; Morscheck, G.; Lemke, A.; Nelles, M. Bio-Waste Recycling in Germany—Further Challenges. Procedia Environ. Sci. 2016, 35, 308–318. [Google Scholar] [CrossRef]
- Dhanya, B.S.; Mishra, A.; Chandel, A.K.; Verma, M.L. Development of Sustainable Approaches for Converting the Organic Waste to Bioenergy. Sci. Total Environ. 2020, 723, 138109. [Google Scholar] [CrossRef]
- Shi, L.; Simplicio, W.S.; Wu, G.; Hu, Z.; Hu, H.; Zhan, X. Nutrient Recovery from Digestate of Anaerobic Digestion of Livestock Manure: A Review. Curr. Pollut. Rep. 2018, 4, 74–83. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The Anaerobic Digestion of Solid Organic Waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef]
- Moult, J.A.; Allan, S.R.; Hewitt, C.N.; Berners-Lee, M. Greenhouse Gas Emissions of Food Waste Disposal Options for UK Retailers. Food Policy 2018, 77, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Zheng, Z.; Schäfer, F.; Stinner, W.; Yuan, X.; Wang, H.; Cui, Z.; Wang, X. A Review about Pretreatment of Lignocellulosic Biomass in Anaerobic Digestion: Achievement and Challenge in Germany and China. J. Clean. Prod. 2021, 299, 126885. [Google Scholar] [CrossRef]
- Patinvoh, R.J.; Taherzadeh, M.J. Challenges of Biogas Implementation in Developing Countries. Curr. Opin. Environ. Sci. Health 2019, 12, 30–37. [Google Scholar] [CrossRef]
- Dobslaw, D.; Engesser, K.-H.; Störk, H.; Gerl, T. Low-Cost Process for Emission Abatement of Biogas Internal Combustion Engines. J. Clean. Prod. 2019, 227, 1079–1092. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Panahi, H.K.S.; Nizami, A.-S.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K. A Comprehensive Review on Recent Biological Innovations to Improve Biogas Production, Part 1: Upstream Strategies. Renew. Energy 2020, 146, 1204–1220. [Google Scholar] [CrossRef]
- Muhammad Nasir, I.; Mohd Ghazi, T.I. Pretreatment of Lignocellulosic Biomass from Animal Manure as a Means of Enhancing Biogas Production. Eng. Life Sci. 2015, 15, 733–742. [Google Scholar]
- Abraham, A.; Mathew, A.K.; Park, H.; Choi, O.; Sindhu, R.; Parameswaran, B.; Pandey, A.; Park, J.H.; Sang, B.-I. Pretreatment Strategies for Enhanced Biogas Production from Lignocellulosic Biomass. Bioresour. Technol. 2020, 301, 122725. [Google Scholar] [CrossRef]
- Orlando, M.-Q.; Borja, V.-M. Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review. Energies 2020, 13, 3573. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.; Park, K.Y. Enhancement of Biogas Production from Anaerobic Digestion of Waste Activated Sludge by Hydrothermal Pre-Treatment. Int. Biodeterior. Biodegrad. 2015, 101, 42–46. [Google Scholar] [CrossRef]
- Ferrer, I.; Ponsá, S.; Vázquez, F.; Font, X. Increasing Biogas Production by Thermal (70 °C) Sludge Pre-Treatment Prior to Thermophilic Anaerobic Digestion. Biochem. Eng. J. 2008, 42, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Castrillón, L.; Fernández-Nava, Y.; Ormaechea, P.; Marañón, E. Optimization of Biogas Production from Cattle Manure by Pre-Treatment with Ultrasound and Co-Digestion with Crude Glycerin. Bioresour. Technol. 2011, 102, 7845–7849. [Google Scholar] [CrossRef]
- Almomani, F.; Bhosale, R.R.; Khraisheh, M.A.M.; Shawaqfah, M. Enhancement of Biogas Production from Agricultural Wastes via Pre-Treatment with Advanced Oxidation Processes. Fuel 2019, 253, 964–974. [Google Scholar] [CrossRef]
- Fjørtoft, K.; Morken, J.; Hanssen, J.F.; Briseid, T. Pre-Treatment Methods for Straw for Farm-Scale Biogas Plants. Biomass Bioenergy 2019, 124, 88–94. [Google Scholar] [CrossRef]
- Neves, V.T.D.C.; Sales, E.A.; Perelo, L.W. Influence of Lipid Extraction Methods as Pre-Treatment of Microalgal Biomass for Biogas Production. Renew. Sustain. Energy Rev. 2016, 59, 160–165. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L. Pretreatment Methods to Enhance Anaerobic Digestion of Organic Solid Waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- McVoitte, W.P.A.; Clark, O.G. The Effects of Temperature and Duration of Thermal Pretreatment on the Solid-State Anaerobic Digestion of Dairy Cow Manure. Heliyon 2019, 5, e02140. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.-Y. Overview of Pretreatment Strategies for Enhancing Sewage Sludge Disintegration and Subsequent Anaerobic Digestion: Current Advances, Full-Scale Application and Future Perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on Pretreatment Techniques to Improve Anaerobic Digestion of Sewage Sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Hydrothermal Pretreatment of Rice Straw Biomass: A Potential and Promising Method for Enhanced Methane Production. Appl. Energy 2012, 94, 129–140. [Google Scholar] [CrossRef]
- Garrote, G.; Domínguez, H.; Parajó, J.C. Hydrothermal Processing of Lignocellulosic Materials. Holz Als Roh Werkst. 1999, 57, 191–202. [Google Scholar] [CrossRef]
- He, L.; Huang, H.; Zhang, Z.; Lei, Z. A Review of Hydrothermal Pretreatment of Lignocellulosic Biomass for Enhanced Biogas Production. Curr. Org. Chem. 2015, 19, 437–446. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. A Review on Enhanced Biogas Production from Anaerobic Digestion of Lignocellulosic Biomass by Different Enhancement Techniques. Process Biochem. 2019, 84, 81–90. [Google Scholar] [CrossRef]
- Dien, B.S.; Li, X.-L.; Iten, L.B.; Jordan, D.B.; Nichols, N.N.; O’Bryan, P.J.; Cotta, M.A. Enzymatic Saccharification of Hot-Water Pretreated Corn Fiber for Production of Monosaccharides. Enzym. Microb. Technol. 2006, 39, 1137–1144. [Google Scholar] [CrossRef]
