Genome Shuffling Mutant of Streptomyces diastatochromogenes for Substantial Improvement of Toyocamycin Production
Abstract
:1. Introduction
2. Method
2.1. Strains
2.2. Media and Growth Conditions
2.3. Genome Shuffling
2.4. The Toyocamycin Resistance of the Mutants and Parent Strains
2.5. Transcriptional Analysis by Real-Time qPCR
2.6. Intercellular ATP and ATP Hydrolysis Rate
2.7. The Genotype Sequencing of Strains after Genome Shuffling
2.8. Analytical Methods
3. Results
3.1. Screening Hybrid Strains by Improving the Mutant rate of Genome Shuffling
3.2. Fermentation of Shuffled Recombinant Strains
3.3. The Product Resistance of the Mutantions and Parent Strains
3.4. Transcriptional Level of Toy Cluster Genes in Wild-Type and Mutant Strains
3.5. The Intracellular ATP Level and ATP Hydrolysis Rate in the Mutants
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bolourian, A.; Mojtahedi, Z. Immunosuppressants produced by Streptomyces: Evolution, hygiene hypothesis, tumour rapalog resistance and probiotics. Environ. Microbiol. Rep. 2018, 10, 123–126. [Google Scholar] [CrossRef]
- Novakova, R.; Núñez, L.E.; Homerova, D.; Knirschova, R.; Feckova, L.; Rezuchova, B.; Sevcikova, B.; Menéndez, N.; Morís, F.; Cortés, J. Increased heterologous production of the antitumoral polyketide mithramycin A by engineered Streptomyces lividans TK24 strains. Appl. Microbiol. Biotechnol. 2018, 102, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.T.-H.; Chan, K.-G.; Lee, L.-H.; Goh, B.-H. Streptomyces bacteria as potential probiotics in aquaculture. Front. Microbiol. 2016, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.Y.; Guo, J.L.; Zang, C.S.; Mi, G.Q.; Jia, Y.Y.; Yin, W.L.; Cao, Z.; Xia, Y.C.; Pan, X.Y.; Ling, L.Y. Antiparasitic efficacy of natamycin isolated from Streptomyces gilvosporeu AXY-25 against Ichthyophthirius multifiliis. Aquaculture 2019, 506, 465–469. [Google Scholar] [CrossRef]
- Baltz, R.H. Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J. Ind. Microbiol. Biotechnol. 2016, 43, 343–370. [Google Scholar] [CrossRef]
- Funane, K.; Tanaka, Y.; Hosaka, T.; Murakami, K.; Miyazaki, T.; Shiwa, Y.; Gibu, S.; Inaoka, T.; Kasahara, K.; Fujita, N. Combined drug resistance mutations substantially enhance enzyme production in Paenibacillus agaridevorans. J. Bacteriol. 2018, 200, e00188-18. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Inaoka, T.; Okamoto, S.; Ochi, K. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob. Agents Chemother. 2009, 53, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, S.; Li, Z.; Zhang, J.; Fan, K.; Tan, G.; Ai, G.; Lam, S.M.; Shui, G.; Yang, Z. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces. Nat. Biotechnol. 2019, 38, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Magocha, T.A.; Zabed, H.; Yang, M.; Yun, J.; Zhang, H.; Qi, X. Improvement of industrially important microbial strains by genome shuffling: Current status and future prospects. Bioresour. Technol. 2018, 257, 281–289. [Google Scholar] [CrossRef]
- Ochi, K. Insights into microbial cryptic gene activation and strain improvement: Principle, application and technical aspects. J. Antibiot. 2017, 70, 25. [Google Scholar] [CrossRef] [PubMed]
- Bing, Y.U.; Xuping, S.; Xiaoping, Y.U. Antifungal Activity of Toyocamycin on Rhizoctonia solani Kühn. Chin. J. Biol. Control 2011, 27, 373. [Google Scholar]
