Incorporation of Sukkari Date in Probiotic-Enriched Fermented Camel Milk Improves the Nutritional, Physicochemical, and Organoleptical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Preparation of Probiotic-Enriched FCM and FCM-SKD
2.3. Chemical, Physicochemical and Rheological Properties
2.4. Determination of Total Phenolic Content (TPC), Total Flavonoids (TF), and Total Flavonols (TFL)
2.5. Free Radical Scavenging Ability against DPPH and ABTS
2.6. Instrumental Color Measurements of FCM and FCM-SKD
2.7. Microbiological Examination
2.8. Organoleptical Attributes
2.9. Statistical Analysis
3. Results
3.1. Effect of SKD Addition on Chemical Composition and Physicochemical Properties of FCM
3.2. Effect of SKD Addition on the Mineral Content of FCM
3.3. Effect of SKD Addition on AV of FCM
3.4. Effect of SKD Addition on TPC, TF, TFL, and AOA of FCM
3.5. Effect of SKD Addition on the Color Parameters of FCM
3.6. Effect of SKD Addition on the Microbiological Characterization of FCM during Cold Storage for 15 Days
3.7. Effect of SKD Addition on the Organoleptical Attributes of FCM during Cold Storage for 15 Days
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ali, W.; Akyol, E.; Ceyhan, A.; Dilawar, S.; Firdous, A.; ul Qasim, M.Z.; Ahmad, M.M. Milk production and composition in camel and its beneficial uses: A review. Turk. J. Agric.-Food Sci. Technol. 2019, 7, 2142–2147. [Google Scholar]
- Hamed, H.; Chaari, F.; Ghannoudi, Z.; ElFeki, A.; Ellouz, S.C.; Gargouri, A. Beneficial effects of fermented camel milk by lactococcus lactis subsp cremoris on cardiotoxicity induced by carbon tetrachloride in mice. Biomed. Pharmacother. 2018, 97, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.R.; Santos, R.; Cardoso, C.; Carvalho, M. Consumption of camel’s milk by patients intolerant to lactose. A preliminary study. Rev. Alerg. Mex. 2010, 57, 26–32. [Google Scholar] [PubMed]
- Shabo, Y.; Barzel, R.; Margoulis, M.; Yagil, R. Camel milk for food allergies in children. Isr. Med. Assoc. J. 2005, 7, 796. [Google Scholar]
- Mishra, S.S.; Behera, P.K.; Kar, B.; Ray, R.C. Advances in Probiotics, Prebiotics and Nutraceuticals. In Innovations in Technologies for Fermented Food and Beverage Industries; Panda, S.K., Shetty, P.H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 121–141. [Google Scholar]
- Sundararaman, A.; Ray, M.; Ravindra, P.V.; Halami, P.M. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl. Microbiol. Biotechnol. 2020, 104, 8089–8104. [Google Scholar] [CrossRef] [PubMed]
- Al Kassaa, I. The antiviral activity of probiotic metabolites. In New Insights on Antiviral Probiotics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 83–97. [Google Scholar]
- Kobyliak, N.; Falalyeyeva, T.; Boyko, N.; Tsyryuk, O.; Beregova, T.; Ostapchenko, L. Probiotics and nutraceuticals as a new frontier in obesity prevention and management. Diabetes Res. Clin. Pract. 2018, 141, 190–199. [Google Scholar] [CrossRef] [PubMed]
- De Marco, S.; Sichetti, M.; Muradyan, D.; Piccioni, M.; Traina, G.; Pagiotti, R.; Pietrella, D. Probiotic Cell-Free Supernatants Exhibited Anti-Inflammatory and Antioxidant Activity on Human Gut Epithelial Cells and Macrophages Stimulated with LPS. Evid.-Based Complement. Alternat. Med. 2018, 2018, 1756308. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.A.; Santos-Junior, V.A.; Filho, E.R.T.; Silva, H.L.A.; Ferreira, M.V.S.; Graça, J.S.; Esmerino, E.A.; Lollo, P.C.B.; Freitas, M.Q.; Sant’Ana, A.S.; et al. Probiotic Prato cheese consumption attenuates development of renal calculi in animal model of urolithiasis. J. Funct. Foods 2018, 49, 378–383. [Google Scholar] [CrossRef]
