Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review
Abstract
1. Introduction
2. General Characteristics of Heat-Treated Biomass
3. Municipal Solid Waste (MSW)
3.1. Food/Kitchen Waste
3.2. WAS
4. Animal Manure Biomass
4.1. Pig/Swine Manure
4.2. Cattle/Dairy Manure
4.3. Chicken/Poultry Manure
5. Algae
6. Lignocellulosic Biomass (LIGB)
7. Energy Balance
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
| AD | Anaerobic digestion | LTPT | Low-temperature pretreatment |
| CHP | Combined heat and power | MSW | Municipal Solid Waste |
| CM | Cattle manure | NEP | Net energy production |
| CHM | Chicken manure | ODS | Organic dry sludge |
| COD | Chemical oxygen demand | OFMSW | Organic fraction of MSW |
| DM | Dairy manure | OLR | Organic loading rat |
| FW | Food waste | PM | Pig manure |
| GHG | Greenhouse gases | SM | Swine manure |
| HP | Heat pretreatment | TCOD | Total COD |
| HRT | Hydraulic retention time | TS | Total solids |
| HTPT | High temperature pretreatment | VFA | Volatile fatty acid |
| KW | Kitchen waste | VS | Volatile solids |
| LIGB | Lignocellulosic biomass | WAS | Waste activated sludge |
References
- Cozma, A.; Negrea, M.; Cuc, L.; Poiana, M.; Micu, L. Impact of Domestic Organic Waste and Agricultural Technologies on Environmental Pollution. Agro Bul. AGIR 2010, 7, 23–28. [Google Scholar]
- Westerman, P.W.; Bicudo, J.R. Management Considerations for Organic Waste Use in Agriculture. Bioresour. Technol. 2005, 96, 215–221. [Google Scholar] [CrossRef]
- Schüch, A.; Morscheck, G.; Lemke, A.; Nelles, M. Bio-Waste Recycling in Germany—Further Challenges. Procedia Environ. Sci. 2016, 35, 308–318. [Google Scholar] [CrossRef]
- Dhanya, B.S.; Mishra, A.; Chandel, A.K.; Verma, M.L. Development of Sustainable Approaches for Converting the Organic Waste to Bioenergy. Sci. Total Environ. 2020, 723, 138109. [Google Scholar] [CrossRef]
- Shi, L.; Simplicio, W.S.; Wu, G.; Hu, Z.; Hu, H.; Zhan, X. Nutrient Recovery from Digestate of Anaerobic Digestion of Livestock Manure: A Review. Curr. Pollut. Rep. 2018, 4, 74–83. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The Anaerobic Digestion of Solid Organic Waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef]
- Moult, J.A.; Allan, S.R.; Hewitt, C.N.; Berners-Lee, M. Greenhouse Gas Emissions of Food Waste Disposal Options for UK Retailers. Food Policy 2018, 77, 50–58. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, Z.; Schäfer, F.; Stinner, W.; Yuan, X.; Wang, H.; Cui, Z.; Wang, X. A Review about Pretreatment of Lignocellulosic Biomass in Anaerobic Digestion: Achievement and Challenge in Germany and China. J. Clean. Prod. 2021, 299, 126885. [Google Scholar] [CrossRef]
- Patinvoh, R.J.; Taherzadeh, M.J. Challenges of Biogas Implementation in Developing Countries. Curr. Opin. Environ. Sci. Health 2019, 12, 30–37. [Google Scholar] [CrossRef]
- Dobslaw, D.; Engesser, K.-H.; Störk, H.; Gerl, T. Low-Cost Process for Emission Abatement of Biogas Internal Combustion Engines. J. Clean. Prod. 2019, 227, 1079–1092. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Panahi, H.K.S.; Nizami, A.-S.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K. A Comprehensive Review on Recent Biological Innovations to Improve Biogas Production, Part 1: Upstream Strategies. Renew. Energy 2020, 146, 1204–1220. [Google Scholar] [CrossRef]
- Muhammad Nasir, I.; Mohd Ghazi, T.I. Pretreatment of Lignocellulosic Biomass from Animal Manure as a Means of Enhancing Biogas Production. Eng. Life Sci. 2015, 15, 733–742. [Google Scholar]
- Abraham, A.; Mathew, A.K.; Park, H.; Choi, O.; Sindhu, R.; Parameswaran, B.; Pandey, A.; Park, J.H.; Sang, B.-I. Pretreatment Strategies for Enhanced Biogas Production from Lignocellulosic Biomass. Bioresour. Technol. 2020, 301, 122725. [Google Scholar] [CrossRef]
- Orlando, M.-Q.; Borja, V.-M. Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review. Energies 2020, 13, 3573. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.; Park, K.Y. Enhancement of Biogas Production from Anaerobic Digestion of Waste Activated Sludge by Hydrothermal Pre-Treatment. Int. Biodeterior. Biodegrad. 2015, 101, 42–46. [Google Scholar] [CrossRef]
- Ferrer, I.; Ponsá, S.; Vázquez, F.; Font, X. Increasing Biogas Production by Thermal (70 °C) Sludge Pre-Treatment Prior to Thermophilic Anaerobic Digestion. Biochem. Eng. J. 2008, 42, 186–192. [Google Scholar] [CrossRef]
- Castrillón, L.; Fernández-Nava, Y.; Ormaechea, P.; Marañón, E. Optimization of Biogas Production from Cattle Manure by Pre-Treatment with Ultrasound and Co-Digestion with Crude Glycerin. Bioresour. Technol. 2011, 102, 7845–7849. [Google Scholar] [CrossRef]
- Almomani, F.; Bhosale, R.R.; Khraisheh, M.A.M.; Shawaqfah, M. Enhancement of Biogas Production from Agricultural Wastes via Pre-Treatment with Advanced Oxidation Processes. Fuel 2019, 253, 964–974. [Google Scholar] [CrossRef]
- Fjørtoft, K.; Morken, J.; Hanssen, J.F.; Briseid, T. Pre-Treatment Methods for Straw for Farm-Scale Biogas Plants. Biomass Bioenergy 2019, 124, 88–94. [Google Scholar] [CrossRef]
- Neves, V.T.D.C.; Sales, E.A.; Perelo, L.W. Influence of Lipid Extraction Methods as Pre-Treatment of Microalgal Biomass for Biogas Production. Renew. Sustain. Energy Rev. 2016, 59, 160–165. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L. Pretreatment Methods to Enhance Anaerobic Digestion of Organic Solid Waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- McVoitte, W.P.A.; Clark, O.G. The Effects of Temperature and Duration of Thermal Pretreatment on the Solid-State Anaerobic Digestion of Dairy Cow Manure. Heliyon 2019, 5, e02140. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.-Y. Overview of Pretreatment Strategies for Enhancing Sewage Sludge Disintegration and Subsequent Anaerobic Digestion: Current Advances, Full-Scale Application and Future Perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on Pretreatment Techniques to Improve Anaerobic Digestion of Sewage Sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Hydrothermal Pretreatment of Rice Straw Biomass: A Potential and Promising Method for Enhanced Methane Production. Appl. Energy 2012, 94, 129–140. [Google Scholar] [CrossRef]