- Climent, M.; Ferrer, I.; Baeza, M.D.M.; Artola, A.; Vázquez, F.; Font, X. Effects of Thermal and Mechanical Pretreatments of Secondary Sludge on Biogas Production under Thermophilic Conditions. Chem. Eng. J. 2007, 133, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G. Developments in Pre-Treatment Methods to Improve Anaerobic Digestion of Sewage Sludge. Rev. Environ. Sci. Biotechnol. 2016, 15, 173–211. [Google Scholar] [CrossRef]
- Pilli, S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Thermal Pretreatment of Sewage Sludge to Enhance Anaerobic Digestion: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 669–702. [Google Scholar] [CrossRef]
- Prorot, A.; Julien, L.; Christophe, D.; Patrick, L. Sludge Disintegration during Heat Treatment at Low Temperature: A Better Understanding of Involved Mechanisms with a Multiparametric Approach. Biochem. Eng. J. 2011, 54, 178–184. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A Review of Thermal Sludge Pre-Treatment Processes to Improve Dewaterability. J. Hazard. Mater. 2003, 98, 51–67. [Google Scholar] [CrossRef]
- Alzate, M.E.; Muñoz, R.; Rogalla, F.; Fdz-Polanco, F.; Pérez-Elvira, S.I. Biochemical Methane Potential of Microalgae: Influence of Substrate to Inoculum Ratio, Biomass Concentration and Pretreatment. Bioresour. Technol. 2012, 123, 488–494. [Google Scholar] [CrossRef]
- Passos, F.; García, J.; Ferrer, I. Impact of Low Temperature Pretreatment on the Anaerobic Digestion of Microalgal Biomass. Bioresour. Technol. 2013, 138, 79–86. [Google Scholar] [CrossRef]
- Appels, L.; Degrève, J.; Van der Bruggen, B.; Van Impe, J.; Dewil, R. Influence of Low Temperature Thermal Pre-Treatment on Sludge Solubilisation, Heavy Metal Release and Anaerobic Digestion. Bioresour. Technol. 2010, 101, 5743–5748. [Google Scholar] [CrossRef]
- Menardo, S.; Balsari, P.; Dinuccio, E.; Gioelli, F. Thermal Pre-Treatment of Solid Fraction from Mechanically-Separated Raw and Digested Slurry to Increase Methane Yield. Bioresour. Technol. 2011, 102, 2026–2032. [Google Scholar] [CrossRef]
- Fang, C.; Huang, R.; Dykstra, C.M.; Jiang, R.; Pavlostathis, S.G.; Tang, Y. Energy and Nutrient Recovery from Sewage Sludge and Manure via Anaerobic Digestion with Hydrothermal Pretreatment. Environ. Sci. Technol. 2019, 54, 1147–1156. [Google Scholar] [CrossRef]
- Liao, X.; Li, H.; Zhang, Y.; Liu, C.; Chen, Q. Accelerated High-Solids Anaerobic Digestion of Sewage Sludge Using Low-Temperature Thermal Pretreatment. Int. Biodeterior. Biodegrad. 2016, 106, 141–149. [Google Scholar] [CrossRef]
- Ekpo, U.; Ross, A.B.; Camargo-Valero, M.A.; Fletcher, L.A. Influence of PH on Hydrothermal Treatment of Swine Manure: Impact on Extraction of Nitrogen and Phosphorus in Process Water. Bioresour. Technol. 2016, 214, 637–644. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, Z.; Yuan, T.; Huang, W.; Lei, Z.; Zhang, Z. Low-Temperature Hydrothermal Pretreatment Followed by Dry Anaerobic Digestion: A Sustainable Strategy for Manure Waste Management Regarding Energy Recovery and Nutrients Availability. Waste Manag. 2017, 70, 255–262. [Google Scholar] [CrossRef]
- Peces, M.; Astals, S.; Mata-Alvarez, J. Effect of Moisture on Pretreatment Efficiency for Anaerobic Digestion of Lignocellulosic Substrates. Waste Manag. 2015, 46, 189–196. [Google Scholar] [CrossRef]
- Ferrer, I.; Palatsi, J.; Campos, E.; Flotats, X. Mesophilic and Thermophilic Anaerobic Biodegradability of Water Hyacinth Pre-Treated at 80 °C. Waste Manag. 2010, 30, 1763–1767. [Google Scholar] [CrossRef]
- Menardo, S.; Airoldi, G.; Balsari, P. The Effect of Particle Size and Thermal Pre-Treatment on the Methane Yield of Four Agricultural by-Products. Bioresour. Technol. 2012, 104, 708–714. [Google Scholar] [CrossRef]
- Hren, R.; Petrovič, A.; Čuček, L.; Simonič, M. Determination of Various Parameters during Thermal and Biological Pretreatment of Waste Materials. Energies 2020, 13, 2262. [Google Scholar] [CrossRef]
- Wang, W.-C.; Sastry, S.K. Changes in electrical conductivity of selected vegetables during multiple thermal treatments. J. Food Process Eng. 1997, 20, 499–516. [Google Scholar] [CrossRef]
- Kinnunen, V.; Craggs, R.; Rintala, J. Influence of Temperature and Pretreatments on the Anaerobic Digestion of Wastewater Grown Microalgae in a Laboratory-Scale Accumulating-Volume Reactor. Water Res. 2014, 57, 247–257. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, H.; Xu, W.; He, Q.; Zhou, Q. Enhancement of Biochemical Methane Potential from Excess Sludge with Low Organic Content by Mild Thermal Pretreatment. Biochem. Eng. J. 2013, 70, 127–134. [Google Scholar] [CrossRef]
- Costa, J.C.; Barbosa, S.G.; Alves, M.M.; Sousa, D.Z. Thermochemical Pre- and Biological Co-Treatments to Improve Hydrolysis and Methane Production from Poultry Litter. Bioresour. Technol. 2012, 111, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Verde, I.; Regueiro, L.; Lema, J.M.; Carballa, M. Blending Based Optimisation and Pretreatment Strategies to Enhance Anaerobic Digestion of Poultry Manure. Waste Manag. 2018, 71, 521–531. [Google Scholar] [CrossRef]