- McCarty, R.M.; Bandarian, V. Deciphering deazapurine biosynthesis: Pathway for pyrrolopyrimidine nucleosides toyocamycin and sangivamycin. Chem. Biol. 2008, 15, 790–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, L.; Ma, Z.; Xu, X.; Bechthold, A.; Bian, Y.; Shentu, X.; Yu, X. Engineering Streptomyces diastatochromogenes 1628 to increase the production of toyocamycin. Eng. Life Sci. 2015, 15, 779–787. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, J.; Bechthold, A.; Tao, L.; Shentu, X.; Bian, Y.; Yu, X. Development of intergeneric conjugal gene transfer system in Streptomyces diastatochromogenes 1628 and its application for improvement of toyocamycin production. Curr. Microbiol. 2014, 68, 180–185. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Bechthold, A.; Ma, Z.; Yu, X. Selection of an efficient promoter and its application in toyocamycin production improvement in Streptomyces diastatochromogenes 1628. World J. Microbiol. Biotechnol. 2017, 33, 30. [Google Scholar] [CrossRef]
- Hosaka, T.; Ohnishi-Kameyama, M.; Muramatsu, H.; Murakami, K.; Tsurumi, Y.; Kodani, S.; Yoshida, M.; Fujie, A.; Ochi, K. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat. Biotechnol. 2009, 27, 462. [Google Scholar] [CrossRef]
- Wang, G.; Hosaka, T.; Ochi, K. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl. Environ. Microbiol. 2008, 74, 2834–2840. [Google Scholar] [CrossRef] [Green Version]
- Hospet, R.; Thangadurai, D.; Cruz-Martins, N.; Sangeetha, J.; Anu Appaiah, K.A.; Chowdhury, Z.Z.; Bedi, N.; Soytong, K.; Al Tawahaj, A.R.M.; Jabeen, S. Genome shuffling for phenotypic improvement of industrial strains through recursive protoplast fusion technology. Crit. Rev. Food Sci. Nutr. 2021, 1–10. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Ji, X.; Fang, Z.; Wu, Z.; Chen, J.; Du, G. Evolutionary engineering of industrial microorganisms-strategies and applications. Appl. Microbiol. Biotechnol. 2018, 102, 4615–4627. [Google Scholar] [CrossRef]
- Shentu, X.; Liu, N.; Tang, G.; Tanaka, Y.; Ochi, K.; Xu, J.; Yu, X. Improved antibiotic production and silent gene activation in Streptomyces diastatochromogenes by ribosome engineering. J. Antibiot. 2016, 69, 406. [Google Scholar] [CrossRef]
- Ochi, K. Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: Significance of the stringent response (ppGpp) and GTP content in relation to A factor. J. Bacteriol. 1987, 169, 3608–3616. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q.Q.; Zhou, Y.H.; Chen, X.S.; Wu, J.Y.; Wei, P.; Yuan, L.X.; Yao, J.M. Genome shuffling and ribosome engineering of Streptomyces virginiae for improved virginiamycin production. Bioprocess Biosyst. Eng. 2018, 41, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Jin, Z.; Wang, H.; Jin, Q.; Jin, X.; Cen, P. Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Appl. Microbiol. Biotechnol. 2008, 80, 261–267. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Esnault, C.; Dulermo, T.; Smirnov, A.; Askora, A.; David, M.; Deniset-Besseau, A.; Holland, I.; Virolle, M. Strong antibiotic production is correlated with highly active oxidative metabolism in Streptomyces coelicolor M145. Sci. Rep. 2017, 7, 200. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gunasekara, M.; Muhammednazaar, S.; Li, Z.; Hong, H. Proteolysis mediated by the membrane-integrated ATP-dependent protease FtsH has a unique nonlinear dependence on ATP hydrolysis rates. Protein Sci. 2019, 28, 1262–1275. [Google Scholar] [CrossRef]