- Garrote, G.; Domínguez, H.; Parajó, J.C. Hydrothermal Processing of Lignocellulosic Materials. Holz Als Roh Werkst. 1999, 57, 191–202. [Google Scholar] [CrossRef]
- He, L.; Huang, H.; Zhang, Z.; Lei, Z. A Review of Hydrothermal Pretreatment of Lignocellulosic Biomass for Enhanced Biogas Production. Curr. Org. Chem. 2015, 19, 437–446. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. A Review on Enhanced Biogas Production from Anaerobic Digestion of Lignocellulosic Biomass by Different Enhancement Techniques. Process Biochem. 2019, 84, 81–90. [Google Scholar] [CrossRef]
- Dien, B.S.; Li, X.-L.; Iten, L.B.; Jordan, D.B.; Nichols, N.N.; O’Bryan, P.J.; Cotta, M.A. Enzymatic Saccharification of Hot-Water Pretreated Corn Fiber for Production of Monosaccharides. Enzym. Microb. Technol. 2006, 39, 1137–1144. [Google Scholar] [CrossRef]
- Climent, M.; Ferrer, I.; Baeza, M.D.M.; Artola, A.; Vázquez, F.; Font, X. Effects of Thermal and Mechanical Pretreatments of Secondary Sludge on Biogas Production under Thermophilic Conditions. Chem. Eng. J. 2007, 133, 335–342. [Google Scholar] [CrossRef]
- Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G. Developments in Pre-Treatment Methods to Improve Anaerobic Digestion of Sewage Sludge. Rev. Environ. Sci. Biotechnol. 2016, 15, 173–211. [Google Scholar] [CrossRef]
- Pilli, S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Thermal Pretreatment of Sewage Sludge to Enhance Anaerobic Digestion: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 669–702. [Google Scholar] [CrossRef]
- Prorot, A.; Julien, L.; Christophe, D.; Patrick, L. Sludge Disintegration during Heat Treatment at Low Temperature: A Better Understanding of Involved Mechanisms with a Multiparametric Approach. Biochem. Eng. J. 2011, 54, 178–184. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A Review of Thermal Sludge Pre-Treatment Processes to Improve Dewaterability. J. Hazard. Mater. 2003, 98, 51–67. [Google Scholar] [CrossRef]
- Alzate, M.E.; Muñoz, R.; Rogalla, F.; Fdz-Polanco, F.; Pérez-Elvira, S.I. Biochemical Methane Potential of Microalgae: Influence of Substrate to Inoculum Ratio, Biomass Concentration and Pretreatment. Bioresour. Technol. 2012, 123, 488–494. [Google Scholar] [CrossRef]
- Passos, F.; García, J.; Ferrer, I. Impact of Low Temperature Pretreatment on the Anaerobic Digestion of Microalgal Biomass. Bioresour. Technol. 2013, 138, 79–86. [Google Scholar] [CrossRef]
- Appels, L.; Degrève, J.; Van der Bruggen, B.; Van Impe, J.; Dewil, R. Influence of Low Temperature Thermal Pre-Treatment on Sludge Solubilisation, Heavy Metal Release and Anaerobic Digestion. Bioresour. Technol. 2010, 101, 5743–5748. [Google Scholar] [CrossRef]
- Menardo, S.; Balsari, P.; Dinuccio, E.; Gioelli, F. Thermal Pre-Treatment of Solid Fraction from Mechanically-Separated Raw and Digested Slurry to Increase Methane Yield. Bioresour. Technol. 2011, 102, 2026–2032. [Google Scholar] [CrossRef]
- Fang, C.; Huang, R.; Dykstra, C.M.; Jiang, R.; Pavlostathis, S.G.; Tang, Y. Energy and Nutrient Recovery from Sewage Sludge and Manure via Anaerobic Digestion with Hydrothermal Pretreatment. Environ. Sci. Technol. 2019, 54, 1147–1156. [Google Scholar] [CrossRef]
- Liao, X.; Li, H.; Zhang, Y.; Liu, C.; Chen, Q. Accelerated High-Solids Anaerobic Digestion of Sewage Sludge Using Low-Temperature Thermal Pretreatment. Int. Biodeterior. Biodegrad. 2016, 106, 141–149. [Google Scholar] [CrossRef]
- Ekpo, U.; Ross, A.B.; Camargo-Valero, M.A.; Fletcher, L.A. Influence of PH on Hydrothermal Treatment of Swine Manure: Impact on Extraction of Nitrogen and Phosphorus in Process Water. Bioresour. Technol. 2016, 214, 637–644. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, Z.; Yuan, T.; Huang, W.; Lei, Z.; Zhang, Z. Low-Temperature Hydrothermal Pretreatment Followed by Dry Anaerobic Digestion: A Sustainable Strategy for Manure Waste Management Regarding Energy Recovery and Nutrients Availability. Waste Manag. 2017, 70, 255–262. [Google Scholar] [CrossRef]
- Peces, M.; Astals, S.; Mata-Alvarez, J. Effect of Moisture on Pretreatment Efficiency for Anaerobic Digestion of Lignocellulosic Substrates. Waste Manag. 2015, 46, 189–196. [Google Scholar] [CrossRef]
- Ferrer, I.; Palatsi, J.; Campos, E.; Flotats, X. Mesophilic and Thermophilic Anaerobic Biodegradability of Water Hyacinth Pre-Treated at 80 °C. Waste Manag. 2010, 30, 1763–1767. [Google Scholar] [CrossRef]
- Menardo, S.; Airoldi, G.; Balsari, P. The Effect of Particle Size and Thermal Pre-Treatment on the Methane Yield of Four Agricultural by-Products. Bioresour. Technol. 2012, 104, 708–714. [Google Scholar] [CrossRef]
- Hren, R.; Petrovič, A.; Čuček, L.; Simonič, M. Determination of Various Parameters during Thermal and Biological Pretreatment of Waste Materials. Energies 2020, 13, 2262. [Google Scholar] [CrossRef]
- Wang, W.-C.; Sastry, S.K. Changes in electrical conductivity of selected vegetables during multiple thermal treatments. J. Food Process Eng. 1997, 20, 499–516. [Google Scholar] [CrossRef]