- Gutberlet, J. Cooperative Urban Mining in Brazil: Collective Practices in Selective Household Waste Collection and Recycling. Waste Manag. 2015, 45, 22–31. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Fdez-Güelfo, L.A.; Zhou, Y.; Álvarez-Gallego, C.J.; Garcia, L.I.R.; Ng, W.J. Anaerobic Co-Digestion of Organic Fraction of Municipal Solid Waste (OFMSW): Progress and Challenges. Renew. Sustain. Energy Rev. 2018, 93, 380–399. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A Comprehensive Review on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Chatterjee, B.; Mazumder, D. Anaerobic Digestion for the Stabilization of the Organic Fraction of Municipal Solid Waste: A Review. Environ. Rev. 2016, 24, 426–459. [Google Scholar] [CrossRef]
- Fernández Rodríguez, J.; Pérez, M.; Romero, L.I. Mesophilic Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Optimisation of the Semicontinuous Process. Chem. Eng. J. 2012, 193–194, 10–15. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Frunzo, L.; Esposito, G.; Lens, P.N.L.; Pirozzi, F. Enhanced Anaerobic Digestion of Food Waste by Thermal and Ozonation Pretreatment Methods. J. Environ. Manag. 2014, 146, 142–149. [Google Scholar] [CrossRef]
- Kuo, W.; Cheng, K. Use of Respirometer in Evaluation of Process and Toxicity of Thermophilic Anaerobic Digestion for Treating Kitchen Waste. Bioresour. Technol. 2007, 98, 1805–1811. [Google Scholar] [CrossRef]
- Ma, J.; Duong, T.H.; Smits, M.; Verstraete, W.; Carballa, M. Enhanced Biomethanation of Kitchen Waste by Different Pre-Treatments. Bioresour. Technol. 2011, 102, 592–599. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Liu, X.-Y.; Kao, J.C.; Stabnikova, O. Digestion of Pre-Treated Food Waste in a Hybrid Anaerobic Solid–Liquid (HASL) System. J. Chem. Technol. Biotechnol. 2006, 81, 345–351. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Li, J.; Li, H.; Yu, Z. Effects of Thermal Pretreatment on the Biomethane Yield and Hydrolysis Rate of Kitchen Waste. Appl. Energy 2016, 172, 47–58. [Google Scholar] [CrossRef]
- Kim, J.; Park, C.; Kim, T.-H.; Lee, M.; Kim, S.; Kim, S.-W.; Lee, J. Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge. J. Biosci. Bioeng. 2003, 95, 271–275. [Google Scholar] [CrossRef]
- Gandhi, P.; Paritosh, K.; Pareek, N.; Mathur, S.; Lizasoain, J.; Gronauer, A.; Bauer, A.; Vivekanand, V. Multicriteria Decision Model and Thermal Pretreatment of Hotel Food Waste for Robust Output to Biogas: Case Study from City of Jaipur, India. BioMed Res. Int. 2018, 2018, 9416249. [Google Scholar] [CrossRef] [Green Version]
- Gnaoui, Y.E.; Karouach, F.; Bakraoui, M.; Barz, M.; Bari, H.E. Mesophilic Anaerobic Digestion of Food Waste: Effect of Thermal Pretreatment on Improvement of Anaerobic Digestion Process. Energy Rep. 2020, 6, 417–422. [Google Scholar] [CrossRef]
- Chen, H.; Yi, H.; Li, H.; Guo, X.; Xiao, B. Effects of Thermal and Thermal-Alkaline Pretreatments on Continuous Anaerobic Sludge Digestion: Performance, Energy Balance and, Enhancement Mechanism. Renew. Energy 2020, 147, 2409–2416. [Google Scholar] [CrossRef]
- Liu, T.; Wu, C.; Wang, Y.; Xue, G.; Zhang, M.; Liu, C.; Zheng, Y. Enhanced Deep Utilization of Low-Organic Content Sludge by Processing Time-Extended Low-Temperature Thermal Pretreatment. ACS Omega 2021, 6, 28946–28954. [Google Scholar] [CrossRef]
- Biswal, B.K.; Huang, H.; Dai, J.; Chen, G.-H.; Wu, D. Impact of Low-Thermal Pretreatment on Physicochemical Properties of Saline Waste Activated Sludge, Hydrolysis of Organics and Methane Yield in Anaerobic Digestion. Bioresour. Technol. 2020, 297, 122423. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Gao, X.; Zhou, Y.; Shen, R. Effect of Thermal Pretreatment on the Physical and Chemical Properties of Municipal Biomass Waste. Waste Manag. 2012, 32, 249–255. [Google Scholar] [CrossRef]
- Abbas, R.S.; Agha, A.H.H.; Rahman, S. Enhancement Anaerobic Digestion and Methane Production from Kitchen Waste by Thermal and Thermo-Chemical Pretreatments in Batch Leach Bed Reactor with down Flow. Res. Agric. Eng. 2018, 64, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Svensson, K. Thermal Hydrolysis Sludge Pretreatment. In Clean Energy and Resources Recovery; Elsevier: Amsterdam, The Netherlands, 2021; pp. 391–398. ISBN 978-0-323-85223-4. [Google Scholar]
- Nges, I.A.; Liu, J. Effects of Anaerobic Pre-Treatment on the Degradation of Dewatered-Sewage Sludge. Renew. Energy 2009, 34, 1795–1800. [Google Scholar] [CrossRef]
- Xiao, B.; Tang, X.; Yi, H.; Dong, L.; Han, Y.; Liu, J. Comparison of Two Advanced Anaerobic Digestions of Sewage Sludge with High-Temperature Thermal Pretreatment and Low-Temperature Thermal-Alkaline Pretreatment. Bioresour. Technol. 2020, 304, 122979. [Google Scholar] [CrossRef]
- Zheng, T.; Zhang, K.; Chen, X.; Ma, Y.; Xiao, B.; Liu, J. Effects of Low- and High-Temperature Thermal-Alkaline Pretreatments on Anaerobic Digestion of Waste Activated Sludge. Bioresour. Technol. 2021, 337, 125400. [Google Scholar] [CrossRef]
- Abudi, Z.N.; Hu, Z.; Sun, N.; Xiao, B.; Rajaa, N.; Liu, C.; Guo, D. Batch Anaerobic Co-Digestion of OFMSW (Organic Fraction of Municipal Solid Waste), TWAS (Thickened Waste Activated Sludge) and RS (Rice Straw): Influence of TWAS and RS Pretreatment and Mixing Ratio. Energy 2016, 107, 131–140. [Google Scholar] [CrossRef]
- Günerhan, Ü.; Us, E.; Dumlu, L.; Yılmaz, V.; Carrère, H.; Perendeci, A.N. Impacts of Chemical-Assisted Thermal Pretreatments on Methane Production from Fruit and Vegetable Harvesting Wastes: Process Optimization. Molecules 2020, 25, 500. [Google Scholar] [CrossRef] [Green Version]