- Infusino, F.; Marazzato, M.; Mancone, M.; Fedele, F.; Mastroianni, C.M.; Severino, P.; Ceccarelli, G.; Santinelli, L.; Cavarretta, E.; Marullo, A.G.M.; et al. Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review. Nutrients 2020, 12, 1718. [Google Scholar] [CrossRef]
- Meybodi, N.M.; Mortazavian, A.M.; Arab, M.; Nematollahi, A. Probiotic viability in yoghurt: A review of influential factors. Int. Dairy J. 2020, 109, 104793. [Google Scholar] [CrossRef]
- Nagyzbekkyzy, E.; Sembayeva, D.; Sarsenova, A.; Mansurov, N.; Moldabayeva, A.; Moldagulova, N. Data on the diversity of lactic acid bacteria isolated from raw and fermented camel milk. Data Br. 2020, 31, 105956. [Google Scholar] [CrossRef]
- Ayyash, M.; Abu-Jdayil, B.; Itsaranuwat, P.; Almazrouei, N.; Galiwango, E.; Esposito, G.; Hunashal, Y.; Hamed, F.; Najjar, Z. Exopolysaccharide produced by the potential probiotic Lactococcus garvieae C47: Structural characteristics, rheological properties, bioactivities and impact on fermented camel milk. Food Chem. 2020, 333, 127418. [Google Scholar] [CrossRef] [PubMed]
- Hamed, H.; Bellassoued, K.; El Feki, A.; Gargouri, A. Evaluation of the hepatoprotective effect of combination between fermented camel milk and Rosmarinus officinalis leaves extract against CCl4 induced liver toxicity in mice. J. Food Sci. Technol. 2019, 56, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Hamed, H.; Gargouri, M.; Boulila, S.; Chaari, F.; Ghrab, F.; Kallel, R.; Ghannoudi, Z.; Boudawara, T.; Chaabouni, S.; Feki, A.E.; et al. Fermented camel milk prevents carbon tetrachloride induced acute injury in kidney of mice. J. Dairy Res. 2018, 85, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Fallah, Z.; Feizi, A.; Hashemipour, M.; Kelishadi, R. Effect of fermented camel milk on glucose metabolism, insulin resistance, and inflammatory biomarkers of adolescents with metabolic syndrome: A double-blind, randomized, crossover trial. J. Res. Med. Sci. 2018, 23, 32. [Google Scholar]
- Fallah, Z.; Feizi, A.; Hashemipour, M.; Kelishadi, R. Positive Effect of Fermented Camel Milk on Liver Enzymes of Adolescents with Metabolic Syndrome: A Double-Blind, Randomized, Cross-over Trial. Mater. Sociomed. 2018, 30, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Ayyash, M.; Abdalla, A.; Alhammadi, A.; Senaka Ranadheera, C.; Affan Baig, M.; Al-Ramadi, B.; Chen, G.; Kamal-Eldin, A.; Huppertz, T. Probiotic survival, biological functionality and untargeted metabolomics of the bioaccessible compounds in fermented camel and bovine milk after in vitro digestion. Food Chem. 2021, 363, 130243. [Google Scholar] [CrossRef] [PubMed]
- Al-Shahib, W.; Marshall, R.J. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 2003, 54, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Parn, O.J.; Bhat, R.; Yeoh, T.K.; Al-Hassan, A.A. Development of novel fruit bars by utilizing date paste. Food Biosci. 2015, 9, 20–27. [Google Scholar] [CrossRef]
- Tang, Z.X.; Shi, L.E.; Aleid, S.M. Date fruit: Chemical composition, nutritional and medicinal values, products. J. Sci. Food Agric. 2013, 93, 2351–2361. [Google Scholar] [CrossRef]
- Assirey, E.A.R. Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J. Taibah Univ. Sci. 2015, 9, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Samarawira, I. Date palm, potential source for refined sugar. Econ. Bot. 1983, 37, 181–186. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef] [PubMed]