- Kinnunen, V.; Craggs, R.; Rintala, J. Influence of Temperature and Pretreatments on the Anaerobic Digestion of Wastewater Grown Microalgae in a Laboratory-Scale Accumulating-Volume Reactor. Water Res. 2014, 57, 247–257. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, H.; Xu, W.; He, Q.; Zhou, Q. Enhancement of Biochemical Methane Potential from Excess Sludge with Low Organic Content by Mild Thermal Pretreatment. Biochem. Eng. J. 2013, 70, 127–134. [Google Scholar] [CrossRef]
- Costa, J.C.; Barbosa, S.G.; Alves, M.M.; Sousa, D.Z. Thermochemical Pre- and Biological Co-Treatments to Improve Hydrolysis and Methane Production from Poultry Litter. Bioresour. Technol. 2012, 111, 141–147. [Google Scholar] [CrossRef]
- Rodriguez-Verde, I.; Regueiro, L.; Lema, J.M.; Carballa, M. Blending Based Optimisation and Pretreatment Strategies to Enhance Anaerobic Digestion of Poultry Manure. Waste Manag. 2018, 71, 521–531. [Google Scholar] [CrossRef]
- Gutberlet, J. Cooperative Urban Mining in Brazil: Collective Practices in Selective Household Waste Collection and Recycling. Waste Manag. 2015, 45, 22–31. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Fdez-Güelfo, L.A.; Zhou, Y.; Álvarez-Gallego, C.J.; Garcia, L.I.R.; Ng, W.J. Anaerobic Co-Digestion of Organic Fraction of Municipal Solid Waste (OFMSW): Progress and Challenges. Renew. Sustain. Energy Rev. 2018, 93, 380–399. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A Comprehensive Review on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Chatterjee, B.; Mazumder, D. Anaerobic Digestion for the Stabilization of the Organic Fraction of Municipal Solid Waste: A Review. Environ. Rev. 2016, 24, 426–459. [Google Scholar] [CrossRef]
- Fernández Rodríguez, J.; Pérez, M.; Romero, L.I. Mesophilic Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Optimisation of the Semicontinuous Process. Chem. Eng. J. 2012, 193–194, 10–15. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Frunzo, L.; Esposito, G.; Lens, P.N.L.; Pirozzi, F. Enhanced Anaerobic Digestion of Food Waste by Thermal and Ozonation Pretreatment Methods. J. Environ. Manag. 2014, 146, 142–149. [Google Scholar] [CrossRef]
- Kuo, W.; Cheng, K. Use of Respirometer in Evaluation of Process and Toxicity of Thermophilic Anaerobic Digestion for Treating Kitchen Waste. Bioresour. Technol. 2007, 98, 1805–1811. [Google Scholar] [CrossRef]
- Ma, J.; Duong, T.H.; Smits, M.; Verstraete, W.; Carballa, M. Enhanced Biomethanation of Kitchen Waste by Different Pre-Treatments. Bioresour. Technol. 2011, 102, 592–599. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Liu, X.-Y.; Kao, J.C.; Stabnikova, O. Digestion of Pre-Treated Food Waste in a Hybrid Anaerobic Solid–Liquid (HASL) System. J. Chem. Technol. Biotechnol. 2006, 81, 345–351. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Li, J.; Li, H.; Yu, Z. Effects of Thermal Pretreatment on the Biomethane Yield and Hydrolysis Rate of Kitchen Waste. Appl. Energy 2016, 172, 47–58. [Google Scholar] [CrossRef]
- Kim, J.; Park, C.; Kim, T.-H.; Lee, M.; Kim, S.; Kim, S.-W.; Lee, J. Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge. J. Biosci. Bioeng. 2003, 95, 271–275. [Google Scholar] [CrossRef]
- Gandhi, P.; Paritosh, K.; Pareek, N.; Mathur, S.; Lizasoain, J.; Gronauer, A.; Bauer, A.; Vivekanand, V. Multicriteria Decision Model and Thermal Pretreatment of Hotel Food Waste for Robust Output to Biogas: Case Study from City of Jaipur, India. BioMed Res. Int. 2018, 2018, 9416249. [Google Scholar] [CrossRef]
- Gnaoui, Y.E.; Karouach, F.; Bakraoui, M.; Barz, M.; Bari, H.E. Mesophilic Anaerobic Digestion of Food Waste: Effect of Thermal Pretreatment on Improvement of Anaerobic Digestion Process. Energy Rep. 2020, 6, 417–422. [Google Scholar] [CrossRef]
- Chen, H.; Yi, H.; Li, H.; Guo, X.; Xiao, B. Effects of Thermal and Thermal-Alkaline Pretreatments on Continuous Anaerobic Sludge Digestion: Performance, Energy Balance and, Enhancement Mechanism. Renew. Energy 2020, 147, 2409–2416. [Google Scholar] [CrossRef]
- Liu, T.; Wu, C.; Wang, Y.; Xue, G.; Zhang, M.; Liu, C.; Zheng, Y. Enhanced Deep Utilization of Low-Organic Content Sludge by Processing Time-Extended Low-Temperature Thermal Pretreatment. ACS Omega 2021, 6, 28946–28954. [Google Scholar] [CrossRef]
- Biswal, B.K.; Huang, H.; Dai, J.; Chen, G.-H.; Wu, D. Impact of Low-Thermal Pretreatment on Physicochemical Properties of Saline Waste Activated Sludge, Hydrolysis of Organics and Methane Yield in Anaerobic Digestion. Bioresour. Technol. 2020, 297, 122423. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Gao, X.; Zhou, Y.; Shen, R. Effect of Thermal Pretreatment on the Physical and Chemical Properties of Municipal Biomass Waste. Waste Manag. 2012, 32, 249–255. [Google Scholar] [CrossRef]
- Abbas, R.S.; Agha, A.H.H.; Rahman, S. Enhancement Anaerobic Digestion and Methane Production from Kitchen Waste by Thermal and Thermo-Chemical Pretreatments in Batch Leach Bed Reactor with down Flow. Res. Agric. Eng. 2018, 64, 128–135. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Svensson, K. Thermal Hydrolysis Sludge Pretreatment. In Clean Energy and Resources Recovery; Elsevier: Amsterdam, The Netherlands, 2021; pp. 391–398. ISBN 978-0-323-85223-4. [Google Scholar]
- Nges, I.A.; Liu, J. Effects of Anaerobic Pre-Treatment on the Degradation of Dewatered-Sewage Sludge. Renew. Energy 2009, 34, 1795–1800. [Google Scholar] [CrossRef]
- Xiao, B.; Tang, X.; Yi, H.; Dong, L.; Han, Y.; Liu, J. Comparison of Two Advanced Anaerobic Digestions of Sewage Sludge with High-Temperature Thermal Pretreatment and Low-Temperature Thermal-Alkaline Pretreatment. Bioresour. Technol. 2020, 304, 122979. [Google Scholar] [CrossRef]