- Varma, V.S.; Parajuli, R.; Scott, E.; Canter, T.; Lim, T.T.; Popp, J.; Thoma, G. Dairy and Swine Manure Management—Challenges and Perspectives for Sustainable Treatment Technology. Sci. Total Environ. 2021, 778, 146319. [Google Scholar] [CrossRef]
- Zhu, Q.-L.; Wu, B.; Pisutpaisal, N.; Wang, Y.-W.; Ma, K.; Dai, L.-C.; Qin, H.; Tan, F.-R.; Maeda, T.; Xu, Y.; et al. Bioenergy from Dairy Manure: Technologies, Challenges and Opportunities. Sci. Total Environ. 2021, 790, 148199. [Google Scholar] [CrossRef]
- Raju, C.S.; Sutaryo, S.; Ward, A.J.; Møller, H.B. Effects of High-Temperature Isochoric Pre-Treatment on the Methane Yields of Cattle, Pig and Chicken Manure. Environ. Technol. 2013, 34, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Qiao, W.; Yan, X.; Ye, J.; Sun, Y.; Wang, W.; Zhang, Z. Evaluation of Biogas Production from Different Biomass Wastes with/without Hydrothermal Pretreatment. Renew. Energy 2011, 36, 3313–3318. [Google Scholar] [CrossRef]
- Bonmatí, A.; Flotats, X.; Mateu, L.; Campos, E. Study of Thermal Hydrolysis as a Pretreatment to Mesophilic Anaerobic Digestion of Pig Slurry. Water Sci. Technol. 2001, 44, 109–116. [Google Scholar] [CrossRef]
- Rafique, R.; Poulsen, T.G.; Nizami, A.-S.; Murphy, J.D.; Kiely, G. Effect of Thermal, Chemical and Thermo-Chemical Pre-Treatments to Enhance Methane Production. Energy 2010, 35, 4556–4561. [Google Scholar] [CrossRef]
- Mladenovska, Z.; Hartmann, H.; Kvist, T.; Sales-Cruz, M.; Gani, R.; Ahring, B.K. Thermal Pretreatment of the Solid Fraction of Manure: Impact on the Biogas Reactor Performance and Microbial Community. Water Sci. Technol. 2006, 53, 59–67. [Google Scholar] [CrossRef]
- Carrère, H.; Sialve, B.; Bernet, N. Improving Pig Manure Conversion into Biogas by Thermal and Thermo-Chemical Pretreatments. Bioresour. Technol. 2009, 100, 3690–3694. [Google Scholar] [CrossRef]
- Passos, F.; Ortega, V.; Donoso-Bravo, A. Thermochemical Pretreatment and Anaerobic Digestion of Dairy Cow Manure: Experimental and Economic Evaluation. Bioresour. Technol. 2017, 227, 239–246. [Google Scholar] [CrossRef]
- Şenol, H.; Açıkel, Ü.; Demir, S.; Oda, V. Anaerobic Digestion of Cattle Manure, Corn Silage and Sugar Beet Pulp Mixtures after Thermal Pretreatment and Kinetic Modeling Study. Fuel 2020, 263, 116651. [Google Scholar] [CrossRef]
- Budde, J.; Heiermann, M.; Quiñones, T.S.; Plöchl, M. Effects of Thermobarical Pretreatment of Cattle Waste as Feedstock for Anaerobic Digestion. Waste Manag. 2014, 34, 522–529. [Google Scholar] [CrossRef]
- Chu, C.-Y.; Wang, Z.-F. Dairy Cow Solid Waste Hydrolysis and Hydrogen/Methane Productions by Anaerobic Digestion Technology. Int. J. Hydrogen Energy 2017, 42, 30591–30598. [Google Scholar] [CrossRef]
- Liao, W. Optimizing Dilute Acid Hydrolysis of Hemicellulose in a Nitrogen-Rich Cellulosic Material––Dairy Manure. Bioresour. Technol. 2004, 94, 33–41. [Google Scholar] [CrossRef]
- Jin, Y.; Hu, Z.; Wen, Z. Enhancing Anaerobic Digestibility and Phosphorus Recovery of Dairy Manure through Microwave-Based Thermochemical Pretreatment. Water Res. 2009, 43, 3493–3502. [Google Scholar] [CrossRef]
- Chan, I.; Srinivasan, A.; Liao, P.H.; Lo, K.V.; Mavinic, D.S.; Atwater, J.; Thompson, J.R. The Effects of Microwave Pretreatment of Dairy Manure on Methane Production. Nat. Resour. 2013, 04, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Bayrakdar, A.; Sürmeli, R.Ö.; Çalli, B. Anaerobic Digestion of Chicken Manure by a Leach-Bed Process Coupled with Side-Stream Membrane Ammonia Separation. Bioresour. Technol. 2018, 258, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, W.; Wang, X.; Gabauer, W.; Ortner, M.; Li, Z. Tackling Ammonia Inhibition for Efficient Biogas Production from Chicken Manure: Status and Technical Trends in Europe and China. Renew. Sustain. Energy Rev. 2018, 97, 186–199. [Google Scholar] [CrossRef]
- Li, K.; Liu, R.; Yu, Q.; Ma, R. Removal of Nitrogen from Chicken Manure Anaerobic Digestion for Enhanced Biomethanization. Fuel 2018, 232, 395–404. [Google Scholar] [CrossRef]
- Ardic, I.; Taner, F. Effects of Thermal, Chemical and Thermochemical Pretreatments to Increase Biogas Production Yield of Chicken Manure. Fresenius Environ. Bull. 2005, 14, 373–380. [Google Scholar]
- Elasri, O.; El amin Afilal, M. Potential for Biogas Production from the Anaerobic Digestion of Chicken Droppings in Morocco. Int. J. Recycl. Org. Waste Agric. 2016, 5, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Yin, D.-M.; Qiao, W.; Negri, C.; Adani, F.; Fan, R.; Dong, R.-J. Enhancing Hyper-Thermophilic Hydrolysis Pre-Treatment of Chicken Manure for Biogas Production by in-Situ Gas Phase Ammonia Stripping. Bioresour. Technol. 2019, 287, 121470. [Google Scholar] [CrossRef]
- Yin, D.; Taherzadeh, M.J.; Lin, M.; Jiang, M.; Qiao, W.; Dong, R. Upgrading the Anaerobic Membrane Bioreactor Treatment of Chicken Manure by Introducing In-Situ Ammonia Stripping and Hyper-Thermophilic Pretreatment. Bioresour. Technol. 2020, 310, 123470. [Google Scholar] [CrossRef]
- Zahan, Z.; Othman, M.Z. Effect of Pre-Treatment on Sequential Anaerobic Co-Digestion of Chicken Litter with Agricultural and Food Wastes under Semi-Solid Conditions and Comparison with Wet Anaerobic Digestion. Bioresour. Technol. 2019, 281, 286–295. [Google Scholar] [CrossRef]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Thermal Pretreatment to Improve Methane Production of Scenedesmus Biomass. Biomass Bioenergy 2012, 40, 105–111. [Google Scholar] [CrossRef]