- Benmeddour, Z.; Mehinagic, E.; Meurlay, D.L.; Louaileche, H. Phenolic composition and antioxidant capacities of ten Algerian date (Phoenix dactylifera L.) cultivars: A comparative study. J. Funct. Foods 2013, 5, 346–354. [Google Scholar] [CrossRef]
- Suresh, S.; Guizani, N.; Al-Ruzeiki, M.; Al-Hadhrami, A.; Al-Dohani, H.; Al-Kindi, I.; Rahman, M.S. Thermal characteristics, chemical composition and polyphenol contents of date-pits powder. J. Food Eng. 2013, 119, 668–679. [Google Scholar] [CrossRef]
- Ishurd, O.; Kennedy, J.F. The anticancer activity of polysaccharide prepared from Libyan dates (Phoenix dactylifera L.). Carbohydr. Polym. 2005, 59, 531–535. [Google Scholar] [CrossRef]
- Vayalil, P.K. Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae). J. Agric. Food Chem. 2002, 50, 610–617. [Google Scholar] [CrossRef]
- Amira, E.A.; Guido, F.; Behija, S.E.; Manel, I.; Nesrine, Z.; Ali, F.; Mohamed, H.; Noureddine, H.A.; Lotfi, A. Chemical and aroma volatile compositions of date palm (Phoenix dactylifera L.) fruits at three maturation stages. Food Chem. 2011, 127, 1744–1754. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Al-Abid, M.; Al-Shoaily, K.; Al-Amry, M.; Al-Rawahy, F. Compositional and functional characteristics of dates, syrups, and their by-products. Food Chem. 2007, 104, 943–947. [Google Scholar] [CrossRef]
- Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Deroanne, C.; Drira, N.-E.; Attia, H. Date flesh: Chemical composition and characteristics of the dietary fibre. Food Chem. 2008, 111, 676–682. [Google Scholar] [CrossRef]
- Vayalil, P.K. Date fruits (Phoenix dactylifera Linn): An emerging medicinal food. Crit. Rev. Food 2012, 52, 249–271. [Google Scholar] [CrossRef]
- Boudries, H.; Kefalas, P.; Hornero-Méndez, D. Carotenoid composition of Algerian date varieties (Phoenix dactylifera) at different edible maturation stages. Food Chem. 2007, 101, 1372–1377. [Google Scholar] [CrossRef]
- Vijayanand, P.; Yadav, A.R.; Balasubramanyam, N.; Narasimham, P. Storage Stability of Guava Fruit Bar Prepared Using a New Process. Food Sci. Technol. 2000, 33, 132–137. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Teoh, A.; Massarotto, C.; Wibisono, R.; Wadhwa, S. Comparative analysis of fruit-based functional snack bars. Food Chem. 2010, 119, 1369–1379. [Google Scholar] [CrossRef]
- Tawfek, M.A.; Baker, E.A.; El-Sayed, H.A. Study Properties of Fermented Camels’ and Goats’ Milk Beverages Fortified with Date Palm (Phoenix dactylifera L.). Food Nutr. Sci. 2021, 12, 418–428. [Google Scholar]
- Soliman, T.N.; Shehata, S.H. Characteristics of fermented camel’s milk fortified with kiwi or avocado fruits. Acta Sci. Pol. Technol. Aliment. 2019, 18, 53–63. [Google Scholar] [PubMed]
- Saljooghi, S.; Mansouri-Najand, L.; Ebrahimnejad, H.; Doostan, F.; Askari, N. Microbiological, biochemical and organoleptic properties of fermented-probiotic drink produced from camel milk. Vet. Res. Forum 2017, 8, 313. [Google Scholar] [PubMed]
- Al-Humaid, A.; Mousa, H.; El-Mergawi, R.; Abdel-Salam, A. Chemical composition and antioxidant activity of dates and dates-camel-milk mixtures as a protective meal against lipid peroxidation in rats. Am. J. Food Technol. 2010, 5, 22–30. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of the AOAC, 17th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- Barakat, H.; Hassan, M.F. Chemical, nutritional, rheological, and organoleptical characterizations of stirred pumpkin-yoghurt. Food Nutr. Sci. 2017, 8, 746. [Google Scholar] [CrossRef] [Green Version]