- Ma, Z.; Tao, L.; Bechthold, A.; Shentu, X.; Bian, Y.; Yu, X. Overexpression of ribosome recycling factor is responsible for improvement of nucleotide antibiotic-toyocamycin in Streptomyces diastatochromogenes 1628. Appl. Microbiol. Biotechnol. 2014, 98, 5051–5058. [Google Scholar] [CrossRef]
- Shentu, X.-P.; Cao, Z.-Y.; Xiao, Y.; Tang, G.; Ochi, K.; Yu, X.-P. Substantial improvement of toyocamycin production in Streptomyces diastatochromogenes by cumulative drug-resistance mutations. PLoS ONE 2018, 13, e0203006. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Perry, K.; Vinci, V.A.; Powell, K.; Stemmer, W.P.C.; Cardayré, S.B.D. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 2002, 415, 644–646. [Google Scholar] [CrossRef]
- Wang, S.; Duan, M.; Liu, Y.; Fan, S.; Lin, X.; Zhang, Y. Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling. Biotechnol. Lett. 2017, 39, 391–396. [Google Scholar] [CrossRef]
- Zheng, P.; Zhang, K.; Yan, Q.; Xu, Y.; Sun, Z. Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. J. Ind. Microbiol. Biotechnol. J. 2013, 40, 831–840. [Google Scholar] [CrossRef]
- Wang, P.M.; Zheng, D.Q.; Liu, T.Z.; Tao, X.L.; Feng, M.G.; Min, H.; Jiang, X.H.; Wu, X.C. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae. Bioresour. Technol. 2012, 108, 203–210. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Wu, S.; Tang, Y.; Deng, Y.; Yuan, J.; Dong, J.; Li, H.; Tang, L. TmcN is involved in ATP regulation of tautomycetin biosynthesis in Streptomyces griseochromogenes. Biochem. Biophys. Res. Commun. 2016, 478, 221–226. [Google Scholar] [CrossRef]
- Meng, L.; Li, M.; Yang, S.H.; Kim, T.J.; Suh, J.W. Intracellular ATP levels affect secondary metabolite production in Streptomyces spp. Biosci. Biotechnol. Biochem. 2011, 75, 1576–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seghezzi, N.; Darbon, E.; Martel, C.; David, M.; Lejeune, C.; Esnault, C.; Virolle, M.J. The Generation of an artificial ATP deficit triggers antibiotic production in Streptomyces lividans. Antibiotics 2022, 11, 1157. [Google Scholar] [CrossRef]
- Xu, J.; Song, Z.; Xu, X.; Ma, Z.; Yu, X. ToyA, a positive pathway-specific regulator for toyocamycin biosynthesis in Streptomyces diastatochromogenes 1628. Appl. Microbiol. Biotechnol. 2019, 103, 7071–7084. [Google Scholar] [CrossRef]
- Okamoto, S.; Tamaru, A.; Nakajima, C.; Nishimura, K.; Tanaka, Y.; Tokuyama, S.; Suzuki, Y.; Ochi, K. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol. Microbiol. 2007, 63, 1096–1106. [Google Scholar] [CrossRef]
- Tanaka, Y.; Komatsu, M.; Okamoto, S.; Tokuyama, S.; Kaji, A.; Ikeda, H.; Ochi, K. Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes. Appl. Environ. Microbiol. 2009, 75, 4919–4922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, K.; Hosaka, T.; Tokuyama, S.; Okamoto, S.; Ochi, K. Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3 (2). J. Bacteriol. 2007, 189, 3876–3883. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, S.; Lezhava, A.; Hosaka, T.; Okamoto-Hosoya, Y.; Ochi, K. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3 (2). J. Bacteriol. 2003, 185, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Hosaka, T.; Xu, J.; Ochi, K. Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Mol. Microbiol. 2006, 61, 883–897. [Google Scholar] [CrossRef]