- Ras, M.; Lardon, L.; Bruno, S.; Bernet, N.; Steyer, J.-P. Experimental Study on a Coupled Process of Production and Anaerobic Digestion of Chlorella Vulgaris. Bioresour. Technol. 2011, 102, 200–206. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; Mooney, J.; Prescott, T.; Olabi, A.G. Pre-Treatment Techniques Used for Anaerobic Digestion of Algae. Fuel Process. Technol. 2015, 138, 765–779. [Google Scholar] [CrossRef]
- Marsolek, M.D.; Kendall, E.; Thompson, P.L.; Shuman, T.R. Thermal Pretreatment of Algae for Anaerobic Digestion. Bioresour. Technol. 2014, 151, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Mendez, L.; Mahdy, A.; Timmers, R.A.; Ballesteros, M.; González-Fernández, C. Enhancing Methane Production of Chlorella Vulgaris via Thermochemical Pretreatments. Bioresour. Technol. 2013, 149, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Mendez, L.; Mahdy, A.; Demuez, M.; Ballesteros, M.; González-Fernández, C. Effect of High Pressure Thermal Pretreatment on Chlorella Vulgaris Biomass: Organic Matter Solubilisation and Biochemical Methane Potential. Fuel 2014, 117, 674–679. [Google Scholar] [CrossRef]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Effect of Organic Loading Rate on Anaerobic Digestion of Thermally Pretreated Scenedesmus Sp. Biomass. Bioresour. Technol. 2013, 129, 219–223. [Google Scholar] [CrossRef]
- Schwede, S.; Kowalczyk, A.; Gerber, M.; Span, R. Influence of Different Cell Disruption Techniques on Mono Digestion of Algal Biomass. In Proceedings of the World Renewable Energy Congress-Sweden, Linköping, Sweden, 8–13 May 2011; pp. 41–47. [Google Scholar]
- Bohutskyi, P.; Betenbaugh, M.J.; Bouwer, E.J. The Effects of Alternative Pretreatment Strategies on Anaerobic Digestion and Methane Production from Different Algal Strains. Bioresour. Technol. 2014, 155, 366–372. [Google Scholar] [CrossRef]
- Jard, G.; Dumas, C.; Delgenes, J.P.; Marfaing, H.; Sialve, B.; Steyer, J.P.; Carrère, H. Effect of Thermochemical Pretreatment on the Solubilization and Anaerobic Biodegradability of the Red Macroalga Palmaria Palmata. Biochem. Eng. J. 2013, 79, 253–258. [Google Scholar] [CrossRef]
- Li, L.; Kong, X.; Yang, F.; Li, D.; Yuan, Z.; Sun, Y. Biogas Production Potential and Kinetics of Microwave and Conventional Thermal Pretreatment of Grass. Appl. Biochem. Biotechnol. 2012, 166, 1183–1191. [Google Scholar] [CrossRef]
- Ahmed, B.; Aboudi, K.; Tyagi, V.K.; Álvarez-Gallego, C.J.; Fernández-Güelfo, L.A.; Romero-García, L.I.; Kazmi, A.A. Improvement of Anaerobic Digestion of Lignocellulosic Biomass by Hydrothermal Pretreatment. Appl. Sci. 2019, 9, 3853. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Huang, H.; Mei, Z.; Shen, F.; Ge, Y.; Hu, G.; Meng, X. Hydrothermal Pretreatment of Rice Straw at Relatively Lower Temperature to Improve Biogas Production via Anaerobic Digestion. Chin. Chem. Lett. 2019, 30, 1219–1223. [Google Scholar] [CrossRef]
- Taherzadeh, M.; Karimi, K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Shen, F.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J.; Zeng, Y.; Luo, T.; Mei, Z. Can Hydrothermal Pretreatment Improve Anaerobic Digestion for Biogas from Lignocellulosic Biomass? Bioresour. Technol. 2018, 249, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Rajput, A.A.; Zeshan; Visvanathan, C. Effect of Thermal Pretreatment on Chemical Composition, Physical Structure and Biogas Production Kinetics of Wheat Straw. J. Environ. Manag. 2018, 221, 45–52. [Google Scholar] [CrossRef]
- Rajput, A.A.; Zeshan; Hassan, M. Enhancing Biogas Production through Co-Digestion and Thermal Pretreatment of Wheat Straw and Sunflower Meal. Renew. Energy 2021, 168, 1–10. [Google Scholar] [CrossRef]
- Montoya-Rosales, J.J.; Peces, M.; González-Rodríguez, L.M.; Alatriste-Mondragón, F.; Villa-Gómez, D.K. A Broad Overview Comparing a Fungal, Thermal and Acid Pre-Treatment of Bean Straw in Terms of Substrate and Anaerobic Digestion Effect. Biomass Bioenergy 2020, 142, 105775. [Google Scholar] [CrossRef]
- Jin, G.; Bierma, T.; Walker, P.M. Low-Heat, Mild Alkaline Pretreatment of Switchgrass for Anaerobic Digestion. J. Environ. Sci. Health Part A 2014, 49, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Bolado-Rodríguez, S.; Toquero, C.; Martín-Juárez, J.; Travaini, R.; García-Encina, P.A. Effect of Thermal, Acid, Alkaline and Alkaline-Peroxide Pretreatments on the Biochemical Methane Potential and Kinetics of the Anaerobic Digestion of Wheat Straw and Sugarcane Bagasse. Bioresour. Technol. 2016, 201, 182–190. [Google Scholar] [CrossRef]
- Du, J.; Qian, Y.; Xi, Y.; Lü, X. Hydrothermal and Alkaline Thermal Pretreatment at Mild Temperature in Solid State for Physicochemical Properties and Biogas Production from Anaerobic Digestion of Rice Straw. Renew. Energy 2019, 139, 261–267. [Google Scholar] [CrossRef]
- Cao, W.; Sun, C.; Liu, R.; Yin, R.; Wu, X. Comparison of the Effects of Five Pretreatment Methods on Enhancing the Enzymatic Digestibility and Ethanol Production from Sweet Sorghum Bagasse. Bioresour. Technol. 2012, 111, 215–221. [Google Scholar] [CrossRef]
- Pedersen, M.; Johansen, K.S.; Meyer, A.S. Low Temperature Lignocellulose Pretreatment: Effects and Interactions of Pretreatment PH Are Critical for Maximizing Enzymatic Monosaccharide Yields from Wheat Straw. Biotechnol. Biofuels 2011, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Taherdanak, M.; Zilouei, H.; Karimi, K. The Influence of Dilute Sulfuric Acid Pretreatment on Biogas Production from Wheat Plant. Int. J. Green Energy 2016, 13, 1129–1134. [Google Scholar] [CrossRef]