- Cartashev, A.; Rudic, V. The effect of starter culture producing exopolysaccharide on physicochemical properties of yoghurt. Chem. J. Mold. 2017, 12, 7–12. [Google Scholar] [CrossRef]
- Yawadio Nsimba, R.; Kikuzaki, H.; Konishi, Y. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 2008, 106, 760–766. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Hassanien, M.F.R.; Mahmoud, A.; Sarhan, M.A.; Smetanska, I. Phenolics Extracted from Potato, Sugar Beet, and Sesame Processing By-Products. Int. J. Food Prop. 2012, 16, 1148–1168. [Google Scholar] [CrossRef]
- Barakat, H.; Rohn, S. Effect of different cooking methods on bioactive compounds in vegetarian, broccoli-based bars. J. Funct. Foods 2014, 11, 407–416. [Google Scholar] [CrossRef]
- Lavelli, V.; Corey, M.; Kerr, W.; Vantaggi, C. Stability and anti-glycation properties of intermediate moisture apple products fortified with green tea. Food Chem. 2011, 127, 589–595. [Google Scholar] [CrossRef]
- Vinderola, C.G.; Reinheimer, J.A. Culture media for the enumeration of Bifidobacterium bifidum and Lactobacillus acidophilus in the presence of yoghurt bacteria. Int. Dairy J. 1999, 9, 497–505. [Google Scholar] [CrossRef]
- Steel, R.G. Pinciples and Procedures of Statistics a Biometrical Approach, 3rd ed.; McGraw-Hill: Boston, MA, USA, 1997. [Google Scholar]
- Hashim, I.B.; Khalil, A.H.; Habib, H. Quality and acceptability of a set-type yogurt made from camel milk. J. Dairy Sci. 2009, 92, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Almosawi, B.N.E.; Hassan, T.A. Influence of Fortification with Extracts of Three Varieties of Iraqi Dates on the Viability of Lactobacillus plantarum in Probiotic Fermented Milk Products. Iraqi J. Sci. 2019, 18, 216–223. [Google Scholar]
- Almosawi, B.N.; Al-Hamdani, H.M.; Dubaish, A.N. Study of qualification and Sensation properties by using date extraction and date syrup in yoghurt processing. Adv. Life Sci. Technol. 2015, 32, 49–58. [Google Scholar]
- Siddeeg, A.; Zeng, X.-A.; Ammar, A.-F.; Han, Z. Sugar profile, volatile compounds, composition and antioxidant activity of Sukkari date palm fruit. J. Food Sci. Technol. 2019, 56, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Trabzuni, D.M.; Ahmed, S.E.B.; Abu-Tarboush, H.M. Chemical composition, minerals and antioxidants of the heart of Date Palm from three Saudi cultivars. Food Nutr. Sci. 2014, 5, 1379. [Google Scholar] [CrossRef] [Green Version]
- Abou-Soliman, N.H.I.; Sakr, S.S.; Awad, S. Physico-chemical, microstructural and rheological properties of camel-milk yogurt as enhanced by microbial transglutaminase. J. Food Sci. Technol. 2017, 54, 1616–1627. [Google Scholar] [CrossRef] [Green Version]
- Salih, M.M.; Hamid, O.A. Effect of fortifying camel’s milk with skim milk powder on the physicochemical, microbiological and sensory characteristics of set yoghurt. Adv. J. Food Sci. Technol. 2013, 5, 765–770. [Google Scholar] [CrossRef]
- Al-Zoreky, N.S.; Al-Otaibi, M.M. Suitability of camel milk for making yogurt. Food Sci. Biotechnol. 2015, 24, 601–606. [Google Scholar] [CrossRef]
- AlFaris, N.A.; AlTamimi, J.Z.; AlGhamdi, F.A.; Albaridi, N.A.; Alzaheb, R.A.; Aljabryn, D.H.; Aljahani, A.H.; AlMousa, L.A. Total phenolic content in ripe date fruits (Phoenix dactylifera L.): A systematic review and meta-analysis. Saudi J. Biol. Sci. 2021, 28, 3566–3577. [Google Scholar] [CrossRef] [PubMed]