- Zheng, T.; Zhang, K.; Chen, X.; Ma, Y.; Xiao, B.; Liu, J. Effects of Low- and High-Temperature Thermal-Alkaline Pretreatments on Anaerobic Digestion of Waste Activated Sludge. Bioresour. Technol. 2021, 337, 125400. [Google Scholar] [CrossRef]
- Abudi, Z.N.; Hu, Z.; Sun, N.; Xiao, B.; Rajaa, N.; Liu, C.; Guo, D. Batch Anaerobic Co-Digestion of OFMSW (Organic Fraction of Municipal Solid Waste), TWAS (Thickened Waste Activated Sludge) and RS (Rice Straw): Influence of TWAS and RS Pretreatment and Mixing Ratio. Energy 2016, 107, 131–140. [Google Scholar] [CrossRef]
- Günerhan, Ü.; Us, E.; Dumlu, L.; Yılmaz, V.; Carrère, H.; Perendeci, A.N. Impacts of Chemical-Assisted Thermal Pretreatments on Methane Production from Fruit and Vegetable Harvesting Wastes: Process Optimization. Molecules 2020, 25, 500. [Google Scholar] [CrossRef]
- Varma, V.S.; Parajuli, R.; Scott, E.; Canter, T.; Lim, T.T.; Popp, J.; Thoma, G. Dairy and Swine Manure Management—Challenges and Perspectives for Sustainable Treatment Technology. Sci. Total Environ. 2021, 778, 146319. [Google Scholar] [CrossRef]
- Zhu, Q.-L.; Wu, B.; Pisutpaisal, N.; Wang, Y.-W.; Ma, K.; Dai, L.-C.; Qin, H.; Tan, F.-R.; Maeda, T.; Xu, Y.; et al. Bioenergy from Dairy Manure: Technologies, Challenges and Opportunities. Sci. Total Environ. 2021, 790, 148199. [Google Scholar] [CrossRef]
- Raju, C.S.; Sutaryo, S.; Ward, A.J.; Møller, H.B. Effects of High-Temperature Isochoric Pre-Treatment on the Methane Yields of Cattle, Pig and Chicken Manure. Environ. Technol. 2013, 34, 239–244. [Google Scholar] [CrossRef]
- Qiao, W.; Yan, X.; Ye, J.; Sun, Y.; Wang, W.; Zhang, Z. Evaluation of Biogas Production from Different Biomass Wastes with/without Hydrothermal Pretreatment. Renew. Energy 2011, 36, 3313–3318. [Google Scholar] [CrossRef]
- Bonmatí, A.; Flotats, X.; Mateu, L.; Campos, E. Study of Thermal Hydrolysis as a Pretreatment to Mesophilic Anaerobic Digestion of Pig Slurry. Water Sci. Technol. 2001, 44, 109–116. [Google Scholar] [CrossRef]
- Rafique, R.; Poulsen, T.G.; Nizami, A.-S.; Murphy, J.D.; Kiely, G. Effect of Thermal, Chemical and Thermo-Chemical Pre-Treatments to Enhance Methane Production. Energy 2010, 35, 4556–4561. [Google Scholar] [CrossRef]
- Mladenovska, Z.; Hartmann, H.; Kvist, T.; Sales-Cruz, M.; Gani, R.; Ahring, B.K. Thermal Pretreatment of the Solid Fraction of Manure: Impact on the Biogas Reactor Performance and Microbial Community. Water Sci. Technol. 2006, 53, 59–67. [Google Scholar] [CrossRef]
- Carrère, H.; Sialve, B.; Bernet, N. Improving Pig Manure Conversion into Biogas by Thermal and Thermo-Chemical Pretreatments. Bioresour. Technol. 2009, 100, 3690–3694. [Google Scholar] [CrossRef]
- Passos, F.; Ortega, V.; Donoso-Bravo, A. Thermochemical Pretreatment and Anaerobic Digestion of Dairy Cow Manure: Experimental and Economic Evaluation. Bioresour. Technol. 2017, 227, 239–246. [Google Scholar] [CrossRef]
- Şenol, H.; Açıkel, Ü.; Demir, S.; Oda, V. Anaerobic Digestion of Cattle Manure, Corn Silage and Sugar Beet Pulp Mixtures after Thermal Pretreatment and Kinetic Modeling Study. Fuel 2020, 263, 116651. [Google Scholar] [CrossRef]
- Budde, J.; Heiermann, M.; Quiñones, T.S.; Plöchl, M. Effects of Thermobarical Pretreatment of Cattle Waste as Feedstock for Anaerobic Digestion. Waste Manag. 2014, 34, 522–529. [Google Scholar] [CrossRef]
- Chu, C.-Y.; Wang, Z.-F. Dairy Cow Solid Waste Hydrolysis and Hydrogen/Methane Productions by Anaerobic Digestion Technology. Int. J. Hydrogen Energy 2017, 42, 30591–30598. [Google Scholar] [CrossRef]
- Liao, W. Optimizing Dilute Acid Hydrolysis of Hemicellulose in a Nitrogen-Rich Cellulosic Material––Dairy Manure. Bioresour. Technol. 2004, 94, 33–41. [Google Scholar] [CrossRef]
- Jin, Y.; Hu, Z.; Wen, Z. Enhancing Anaerobic Digestibility and Phosphorus Recovery of Dairy Manure through Microwave-Based Thermochemical Pretreatment. Water Res. 2009, 43, 3493–3502. [Google Scholar] [CrossRef]
- Chan, I.; Srinivasan, A.; Liao, P.H.; Lo, K.V.; Mavinic, D.S.; Atwater, J.; Thompson, J.R. The Effects of Microwave Pretreatment of Dairy Manure on Methane Production. Nat. Resour. 2013, 04, 246–256. [Google Scholar] [CrossRef]
- Bayrakdar, A.; Sürmeli, R.Ö.; Çalli, B. Anaerobic Digestion of Chicken Manure by a Leach-Bed Process Coupled with Side-Stream Membrane Ammonia Separation. Bioresour. Technol. 2018, 258, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, W.; Wang, X.; Gabauer, W.; Ortner, M.; Li, Z. Tackling Ammonia Inhibition for Efficient Biogas Production from Chicken Manure: Status and Technical Trends in Europe and China. Renew. Sustain. Energy Rev. 2018, 97, 186–199. [Google Scholar] [CrossRef]
- Li, K.; Liu, R.; Yu, Q.; Ma, R. Removal of Nitrogen from Chicken Manure Anaerobic Digestion for Enhanced Biomethanization. Fuel 2018, 232, 395–404. [Google Scholar] [CrossRef]
- Ardic, I.; Taner, F. Effects of Thermal, Chemical and Thermochemical Pretreatments to Increase Biogas Production Yield of Chicken Manure. Fresenius Environ. Bull. 2005, 14, 373–380. [Google Scholar]
- Elasri, O.; El amin Afilal, M. Potential for Biogas Production from the Anaerobic Digestion of Chicken Droppings in Morocco. Int. J. Recycl. Org. Waste Agric. 2016, 5, 195–204. [Google Scholar] [CrossRef]
- Yin, D.-M.; Qiao, W.; Negri, C.; Adani, F.; Fan, R.; Dong, R.-J. Enhancing Hyper-Thermophilic Hydrolysis Pre-Treatment of Chicken Manure for Biogas Production by in-Situ Gas Phase Ammonia Stripping. Bioresour. Technol. 2019, 287, 121470. [Google Scholar] [CrossRef]
- Yin, D.; Taherzadeh, M.J.; Lin, M.; Jiang, M.; Qiao, W.; Dong, R. Upgrading the Anaerobic Membrane Bioreactor Treatment of Chicken Manure by Introducing In-Situ Ammonia Stripping and Hyper-Thermophilic Pretreatment. Bioresour. Technol. 2020, 310, 123470. [Google Scholar] [CrossRef]