- Amnuaycheewa, P.; Hengaroonprasan, R.; Rattanaporn, K.; Kirdponpattara, S.; Cheenkachorn, K.; Sriariyanun, M. Enhancing Enzymatic Hydrolysis and Biogas Production from Rice Straw by Pretreatment with Organic Acids. Ind. Crops Prod. 2016, 87, 247–254. [Google Scholar] [CrossRef]
- Liu, L.; Sun, J.; Li, M.; Wang, S.; Pei, H.; Zhang, J. Enhanced Enzymatic Hydrolysis and Structural Features of Corn Stover by FeCl3 Pretreatment. Bioresour. Technol. 2009, 100, 5853–5858. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Knierim, B.; Manisseri, C.; Arora, R.; Scheller, H.V.; Auer, M.; Vogel, K.P.; Simmons, B.A.; Singh, S. Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification. Bioresour. Technol. 2010, 101, 4900–4906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millati, R.; Wikandari, R.; Ariyanto, T.; Putri, R.U.; Taherzadeh, M.J. Pretreatment Technologies for Anaerobic Digestion of Lignocelluloses and Toxic Feedstocks. Bioresour. Technol. 2020, 304, 122998. [Google Scholar] [CrossRef]
- Carrillo-Reyes, J.; Buitrón, G.; Arcila, J.S.; López-Gómez, M.O. Thermophilic Biogas Production from Microalgae-Bacteria Aggregates: Biogas Yield, Community Variation and Energy Balance. Chemosphere 2021, 275, 129898. [Google Scholar] [CrossRef]
- Ometto, F.; Quiroga, G.; Pšenička, P.; Whitton, R.; Jefferson, B.; Villa, R. Impacts of Microalgae Pre-Treatments for Improved Anaerobic Digestion: Thermal Treatment, Thermal Hydrolysis, Ultrasound and Enzymatic Hydrolysis. Water Res. 2014, 65, 350–361. [Google Scholar] [CrossRef] [Green Version]
- Van Den Hende, S.; Carré, E.; Cocaud, E.; Beelen, V.; Boon, N.; Vervaeren, H. Treatment of Industrial Wastewaters by Microalgal Bacterial Flocs in Sequencing Batch Reactors. Bioresour. Technol. 2014, 161, 245–254. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Yan, J.; Qiao, W.; Wang, W.; Zhu, T. Effects of Lipid Concentration on Anaerobic Co-Digestion of Municipal Biomass Wastes. Waste Manag. 2014, 34, 1025–1034. [Google Scholar] [CrossRef]
- Cho, S.; Park, S.; Seon, J.; Yu, J.; Lee, T. Evaluation of Thermal, Ultrasonic and Alkali Pretreatments on Mixed-Microalgal Biomass to Enhance Anaerobic Methane Production. Bioresour. Technol. 2013, 143, 330–336. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Wang, L. Transferring of Components and Energy Output in Industrial Sewage Sludge Disposal by Thermal Pretreatment and Two-Phase Anaerobic Process. Bioresour. Technol. 2010, 101, 2580–2584. [Google Scholar] [CrossRef] [PubMed]
- De Vrieze, J.; Smet, D.; Klok, J.; Colsen, J.; Angenent, L.T.; Vlaeminck, S.E. Thermophilic Sludge Digestion Improves Energy Balance and Nutrient Recovery Potential in Full-Scale Municipal Wastewater Treatment Plants. Bioresour. Technol. 2016, 218, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Budde, J.; Prochnow, A.; Plöchl, M.; Suárez Quiñones, T.; Heiermann, M. Energy Balance, Greenhouse Gas Emissions, and Profitability of Thermobarical Pretreatment of Cattle Waste in Anaerobic Digestion. Waste Manag. 2016, 49, 390–410. [Google Scholar] [CrossRef] [PubMed]
Biomass | AD Condition | AD Mode | Pretreatment | Biogas Yield | CH4 Yield | Increase | Reference | |
---|---|---|---|---|---|---|---|---|
Temp. °C | Time | |||||||
Waste activated sludge | Mesophilic | Batch (20 days) | Control | 34.8 mL·g−1 ODS | [37] | |||
70 | 15 min | 28.3 mL·g−1 ODS | Negative | |||||
30 min | 33.6 mL·g−1 ODS | Negative | ||||||
60 min | 35.3 mL·g−1 ODS | Less evident | ||||||
80 °C | 15 min | 21.3 mL·g−1 ODS | Negative | |||||
30 min | 48.0 mL·g−1 ODS | 1.4 times | ||||||
60 min | 75.6 mL·g−1 ODS | 2.2 times | ||||||
90 °C | 15 min | 76.7 mL·g−1 ODS | 2.2 times | |||||
30 min | 142 mL·g−1 ODS | 4 times | ||||||
60 min | 378 mL·g−1 ODS | 11 times | ||||||
Sludge | Mesophilic | Batch | Control | 87 mL·g−1 VS | [40] | |||
60 °C | 30 min | 93 mL·g−1 VS | 7.3% | |||||
70 °C | 100 mL·g−1 VS | 15.6% | ||||||
80 °C | 108 mL·g−1 VS | 24.4% | ||||||
Semi-continuous | control | 333 mL·g−1 VS | ||||||
70 °C | 30 min | 383 mL·g−1 VS | 11.7% | |||||
Kitchen waste | Thermophilic | Semi-continuous | Control | 1360 mL·L−1 | [58] | |||
37 °C | 84 h | 1420 mL·L−1 | 4.4% | |||||
50 °C | 2020 mL·L−1 | 48.5% | ||||||
60 °C | 2540 mL·L−1 | 86.8% | ||||||
Kitchen waste | Thermophilic | Batch | Blank | 6.5 L·L−1 | [59] | |||
120 °C | 30 min | 7.2 L·L−1 | 10.8% | |||||
Food waste | Mesophilic | Batch (14 days) | blank | 280 mL·g−1 VS | [60] | |||
70 °C | 2 h | 290 mL·g−1 VS | Less evident | |||||
Kitchen waste | Mesophilic, | Batch (40 days) | Blank | 614 mL·g−1 VS | [61] | |||
55 °C | 15 min | 579 mL·g−1 VS | Negative | |||||
70 °C | 90 min | 822 mL·g−1 VS | 33.9% | |||||
90 °C | 30 min | 781 mL·g−1 VS | 27.2% | |||||
120 °C | 15 min | 777 mL·g−1 VS | 26.5% | |||||
WAS | Mesophilic, | Batch | Control | 2507 L·m−3 WAS | [62] | |||
121 °C | 30 min | 3390 L·m−3 WAS | 35.2% | |||||
Food waste | Mesophilic | Batch (45 days) | Control | 555 mL·g−1 VS | [63] | |||
60 °C | 10 min 20 min | 575 mL·g−1 VS 645 mL·g−1 VS | 3.6% 16.2% | |||||
80 °C | 10 min 20 min | 653 mL·g−1 VS 692 mL·g−1 VS | 17.7% 24.7% | |||||
100 °C | 10 min 20 min | 783 mL·g−1 VS 728 mL·g−1 VS | 41.1% 31.2% | |||||
Food waste | Mesophilic, | Semi-continuous | control | 310 mL·g−1 VS | [64] | |||