- Saito, N.; Kurosawa, K.; Xu, J.; Okamoto, S.; Ochi, K. Effect of S-adenosylmethionine on antibiotic production in Streptomyces griseus and Streptomyces griseoflavus. Actinomycetologica 2003, 17, 47–49. [Google Scholar] [CrossRef]
- Tojo, S.; Kim, J.-Y.; Tanaka, Y.; Inaoka, T.; Hiraga, Y.; Ochi, K. The mthA mutation conferring low-level resistance to streptomycin enhances antibiotic production in Bacillus subtilis by increasing the S-adenosylmethionine pool size. J. Bacteriol. 2014, 196, 1514–1524. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Jiang, C.; Lin, J.; Zhuang, Z.; Kong, W.; Liu, L.; Huang, Y.; Duan, Y.; Zhu, X. Genome shuffling based on different types of ribosome engineering mutants for enhanced production of 10-membered enediyne tiancimycin-A. Appl. Microbiol. Biotechnol. 2020, 104, 4359–4369. [Google Scholar] [CrossRef]
- Barnard, A.M.; Simpson, N.J.; Lilley, K.S.; Salmond, G.P. Mutations in rpsL that confer streptomycin resistance show pleiotropic effects on virulence and the production of a carbapenem antibiotic in Erwinia carotovora. Microbiology 2010, 156, 1030–1039. [Google Scholar] [CrossRef] [Green Version]
- Hosoya, Y.; Okamoto, S.; Muramatsu, H.; Ochi, K. Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob. Agents Chemother. 1998, 42, 2041–2047. [Google Scholar] [CrossRef] [PubMed]
Strains | Screening Concentration (μg/mL) | Sourcce | ||
---|---|---|---|---|
Streptomycin | Rifampin | Paromomycin | ||
1628 | Stored in lab | |||
SD10 | 100 | [20] | ||
SD88 | 20 | [20] | ||
SD99 | 30 | [20] | ||
SD143 | 50 | [20] | ||
R1-31 | 200 | 200 | 30 | This study |
R1-41 | 200 | 200 | 30 | This study |
R2-8 | 250 | 250 | 35 | This study |
R3-33 | 275 | 275 | 40 | This study |
Strains | Frequency (%) of Screening (Positive Mutant/Total Colonies) | Toyocamycin Production (mg/L) | Increased Rate (%) a |
---|---|---|---|
R1-31 | 10.7 (7/65) | 443.9 | 57.9 |
R1-41 | 10.7 (7/65) | 434.4 | 54.4 |
R2-8 | 13.6 (6/44) | 558.5 | 25.8 |
R3-33 | 7.5 (3/40) | 644.5 | 15.4 |
Strains | Genes | ||
---|---|---|---|
rpsL | rsmG | rpoB | |
SD10 | - | Cys59Ter | - |
SD88 | - | - | Pro437Lys |
SD99 | - | - | - |
SD143 | - | 40A delection (frameshift) | - |
R1-31 | - | 40A delection (frameshift) | - |
R1-41 | - | Cys59Ter | - |
R2-8 | - | Cys59Ter | - |
R3-33 | Gly122Val | Cys59Ter | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhang, Z.; Zhang, X.; Yao, J.; Yu, X.; Shentu, X. Genome Shuffling Mutant of Streptomyces diastatochromogenes for Substantial Improvement of Toyocamycin Production. Fermentation 2022, 8, 535. https://doi.org/10.3390/fermentation8100535
Song Y, Zhang Z, Zhang X, Yao J, Yu X, Shentu X. Genome Shuffling Mutant of Streptomyces diastatochromogenes for Substantial Improvement of Toyocamycin Production. Fermentation. 2022; 8(10):535. https://doi.org/10.3390/fermentation8100535
Chicago/Turabian StyleSong, Yang, Zixuan Zhang, Xiangli Zhang, Jiayi Yao, Xiaoping Yu, and Xuping Shentu. 2022. "Genome Shuffling Mutant of Streptomyces diastatochromogenes for Substantial Improvement of Toyocamycin Production" Fermentation 8, no. 10: 535. https://doi.org/10.3390/fermentation8100535
APA StyleSong, Y., Zhang, Z., Zhang, X., Yao, J., Yu, X., & Shentu, X. (2022). Genome Shuffling Mutant of Streptomyces diastatochromogenes for Substantial Improvement of Toyocamycin Production. Fermentation, 8(10), 535. https://doi.org/10.3390/fermentation8100535