- Zahan, Z.; Othman, M.Z. Effect of Pre-Treatment on Sequential Anaerobic Co-Digestion of Chicken Litter with Agricultural and Food Wastes under Semi-Solid Conditions and Comparison with Wet Anaerobic Digestion. Bioresour. Technol. 2019, 281, 286–295. [Google Scholar] [CrossRef]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Thermal Pretreatment to Improve Methane Production of Scenedesmus Biomass. Biomass Bioenergy 2012, 40, 105–111. [Google Scholar] [CrossRef]
- Ras, M.; Lardon, L.; Bruno, S.; Bernet, N.; Steyer, J.-P. Experimental Study on a Coupled Process of Production and Anaerobic Digestion of Chlorella Vulgaris. Bioresour. Technol. 2011, 102, 200–206. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; Mooney, J.; Prescott, T.; Olabi, A.G. Pre-Treatment Techniques Used for Anaerobic Digestion of Algae. Fuel Process. Technol. 2015, 138, 765–779. [Google Scholar] [CrossRef]
- Marsolek, M.D.; Kendall, E.; Thompson, P.L.; Shuman, T.R. Thermal Pretreatment of Algae for Anaerobic Digestion. Bioresour. Technol. 2014, 151, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Mendez, L.; Mahdy, A.; Timmers, R.A.; Ballesteros, M.; González-Fernández, C. Enhancing Methane Production of Chlorella Vulgaris via Thermochemical Pretreatments. Bioresour. Technol. 2013, 149, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Mendez, L.; Mahdy, A.; Demuez, M.; Ballesteros, M.; González-Fernández, C. Effect of High Pressure Thermal Pretreatment on Chlorella Vulgaris Biomass: Organic Matter Solubilisation and Biochemical Methane Potential. Fuel 2014, 117, 674–679. [Google Scholar] [CrossRef]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Effect of Organic Loading Rate on Anaerobic Digestion of Thermally Pretreated Scenedesmus Sp. Biomass. Bioresour. Technol. 2013, 129, 219–223. [Google Scholar] [CrossRef]
- Schwede, S.; Kowalczyk, A.; Gerber, M.; Span, R. Influence of Different Cell Disruption Techniques on Mono Digestion of Algal Biomass. In Proceedings of the World Renewable Energy Congress-Sweden, Linköping, Sweden, 8–13 May 2011; pp. 41–47. [Google Scholar]
- Bohutskyi, P.; Betenbaugh, M.J.; Bouwer, E.J. The Effects of Alternative Pretreatment Strategies on Anaerobic Digestion and Methane Production from Different Algal Strains. Bioresour. Technol. 2014, 155, 366–372. [Google Scholar] [CrossRef]
- Jard, G.; Dumas, C.; Delgenes, J.P.; Marfaing, H.; Sialve, B.; Steyer, J.P.; Carrère, H. Effect of Thermochemical Pretreatment on the Solubilization and Anaerobic Biodegradability of the Red Macroalga Palmaria Palmata. Biochem. Eng. J. 2013, 79, 253–258. [Google Scholar] [CrossRef]
- Li, L.; Kong, X.; Yang, F.; Li, D.; Yuan, Z.; Sun, Y. Biogas Production Potential and Kinetics of Microwave and Conventional Thermal Pretreatment of Grass. Appl. Biochem. Biotechnol. 2012, 166, 1183–1191. [Google Scholar] [CrossRef]
- Ahmed, B.; Aboudi, K.; Tyagi, V.K.; Álvarez-Gallego, C.J.; Fernández-Güelfo, L.A.; Romero-García, L.I.; Kazmi, A.A. Improvement of Anaerobic Digestion of Lignocellulosic Biomass by Hydrothermal Pretreatment. Appl. Sci. 2019, 9, 3853. [Google Scholar] [CrossRef]
- Luo, T.; Huang, H.; Mei, Z.; Shen, F.; Ge, Y.; Hu, G.; Meng, X. Hydrothermal Pretreatment of Rice Straw at Relatively Lower Temperature to Improve Biogas Production via Anaerobic Digestion. Chin. Chem. Lett. 2019, 30, 1219–1223. [Google Scholar] [CrossRef]
- Taherzadeh, M.; Karimi, K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shen, F.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J.; Zeng, Y.; Luo, T.; Mei, Z. Can Hydrothermal Pretreatment Improve Anaerobic Digestion for Biogas from Lignocellulosic Biomass? Bioresour. Technol. 2018, 249, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Rajput, A.A.; Zeshan; Visvanathan, C. Effect of Thermal Pretreatment on Chemical Composition, Physical Structure and Biogas Production Kinetics of Wheat Straw. J. Environ. Manag. 2018, 221, 45–52. [Google Scholar] [CrossRef]
- Rajput, A.A.; Zeshan; Hassan, M. Enhancing Biogas Production through Co-Digestion and Thermal Pretreatment of Wheat Straw and Sunflower Meal. Renew. Energy 2021, 168, 1–10. [Google Scholar] [CrossRef]
- Montoya-Rosales, J.J.; Peces, M.; González-Rodríguez, L.M.; Alatriste-Mondragón, F.; Villa-Gómez, D.K. A Broad Overview Comparing a Fungal, Thermal and Acid Pre-Treatment of Bean Straw in Terms of Substrate and Anaerobic Digestion Effect. Biomass Bioenergy 2020, 142, 105775. [Google Scholar] [CrossRef]
- Jin, G.; Bierma, T.; Walker, P.M. Low-Heat, Mild Alkaline Pretreatment of Switchgrass for Anaerobic Digestion. J. Environ. Sci. Health Part A 2014, 49, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Bolado-Rodríguez, S.; Toquero, C.; Martín-Juárez, J.; Travaini, R.; García-Encina, P.A. Effect of Thermal, Acid, Alkaline and Alkaline-Peroxide Pretreatments on the Biochemical Methane Potential and Kinetics of the Anaerobic Digestion of Wheat Straw and Sugarcane Bagasse. Bioresour. Technol. 2016, 201, 182–190. [Google Scholar] [CrossRef]
- Du, J.; Qian, Y.; Xi, Y.; Lü, X. Hydrothermal and Alkaline Thermal Pretreatment at Mild Temperature in Solid State for Physicochemical Properties and Biogas Production from Anaerobic Digestion of Rice Straw. Renew. Energy 2019, 139, 261–267. [Google Scholar] [CrossRef]
- Cao, W.; Sun, C.; Liu, R.; Yin, R.; Wu, X. Comparison of the Effects of Five Pretreatment Methods on Enhancing the Enzymatic Digestibility and Ethanol Production from Sweet Sorghum Bagasse. Bioresour. Technol. 2012, 111, 215–221. [Google Scholar] [CrossRef]