100 °C | 30 min | 383 mL·g−1 VS | 23.68% | |||||
Sewage sludge | Mesophilic, | Semi-continuous | control | 107 mL·g−1 VS | [65] | |||
134 °C | 30 min | 210 mL·g−1 VS | 2 times | |||||
Sludge | Mesophilic, | Batch | Control | - | 53 mL·g−1 VS | [66] | ||
90 °C | 1 h | 177 mL·g−1 VS | 3.33 times | |||||
24 h | 195 mL·g−1 VS | 3.68 times | ||||||
36 h | 295 mL·g−1 VS | 5.56 times | ||||||
Waste activated sludge | Mesophilic, | Batch | Control | - | 89 mL·g−1 VSS | [67] | ||
60 °C | 30 min | 101 mL·g−1 VSS | 13.5% | |||||
80 °C | 30 min | 113 mL·g−1 VSS | 27.0% | |||||
100 °C | 30 min | 114 mL·g−1 VSS | 28.1% | |||||
120 °C | 30 min | 115 mL·g−1 VSS | 29.2% |
Biomass | AD Condition | AD Mode | Pretreatment | Biogas Yield * | CH4 Yield * | Increase | Reference | |
---|---|---|---|---|---|---|---|---|
Temp. | Time | |||||||
Swine manure | Mesophilic | Batch (56 days) | Blank | – | 79 | – | [38] | |
120 | 30 min | 213 | 170% | |||||
Swine manure | Mesophilic | Batch (63 days) | Blank | 4 h | – | 0.79 COD·COD−1 | [39] | |
125 | 4 h | – | 0.86 | 8.9% | ||||
Swine manure | Mesophilic | Batch | Blank | – | 204 | – | [42] | |
110 °C | 30 min | 231 | 13.2% | |||||
130 °C | 30 min | 271 | 32.8% | |||||
Pig manure | Mesophilic | Batch (27 days) | Blank | – | 215 | – | – | [79] |
100 °C | 15 min | 208 | – | Less evident | ||||
125 °C | 15 min | 234 | – | 8.8% | ||||
Pig slurry | Thermophilic | Batch (80 days) | Blank | – | – | 348 | – | [81] |
80 °C | 3 h | – | 558 | 60.4% | ||||
Pig manure | Mesophilic | Batch | 100 | 1 h | 475 | – | 30% | [82] |
A mixture of cattle manure and swine manure | Thermophilic | Batch (90 days) | Blank | – | – | 233 | – | [83] |
100 °C | 20 min 40 min | – | 289 273 | 24.0% 17.2% | ||||
120 °C | 20 min 40 min | – | 254 270 | 9.0% 13.7% | ||||
140 °C | 20 min 40 min | – | 274 254 | 17.6% 9.0% | ||||
Continuous | Blank | – | 238 | – | ||||
140 °C | – | 255 | 7.1% | |||||
Pig manure 1 | Mesophilic | Batch (40 days) | Blank | – | – | 112 mL·g−1 COD | [84] | |
70 | 3 h | – | 98 | Less evident | ||||
90 | 3 h | – | 127 | |||||
Pig manure 2 | Mesophilic | Batch (40 days) | Blank | – | – | 91 | – | |
135 | 20 min | – | 84 | Less evident |
Biomass | Operating Condition | Operating Mode | Pretreatment | Biogas Yield | CH4 Yield | Increase | Reference | |
---|---|---|---|---|---|---|---|---|
Temp. | Time | |||||||
Dairy cow manure | Mesophilic | Batch (40 days) | 125 °C | 37.5 min | 34% | [22] | ||
Cattle manure | Mesophilic | Batch (27 days) | Blank | – | 244 mL·g−1 VS | [79] | ||
100 °C | 15 min | 222 | Less evident | |||||
125 °C | 15 min | 242 | ||||||
Dairy cow manure | Mesophilic | Batch (40 days) | 37 °C | 12 h | 3.6% | [85] | ||
24 h | 20.5% | |||||||
100 °C | 5 min | Negative | ||||||
30 min | Negative | |||||||
2:1:1 mixtures of CM:CS: SBP | Mesophilic | Batch (30 days) | Blank | 180.5 mL·g−1 TS | [86] | |||
100 °C | 10 min | 196 | 8.3 | |||||
20 min | 216 | 19.3 | ||||||
30 min | 236 | 30.4 | ||||||
60 min | 256 | 41.5 | ||||||
120 min | 242 | 34.1 | ||||||
120 °C | 10 min | 201 | 11.5 | |||||
20 min | 212 | 17.4 | ||||||
30 min | 243 | 34.5 | ||||||
60 min | 286 | 58.1 | ||||||
120 min | 288 | 59.6 | ||||||
Cattle manure 1 solid | Mesophilic | Batch (30 days) | Blank | 203 mL·g−1 OM | [87] | |||
140 °C | 5 min | 306 | 50 | |||||
Cattle manure 1 liquid | Blank | 168 | ||||||
140 °C | 5 min | 186 | 11 | |||||
Cattle manure 2 solid | Blank | 225 | ||||||
140 °C | 5 min | 259 | 15 | |||||
Cattle manure 2 liquid | Blank | 162 | ||||||
140 °C | 232 | 43 |
Biomass | AD Condition | AD Mode | Pretreatment | Biogas Yield | CH4 Yield | Increase | Reference | |
---|---|---|---|---|---|---|---|---|
Temp. °C | Time | |||||||
Chicken droppings | Mesophilic | Batch (40 days) | Blank | 11.2–20 m3/ton | - | [96] | ||
105 | 24 h | 64.4 m3/ton | - | 3.2–4.7 fold | ||||
Chicken manure | Mesophilic | Batch | Blank (70 °C) | 1 d | - | - | [97] | |
2 d | ||||||||
3 d | ||||||||
5 d | ||||||||
Stripping at 70 °C | 1 d | - | - | 42.8% | ||||
2 d | 63.5% | |||||||
3 d | 54.6% | |||||||
5 d | 7.0% | |||||||
Chicken manure | Mesophilic | Continuous | Control (70 °C) | 4 d | - | 213 mL·g−1 VS | [98] | |
Stripping at 70 °C | 4 d | - | 352 mL·g−1 VS | 65.3% | ||||
Chicken manure | Mesophilic | Batch (27 days) | Blank | – | 334 mL·g−1 VS | - | [99] | |
100 | 15 min | 317 mL·g−1 VS | - | Less evident | ||||
125 | 15 min | 314 mL·g−1 VS | - |
Biomass | AD Condition | AD Mode | Pretreatment | Biogas Yield | CH4 Yield | Increase | Reference | |
---|---|---|---|---|---|---|---|---|
Temp. (°C) | Time | |||||||
Microalgae mixture a | Mesophilic | Batch (60 days) | Control | - | - | 272 mL·g−1 VS | - | [35] |
110 | 15 min | - | 323 mL·g−1 VS | 19% | ||||
140 | 15 min | - | 362 mL·g−1 VS | 33% | ||||
Microalgae mixture b | Control | - | - | 198 mL·g−1 VS | - | |||
110 | 15 min | - | 219 mL·g−1 VS | 11% | ||||
140 | 15 min | - | 260 mL·g−1 VS | 31% | ||||
Microspore | Control | - | - | 255 mL·g−1 VS | - | [35] | ||
110 | 15 min | - | 413 mL·g−1 VS | 61.7% | ||||
140 | 15 min | - | 382 mL·g−1 VS | 49.8% | ||||
Microalgae | 20 °C | Batch | Control | - | - | 180 mL·g−1 VS | - | [48] |
57 | 3.8 h | - | 221 mL·g−1 VS | 22.7% | ||||
Microalga Scenedesmus sp. | Mesophilic | Continuous (HRT 23 d) | Control | - | - | 84 mL·g−1 COD | - | [100] |
Batch (33 days) | Control | - | - | 76 mL·g−1 COD | - | |||
70 | 3 h | - | 85 mL·g−1 COD | Less evident | ||||
90 | 3 h | 170 mL·g−1 COD | 220% | |||||