- Pedersen, M.; Johansen, K.S.; Meyer, A.S. Low Temperature Lignocellulose Pretreatment: Effects and Interactions of Pretreatment PH Are Critical for Maximizing Enzymatic Monosaccharide Yields from Wheat Straw. Biotechnol. Biofuels 2011, 4, 11. [Google Scholar] [CrossRef]
- Taherdanak, M.; Zilouei, H.; Karimi, K. The Influence of Dilute Sulfuric Acid Pretreatment on Biogas Production from Wheat Plant. Int. J. Green Energy 2016, 13, 1129–1134. [Google Scholar] [CrossRef]
- Amnuaycheewa, P.; Hengaroonprasan, R.; Rattanaporn, K.; Kirdponpattara, S.; Cheenkachorn, K.; Sriariyanun, M. Enhancing Enzymatic Hydrolysis and Biogas Production from Rice Straw by Pretreatment with Organic Acids. Ind. Crops Prod. 2016, 87, 247–254. [Google Scholar] [CrossRef]
- Liu, L.; Sun, J.; Li, M.; Wang, S.; Pei, H.; Zhang, J. Enhanced Enzymatic Hydrolysis and Structural Features of Corn Stover by FeCl3 Pretreatment. Bioresour. Technol. 2009, 100, 5853–5858. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Knierim, B.; Manisseri, C.; Arora, R.; Scheller, H.V.; Auer, M.; Vogel, K.P.; Simmons, B.A.; Singh, S. Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification. Bioresour. Technol. 2010, 101, 4900–4906. [Google Scholar] [CrossRef] [PubMed]
- Millati, R.; Wikandari, R.; Ariyanto, T.; Putri, R.U.; Taherzadeh, M.J. Pretreatment Technologies for Anaerobic Digestion of Lignocelluloses and Toxic Feedstocks. Bioresour. Technol. 2020, 304, 122998. [Google Scholar] [CrossRef]
- Carrillo-Reyes, J.; Buitrón, G.; Arcila, J.S.; López-Gómez, M.O. Thermophilic Biogas Production from Microalgae-Bacteria Aggregates: Biogas Yield, Community Variation and Energy Balance. Chemosphere 2021, 275, 129898. [Google Scholar] [CrossRef]
- Ometto, F.; Quiroga, G.; Pšenička, P.; Whitton, R.; Jefferson, B.; Villa, R. Impacts of Microalgae Pre-Treatments for Improved Anaerobic Digestion: Thermal Treatment, Thermal Hydrolysis, Ultrasound and Enzymatic Hydrolysis. Water Res. 2014, 65, 350–361. [Google Scholar] [CrossRef]
- Van Den Hende, S.; Carré, E.; Cocaud, E.; Beelen, V.; Boon, N.; Vervaeren, H. Treatment of Industrial Wastewaters by Microalgal Bacterial Flocs in Sequencing Batch Reactors. Bioresour. Technol. 2014, 161, 245–254. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Yan, J.; Qiao, W.; Wang, W.; Zhu, T. Effects of Lipid Concentration on Anaerobic Co-Digestion of Municipal Biomass Wastes. Waste Manag. 2014, 34, 1025–1034. [Google Scholar] [CrossRef]
- Cho, S.; Park, S.; Seon, J.; Yu, J.; Lee, T. Evaluation of Thermal, Ultrasonic and Alkali Pretreatments on Mixed-Microalgal Biomass to Enhance Anaerobic Methane Production. Bioresour. Technol. 2013, 143, 330–336. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Wang, L. Transferring of Components and Energy Output in Industrial Sewage Sludge Disposal by Thermal Pretreatment and Two-Phase Anaerobic Process. Bioresour. Technol. 2010, 101, 2580–2584. [Google Scholar] [CrossRef] [PubMed]
- De Vrieze, J.; Smet, D.; Klok, J.; Colsen, J.; Angenent, L.T.; Vlaeminck, S.E. Thermophilic Sludge Digestion Improves Energy Balance and Nutrient Recovery Potential in Full-Scale Municipal Wastewater Treatment Plants. Bioresour. Technol. 2016, 218, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Budde, J.; Prochnow, A.; Plöchl, M.; Suárez Quiñones, T.; Heiermann, M. Energy Balance, Greenhouse Gas Emissions, and Profitability of Thermobarical Pretreatment of Cattle Waste in Anaerobic Digestion. Waste Manag. 2016, 49, 390–410. [Google Scholar] [CrossRef] [PubMed]

| Biomass | AD Condition | AD Mode | Pretreatment | Biogas Yield | CH4 Yield | Increase | Reference | |
|---|---|---|---|---|---|---|---|---|
| Temp. °C | Time | |||||||
| Waste activated sludge | Mesophilic | Batch (20 days) | Control | 34.8 mL·g−1 ODS | [37] | |||
| 70 | 15 min | 28.3 mL·g−1 ODS | Negative | |||||
| 30 min | 33.6 mL·g−1 ODS | Negative | ||||||
| 60 min | 35.3 mL·g−1 ODS | Less evident | ||||||
| 80 °C | 15 min | 21.3 mL·g−1 ODS | Negative | |||||
| 30 min | 48.0 mL·g−1 ODS | 1.4 times | ||||||
| 60 min | 75.6 mL·g−1 ODS | 2.2 times | ||||||
| 90 °C | 15 min | 76.7 mL·g−1 ODS | 2.2 times | |||||
| 30 min | 142 mL·g−1 ODS | 4 times | ||||||
| 60 min | 378 mL·g−1 ODS | 11 times | ||||||
| Sludge | Mesophilic | Batch | Control | 87 mL·g−1 VS | [40] | |||
| 60 °C | 30 min | 93 mL·g−1 VS | 7.3% | |||||
| 70 °C | 100 mL·g−1 VS | 15.6% | ||||||
| 80 °C | 108 mL·g−1 VS | 24.4% | ||||||
| Semi-continuous | control | 333 mL·g−1 VS | ||||||
| 70 °C | 30 min | 383 mL·g−1 VS | 11.7% | |||||
| Kitchen waste | Thermophilic | Semi-continuous | Control | 1360 mL·L−1 | [58] | |||
| 37 °C | 84 h | 1420 mL·L−1 | 4.4% | |||||
| 50 °C | 2020 mL·L−1 | 48.5% | ||||||
| 60 °C | 2540 mL·L−1 | 86.8% | ||||||
| Kitchen waste | Thermophilic | Batch | Blank | 6.5 L·L−1 | [59] | |||
| 120 °C | 30 min | 7.2 L·L−1 | 10.8% | |||||
| Food waste | Mesophilic | Batch (14 days) | blank | 280 mL·g−1 VS | [60] | |||
| 70 °C | 2 h | 290 mL·g−1 VS | Less evident | |||||
| Kitchen waste | Mesophilic, | Batch (40 days) | Blank | 614 mL·g−1 VS | [61] | |||
| 55 °C | 15 min | 579 mL·g−1 VS | Negative | |||||
| 70 °C | 90 min | 822 mL·g−1 VS | 33.9% | |||||
| 90 °C | 30 min | 781 mL·g−1 VS | 27.2% | |||||
| 120 °C | 15 min | 777 mL·g−1 VS | 26.5% | |||||
| WAS | Mesophilic, | Batch | Control | 2507 L·m−3 WAS | [62] | |||
| 121 °C | 30 min | 3390 L·m−3 WAS | 35.2% | |||||
| Food waste | Mesophilic | Batch (45 days) | Control | 555 mL·g−1 VS | [63] | |||
| 60 °C | 10 min 20 min | 575 mL·g−1 VS 645 mL·g−1 VS | 3.6% 16.2% | |||||
| 80 °C | 10 min 20 min | 653 mL·g−1 VS 692 mL·g−1 VS | 17.7% 24.7% | |||||
| 100 °C | 10 min 20 min | 783 mL·g−1 VS 728 mL·g−1 VS | 41.1% 31.2% | |||||
| Food waste | Mesophilic, | Semi-continuous | control | 310 mL·g−1 VS | [64] | |||
| 100 °C | 30 min | 383 mL·g−1 VS | 23.68% | |||||
| Sewage sludge | Mesophilic, | Semi-continuous | control | 107 mL·g−1 VS | [65] | |||
| 134 °C | 30 min | 210 mL·g−1 VS | 2 times | |||||
| Sludge | Mesophilic, | Batch | Control | - | 53 mL·g−1 VS | [66] | ||
| 90 °C | 1 h | 177 mL·g−1 VS | 3.33 times | |||||
| 24 h | 195 mL·g−1 VS | 3.68 times | ||||||
| 36 h | 295 mL·g−1 VS | 5.56 times | ||||||
| Waste activated sludge | Mesophilic, | Batch | Control | - | 89 mL·g−1 VSS | [67] | ||
| 60 °C | 30 min | 101 mL·g−1 VSS | 13.5% | |||||
| 80 °C | 30 min | 113 mL·g−1 VSS | 27.0% | |||||
| 100 °C | 30 min | 114 mL·g−1 VSS | 28.1% | |||||
| 120 °C | 30 min | 115 mL·g−1 VSS | 29.2% | |||||
| Biomass | AD Condition | AD Mode | Pretreatment | Biogas Yield * | CH4 Yield * | Increase | Reference | |
|---|---|---|---|---|---|---|---|---|
| Temp. | Time | |||||||
| Swine manure | Mesophilic | Batch (56 days) | Blank | – | 79 | – | [38] | |
| 120 | 30 min | 213 | 170% | |||||
| Swine manure | Mesophilic | Batch (63 days) | Blank | 4 h | – | 0.79 COD·COD−1 | [39] | |
| 125 | 4 h | – | 0.86 | 8.9% | ||||
| Swine manure | Mesophilic | Batch | Blank | – | 204 | – | [42] | |
| 110 °C | 30 min | 231 | 13.2% | |||||
| 130 °C | 30 min | 271 | 32.8% | |||||
| Pig manure | Mesophilic | Batch (27 days) | Blank | – | 215 | – | – | [79] |
| 100 °C | 15 min | 208 | – | Less evident | ||||
| 125 °C | 15 min | 234 | – | 8.8% | ||||
| Pig slurry | Thermophilic | Batch (80 days) | Blank | – | – | 348 | – | [81] |
| 80 °C | 3 h | – | 558 | 60.4% | ||||
| Pig manure | Mesophilic | Batch | 100 | 1 h | 475 | – | 30% | [82] |
| A mixture of cattle manure and swine manure | Thermophilic | Batch (90 days) | Blank | – | – | 233 | – | [83] |
| 100 °C | 20 min 40 min | – | 289 273 | 24.0% 17.2% | ||||
| 120 °C | 20 min 40 min | – | 254 270 | 9.0% 13.7% | ||||
| 140 °C | 20 min 40 min | – | 274 254 | 17.6% 9.0% | ||||
| Continuous | Blank | – | 238 | – | ||||
| 140 °C | – | 255 | 7.1% | |||||
| Pig manure 1 | Mesophilic | Batch (40 days) | Blank | – | – | 112 mL·g−1 COD | [84] | |
| 70 | 3 h | – | 98 | Less evident | ||||
| 90 | 3 h | – | 127 | |||||
| Pig manure 2 | Mesophilic | Batch (40 days) | Blank | – | – | 91 | – | |
| 135 | 20 min | – | 84 | Less evident | ||||
| Biomass | Operating Condition | Operating Mode | Pretreatment | Biogas Yield | CH4 Yield | Increase | Reference | |
|---|---|---|---|---|---|---|---|---|
| Temp. | Time | |||||||
| Dairy cow manure | Mesophilic | Batch (40 days) | 125 °C | 37.5 min | 34% | [22] | ||
| Cattle manure | Mesophilic | Batch (27 days) | Blank | – | 244 mL·g−1 VS | [79] | ||
| 100 °C | 15 min | 222 | Less evident | |||||
| 125 °C | 15 min | 242 | ||||||
| Dairy cow manure | Mesophilic | Batch (40 days) | 37 °C | 12 h | 3.6% | [85] | ||
| 24 h | 20.5% | |||||||
| 100 °C | 5 min | Negative | ||||||
| 30 min | Negative | |||||||
| 2:1:1 mixtures of CM:CS: SBP | Mesophilic | Batch (30 days) | Blank | 180.5 mL·g−1 TS | [86] | |||
| 100 °C | 10 min | 196 | 8.3 | |||||
| 20 min | 216 | 19.3 | ||||||
| 30 min | 236 | 30.4 | ||||||
| 60 min | 256 | 41.5 | ||||||
| 120 min | 242 | 34.1 | ||||||
| 120 °C | 10 min | 201 | 11.5 | |||||
| 20 min | 212 | 17.4 | ||||||
| 30 min | 243 | 34.5 | ||||||
| 60 min | 286 | 58.1 | ||||||
| 120 min | 288 | 59.6 | ||||||
| Cattle manure 1 solid | Mesophilic | Batch (30 days) | Blank | 203 mL·g−1 OM | [87] | |||
| 140 °C | 5 min | 306 | 50 | |||||
| Cattle manure 1 liquid | Blank | 168 | ||||||
| 140 °C | 5 min | 186 | 11 | |||||
| Cattle manure 2 solid | Blank | 225 | ||||||
| 140 °C | 5 min | 259 | 15 | |||||
| Cattle manure 2 liquid | Blank | 162 | ||||||
| 140 °C | 232 | 43 | ||||||
| Biomass | AD Condition | AD Mode | Pretreatment | Biogas Yield | CH4 Yield | Increase | Reference | |
|---|---|---|---|---|---|---|---|---|
| Temp. °C | Time | |||||||
| Chicken droppings | Mesophilic | Batch (40 days) | Blank | 11.2–20 m3/ton | - | [96] | ||
| 105 | 24 h | 64.4 m3/ton | - | 3.2–4.7 fold | ||||
| Chicken manure | Mesophilic | Batch | Blank (70 °C) | 1 d | - | - | [97] | |
| 2 d | ||||||||
| 3 d | ||||||||
| 5 d | ||||||||
| Stripping at 70 °C | 1 d | - | - | 42.8% | ||||
| 2 d | 63.5% | |||||||
| 3 d | 54.6% | |||||||
| 5 d | 7.0% | |||||||
| Chicken manure | Mesophilic | Continuous | Control (70 °C) | 4 d | - | 213 mL·g−1 VS | [98] | |
| Stripping at 70 °C | 4 d | - | 352 mL·g−1 VS | 65.3% | ||||
| Chicken manure | Mesophilic | Batch (27 days) | Blank | – | 334 mL·g−1 VS | - | [99] | |
| 100 | 15 min | 317 mL·g−1 VS | - | Less evident | ||||
| 125 | 15 min | 314 mL·g−1 VS | - | |||||
| Biomass | AD Condition | AD Mode | Pretreatment | Biogas Yield | CH4 Yield | Increase | Reference | |
|---|---|---|---|---|---|---|---|---|
| Temp. (°C) | Time | |||||||
| Microalgae mixture a | Mesophilic | Batch (60 days) | Control | - | - | 272 mL·g−1 VS | - | [35] |
| 110 | 15 min | - | 323 mL·g−1 VS | 19% | ||||
| 140 | 15 min | - | 362 mL·g−1 VS | 33% | ||||
| Microalgae mixture b | Control | - | - | 198 mL·g−1 VS | - | |||
| 110 | 15 min | - | 219 mL·g−1 VS | 11% | ||||
| 140 | 15 min | - | 260 mL·g−1 VS | 31% | ||||
| Microspore | Control | - | - | 255 mL·g−1 VS | - | [35] | ||
| 110 | 15 min | - | 413 mL·g−1 VS | 61.7% | ||||
| 140 | 15 min | - | 382 mL·g−1 VS | 49.8% | ||||
| Microalgae | 20 °C | Batch | Control | - | - | 180 mL·g−1 VS | - | [48] |
| 57 | 3.8 h | - | 221 mL·g−1 VS | 22.7% | ||||
| Microalga Scenedesmus sp. | Mesophilic | Continuous (HRT 23 d) | Control | - | - | 84 mL·g−1 COD | - | [100] |
| Batch (33 days) | Control | - | - | 76 mL·g−1 COD | - | |||