Nanochloropsis oculata | Mesophilic | Batch (12 days) | Control | - | - | 0.28 L·g−1 VS | - | [103] |
30 | 4 h | - | 0.28 L·g−1 VS | Less evident | ||||
60 | - | 0.27 L·g−1 VS | Less evident | |||||
90 | - | 0.39 L·g−1 VS | 41% | |||||
Nanochloropsis oculata | Mesophilic | Batch (12 days) | Control | - | - | 0.32 L·g−1 VS | - | |
90 | 1 h 3.5 h 12 h | 0.41 L·g−1 VS 0.43 L·g−1 VS 0.44 L·g−1 VS | ≈30% | |||||
Chlorella vulgaris | Mesophilic | Batch (30 days) | Control | - | - | 139 mL·g−1 COD | - | [104] |
120 | 20 min | - | 180 mL·g−1 COD | 29.8% | ||||
120 | 40 min | - | 268 mL·g−1 COD | 92.7% | ||||
Chlorella vulgaris biomass | Mesophilic | Batch (29 days) | Control | - | - | 156 mL·g−1 COD | - | [105] |
140 | 10 min | - | 220 mL·g−1 COD | 40.5% | ||||
20 min | - | 226 mL·g−1 COD | 44.4% | |||||
Scenedesmus sp. | Mesophilic | Continuous (HRT 15 d) | 90 | 1 h | - | 97 mL·g−1 tCOD | 2.9% | [106] |
Continuous (HRT 15 d) | - | 11 mL·g−1 tCOD | 3.4% | |||||
N. salina biomass | Mesophilic | Batch (40 days) | Control | - | 347 mL·g−1 VS | - | - | [107] |
Boiling | - | 487 mL·g−1 VS | - | 40.3% | ||||
100 | 8 h | 549 mL·g−1 VS | - | 58.2% | ||||
Chlorella sp. | Mesophilic | Batch (90 days) | 120 | 30 min | - | 0.34 L·g−1 VS | Negative | [108] |
Nannochloropsis sp. | - | 0.36 L·g−1 VS | ≈30% | |||||
T. weissflogii | - | 0.38 L·g−1 VS | ≈10% | |||||
Tetraselmis sp. | - | 0.42 L·g−1 VS | Less evident | |||||
Pavlova_cf sp. | - | 0.51 L·g−1 VS | Negative | |||||
Palmaria. palmata | Mesophilic | Batch | Control | - | - | 308 mL·g−1 VS | - | [109] |
20 | 24 h | - | 328 mL·g−1 vs. (20 °C) | Less evident | ||||
120 | 30 min | - | 296 mL·g−1 VS | Less evident |
Biomass | AD Condition | AD Mode | Pretreatment | Biogas Yield | CH4 Yield | Increase | Reference | |
---|---|---|---|---|---|---|---|---|
Temp. °C | Time | |||||||
Pennisetum grass | Mesophilic | Batch (33 days) | Control | 190 mL·g−1 VS | [110] | |||
100 | 30 min | 198 mL·g−1 VS | 4.5% | |||||
Rice straw | Mesophilic | Batch (35 days) | Control | 104 L·kg−1 TS | - | [112] | ||
100 | 150 min | 128 L·kg−1 TS | 22.8% | |||||
130 | 125 L·kg−1 TS | 19.8% | ||||||
Rice straw | Mesophilic | Batch (50 days) | Control | 298 mL·g−1 TS | 3.0% | [114] | ||
90 | 15 min | 307 mL·g−1 TS | ||||||
Wheat straw | Mesophilic | Batch (45 days) | Control | 404 mL·g−1 VS | [115] | |||
120 | 60 min | 496 mL·g−1 VS | 22.8% | |||||
140 | 522 mL·g−1 VS | 19.2% | ||||||
Wheat straw | Mesophilic | Batch (30 days) | 121 | 60 min | 29% | [119] | ||
Sugarcane bagasse | 11% | |||||||
Wheat straw (67%) and Sunflower meal (33%) | Mesophilic | Batch (45 days) | Control | 340 mL·g−1 VS | [116] | |||
120 | 1 h | 370 mL·g−1 VS | 8.8% | |||||
140 | 1 h | 390 mL·g−1 VS | 14.7% | |||||
Bean straw | Mesophilic | Continuous (HRT 4.5 d) | Control | 142 mL·g−1 COD | - | - | [117] | |
121 | 1 h | 145 mL·g−1 COD | - | - | ||||
Switchgrass | Mesophilic | Batch (1100 h) | 100 | 6 h | - | 25.9% | [118] | |
Rice straw | Mesophilic | Batch (30 days) | 80 | 6 h | 372.5 mL·g−1 VS | 12.4% | [120] |
Biomass | Pretreatment Condition | Energy Yield | Energy for Pretreatment | NEY | Reference | ||
---|---|---|---|---|---|---|---|
Pretreatment | Control | Increment | |||||
Nanochloropsis oculata | 1 h, 90 °C 3.5 h, 90 °C 2 h, 90 °C | 593 641 644 | 468 | 125 173 176 | 292 | −167 −120 −117 | [105] a |
Chlorella vulgaris | 120 °C for 40 min | 16489 | - | 7969 | 6894 | 1075 | [104] b |
Algal mixture | 15 °C for 15 h | - | - | 2.0 | 2.9 | −0.9 | [36] c |
Dewatered pig manure | 125 °C for 15 min | - | -- | 36 | 116 | −80 | [79] d |
Algal | 105–165 °C for 30 min | - | - | 1 | 1–10 | Negative | [129] |
Algal | 50 °C, 120 °C for 30 min | 12.4 | 11.9 | 0.5 | 18 | −17.5 | [132] c |
Algal | 80 °C, 120 °C for 30 min | 13.6 | 1.7 | 18 | −16.3 | ||
Algal | 120 °C for 30 min | 14.3 | 2.4 | 8 | −5.6 | ||
Brewer’s spent grain | 60 °C, 12 h | - | - | 0.4 | 1 | Negative | [43] |
Kitchen waste | 120 °C, 30 min | - | - | 9.2 | 8.5 | +0.7 | [59] e |
Food waste | 60 °C, 10 min 80 °C, 10 min 100 °C, 10 min | 13.35 15.15 18.16 | - - 12.9 | - | 46.06 76.66 107.46 | Negative Negative Negative | [63] |
Sewage sludge | 134 °C, 30 min | 2.49 | 2.00 | - | - | 0.49 | [65] c |
Sludge | 90 °C, 1 h 90 °C, 24 h 90 °C, 36 h | 312.0 348.2 484.9 | 90.9 | 221 257 394 | 46.6 82.6 91.5 | 174.64 174.75 302.54 | [66] f |
Sludge | 60 °C, 30 min 80 °C, 30 min 100 °C, 30 min 120 °C, 30 min | - | - | 322 645 672 699 | 401 750 1098 1447 | −78 −105 −426 −748 | [67] d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Wang, J.; Li, Y.; Li, Q.; Li, P.; Luo, L.; Zhen, F.; Zheng, G.; Sun, Y. Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. Fermentation 2022, 8, 562. https://doi.org/10.3390/fermentation8100562
Wang M, Wang J, Li Y, Li Q, Li P, Luo L, Zhen F, Zheng G, Sun Y. Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. Fermentation. 2022; 8(10):562. https://doi.org/10.3390/fermentation8100562
Chicago/Turabian StyleWang, Ming, Jianlin Wang, Yunting Li, Qichen Li, Pengfei Li, Lina Luo, Feng Zhen, Guoxiang Zheng, and Yong Sun. 2022. "Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review" Fermentation 8, no. 10: 562. https://doi.org/10.3390/fermentation8100562
APA StyleWang, M., Wang, J., Li, Y., Li, Q., Li, P., Luo, L., Zhen, F., Zheng, G., & Sun, Y. (2022). Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. Fermentation, 8(10), 562. https://doi.org/10.3390/fermentation8100562