| 70 | 3 h | - | 85 mL·g−1 COD | Less evident | ||||
| 90 | 3 h | 170 mL·g−1 COD | 220% | |||||
| Nanochloropsis oculata | Mesophilic | Batch (12 days) | Control | - | - | 0.28 L·g−1 VS | - | [103] |
| 30 | 4 h | - | 0.28 L·g−1 VS | Less evident | ||||
| 60 | - | 0.27 L·g−1 VS | Less evident | |||||
| 90 | - | 0.39 L·g−1 VS | 41% | |||||
| Nanochloropsis oculata | Mesophilic | Batch (12 days) | Control | - | - | 0.32 L·g−1 VS | - | |
| 90 | 1 h 3.5 h 12 h | 0.41 L·g−1 VS 0.43 L·g−1 VS 0.44 L·g−1 VS | ≈30% | |||||
| Chlorella vulgaris | Mesophilic | Batch (30 days) | Control | - | - | 139 mL·g−1 COD | - | [104] |
| 120 | 20 min | - | 180 mL·g−1 COD | 29.8% | ||||
| 120 | 40 min | - | 268 mL·g−1 COD | 92.7% | ||||
| Chlorella vulgaris biomass | Mesophilic | Batch (29 days) | Control | - | - | 156 mL·g−1 COD | - | [105] |
| 140 | 10 min | - | 220 mL·g−1 COD | 40.5% | ||||
| 20 min | - | 226 mL·g−1 COD | 44.4% | |||||
| Scenedesmus sp. | Mesophilic | Continuous (HRT 15 d) | 90 | 1 h | - | 97 mL·g−1 tCOD | 2.9% | [106] |
| Continuous (HRT 15 d) | - | 11 mL·g−1 tCOD | 3.4% | |||||
| N. salina biomass | Mesophilic | Batch (40 days) | Control | - | 347 mL·g−1 VS | - | - | [107] |
| Boiling | - | 487 mL·g−1 VS | - | 40.3% | ||||
| 100 | 8 h | 549 mL·g−1 VS | - | 58.2% | ||||
| Chlorella sp. | Mesophilic | Batch (90 days) | 120 | 30 min | - | 0.34 L·g−1 VS | Negative | [108] |
| Nannochloropsis sp. | - | 0.36 L·g−1 VS | ≈30% | |||||
| T. weissflogii | - | 0.38 L·g−1 VS | ≈10% | |||||
| Tetraselmis sp. | - | 0.42 L·g−1 VS | Less evident | |||||
| Pavlova_cf sp. | - | 0.51 L·g−1 VS | Negative | |||||
| Palmaria. palmata | Mesophilic | Batch | Control | - | - | 308 mL·g−1 VS | - | [109] |
| 20 | 24 h | - | 328 mL·g−1 vs. (20 °C) | Less evident | ||||
| 120 | 30 min | - | 296 mL·g−1 VS | Less evident | ||||
| Biomass | AD Condition | AD Mode | Pretreatment | Biogas Yield | CH4 Yield | Increase | Reference | |
|---|---|---|---|---|---|---|---|---|
| Temp. °C | Time | |||||||
| Pennisetum grass | Mesophilic | Batch (33 days) | Control | 190 mL·g−1 VS | [110] | |||
| 100 | 30 min | 198 mL·g−1 VS | 4.5% | |||||
| Rice straw | Mesophilic | Batch (35 days) | Control | 104 L·kg−1 TS | - | [112] | ||
| 100 | 150 min | 128 L·kg−1 TS | 22.8% | |||||
| 130 | 125 L·kg−1 TS | 19.8% | ||||||
| Rice straw | Mesophilic | Batch (50 days) | Control | 298 mL·g−1 TS | 3.0% | [114] | ||
| 90 | 15 min | 307 mL·g−1 TS | ||||||
| Wheat straw | Mesophilic | Batch (45 days) | Control | 404 mL·g−1 VS | [115] | |||
| 120 | 60 min | 496 mL·g−1 VS | 22.8% | |||||
| 140 | 522 mL·g−1 VS | 19.2% | ||||||
| Wheat straw | Mesophilic | Batch (30 days) | 121 | 60 min | 29% | [119] | ||
| Sugarcane bagasse | 11% | |||||||
| Wheat straw (67%) and Sunflower meal (33%) | Mesophilic | Batch (45 days) | Control | 340 mL·g−1 VS | [116] | |||
| 120 | 1 h | 370 mL·g−1 VS | 8.8% | |||||
| 140 | 1 h | 390 mL·g−1 VS | 14.7% | |||||
| Bean straw | Mesophilic | Continuous (HRT 4.5 d) | Control | 142 mL·g−1 COD | - | - | [117] | |
| 121 | 1 h | 145 mL·g−1 COD | - | - | ||||
| Switchgrass | Mesophilic | Batch (1100 h) | 100 | 6 h | - | 25.9% | [118] | |
| Rice straw | Mesophilic | Batch (30 days) | 80 | 6 h | 372.5 mL·g−1 VS | 12.4% | [120] | |
| Biomass | Pretreatment Condition | Energy Yield | Energy for Pretreatment | NEY | Reference | ||
|---|---|---|---|---|---|---|---|
| Pretreatment | Control | Increment | |||||
| Nanochloropsis oculata | 1 h, 90 °C 3.5 h, 90 °C 2 h, 90 °C | 593 641 644 | 468 | 125 173 176 | 292 | −167 −120 −117 | [105] a |
| Chlorella vulgaris | 120 °C for 40 min | 16489 | - | 7969 | 6894 | 1075 | [104] b |
| Algal mixture | 15 °C for 15 h | - | - | 2.0 | 2.9 | −0.9 | [36] c |
| Dewatered pig manure | 125 °C for 15 min | - | -- | 36 | 116 | −80 | [79] d |
| Algal | 105–165 °C for 30 min | - | - | 1 | 1–10 | Negative | [129] |
| Algal | 50 °C, 120 °C for 30 min | 12.4 | 11.9 | 0.5 | 18 | −17.5 | [132] c |
| Algal | 80 °C, 120 °C for 30 min | 13.6 | 1.7 | 18 | −16.3 | ||
| Algal | 120 °C for 30 min | 14.3 | 2.4 | 8 | −5.6 | ||
| Brewer’s spent grain | 60 °C, 12 h | - | - | 0.4 | 1 | Negative | [43] |
| Kitchen waste | 120 °C, 30 min | - | - | 9.2 | 8.5 | +0.7 | [59] e |
| Food waste | 60 °C, 10 min 80 °C, 10 min 100 °C, 10 min | 13.35 15.15 18.16 | - - 12.9 | - | 46.06 76.66 107.46 | Negative Negative Negative | [63] |
| Sewage sludge | 134 °C, 30 min | 2.49 | 2.00 | - | - | 0.49 | [65] c |
| Sludge | 90 °C, 1 h 90 °C, 24 h 90 °C, 36 h | 312.0 348.2 484.9 | 90.9 | 221 257 394 | 46.6 82.6 91.5 | 174.64 174.75 302.54 | [66] f |
| Sludge | 60 °C, 30 min 80 °C, 30 min 100 °C, 30 min 120 °C, 30 min | - | - | 322 645 672 699 | 401 750 1098 1447 | −78 −105 −426 −748 | [67] d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Wang, J.; Li, Y.; Li, Q.; Li, P.; Luo, L.; Zhen, F.; Zheng, G.; Sun, Y. Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. Fermentation 2022, 8, 562. https://doi.org/10.3390/fermentation8100562
Wang M, Wang J, Li Y, Li Q, Li P, Luo L, Zhen F, Zheng G, Sun Y. Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. Fermentation. 2022; 8(10):562. https://doi.org/10.3390/fermentation8100562
Chicago/Turabian StyleWang, Ming, Jianlin Wang, Yunting Li, Qichen Li, Pengfei Li, Lina Luo, Feng Zhen, Guoxiang Zheng, and Yong Sun. 2022. "Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review" Fermentation 8, no. 10: 562. https://doi.org/10.3390/fermentation8100562
APA StyleWang, M., Wang, J., Li, Y., Li, Q., Li, P., Luo, L., Zhen, F., Zheng, G., & Sun, Y. (2022). Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. Fermentation, 8(10), 562. https://doi.org/10.3390/fermentation8100562