- Zihad, S.M.N.K.; Uddin, S.J.; Sifat, N.; Lovely, F.; Rouf, R.; Shilpi, J.A.; Sheikh, B.Y.; Göransson, U. Antioxidant properties and phenolic profiling by UPLC-QTOF-MS of Ajwah, Safawy and Sukkari cultivars of date palm. Biochem. Biophys. 2021, 25, 100909. [Google Scholar] [CrossRef] [PubMed]
- Hachani, S.; Hamia, C.; Boukhalkhal, S.; Silva, A.M.S.; Djeridane, A.; Yousfi, M. Morphological, physico-chemical characteristics and effects of extraction solvents on UHPLC-DAD-ESI-MSn profiling of phenolic contents and antioxidant activities of five date cultivars (Phoenix dactylifera L.) growing in Algeria. NFS J. 2018, 13, 10–22. [Google Scholar] [CrossRef]
- Gross, J.; Haber, O.; Ikan, R. The carotenoid pigments of the date. Sci. Hortic. 1983, 20, 251–257. [Google Scholar] [CrossRef]
- Serratosa, M.P.; Lopez-Toledano, A.; Merida, J.; Medina, M. Changes in Color and Phenolic Compounds during the Raisining of Grape Cv. Pedro Ximenez. J. Agric. Food Chem. 2008, 56, 2810–2816. [Google Scholar] [CrossRef] [PubMed]
- Barakat, H.; Mohamed, A.; Gemiel, D.G.; Atallah, A.A. Microstructural, volatile compounds, microbiological and organoleptical characteristics of low-fat buffalo milk yogurt enriched with whey protein concentrate and ca-caseinate during cold storage. Fermentation 2021, 7, 250. [Google Scholar] [CrossRef]
- Aljutaily, T.; Huarte, E.; Martinez-Monteagudo, S.; Gonzalez-Hernandez, J.L.; Rovai, M.; Sergeev, I.N. Probiotic-enriched milk and dairy products increase gut microbiota diversity: A comparative study. Nut. Res. 2020, 82, 25–33. [Google Scholar] [CrossRef]
- Malik, A.; Yayan, M.; Irwan Zakir, S.D.; Syarif Djaya, M. Effects of Addition of Juice Date Palm to the Extender on the Semen Qualities of Frozen Thawed in Bull Spermatozoa. Glob. Vet. 2016, 16, 100–104. [Google Scholar]
Constituents * | Camel Milk | Sukkari Date | |
---|---|---|---|
Moisture [g 100 g−1] | 90.16 ± 0.23 | 11.1 ± 0.21 | |
Protein [g 100 g−1] | 2.71 ± 0.10 | 2.55 ± 0.04 | |
Fat [g 100 g−1] | 2.80 ± 0.12 | 3.15 ± 0.09 | |
Ash [g 100 g−1] | 0.63 ± 0.06 | 2.61 ± 0.08 | |
Available carbohydrates ** [g 100 g−1] | 3.70 ± 0.58 | 76.25 ± 1.25 | |
Fiber [g 100 g−1] | ND | 4.35 ± 0.31 | |
Minerals [mg 100 g−1]: | Na | 52.40 ± 4.11 | 37.84 ± 5.63 |
Ca | 104.81 ± 8.22 | 108.23 ± 8.70 | |
K | 112.53 ± 4.41 | 651.25 ± 29.33 | |
P | 61.20 ± 4.80 | 47.95 ± 2.56 | |
Mg | 9.05 ± 0.71 | 86.35 ± 6.88 | |
Zn | 0.53 ± 0.04 | 9.37 ± 0.99 | |
Fe | 0.61 ± 0.05 | 4.46 ± 0.30 | |
Cu | 0.19 ± 0.02 | 2.28 ± 0.34 | |
pH | 6.69 ± 0.05 | 6.52 ± 0.07 | |
Titratable acidity | 0.16 ± 0.01 | 0.45 ± 0.01 | |
TPC [mg GAE g−1] | ND | 54.12 ± 1.90 | |
TF [mg QE g−1] | ND | 56.79 ± 3.15 | |
TFL [mg QE g−1] | ND | 34.58 ± 2.43 | |
DPPH-RSA [µmol of TE g−1] | 5.87 ± 0.12 | 87.15 ± 5.64 | |
ABTS-RSA [µmol of TE g−1] | 9.24 ± 0.34 | 96.18 ± 4.98 |
Physiochemical Parameters | FCM Fortified with SKD * | |||||
---|---|---|---|---|---|---|
FCM | FCM | FCM | FCM | FCM | FCM | |
+0% SKD | +5% SKD | +7.5% SKD | +10% SKD | +12.5% SKD | +15% SKD | |
Moisture [g 100 g−1] | 90.16 | 87.44 | 85.78 | 84.09 | 82.1 | 80.25 |
±0.15 a | ±0.22 b | ±0.15 c | ±0.09 c | ±0.11 d | ±0.33 e | |
Protein [g 100 g−1] | 2.8 | 2.73 | 2.74 | 2.76 | 2.76 | 2.79 |
±0.03 a | ±0.03 b | ±0.01 b | ±0.02 ab | ±0.02 ab | ±0.02 a | |
Fat [g 100 g−1] | 2.71 | 2.71 | 2.73 | 2.77 | 2.77 | 2.79 |
±0.6 c | ±0.02 c | ±0.02 bc | ±0.02 ab | ±0.02 ab | ±0.02 a | |
Ash [g 100 g−1] | 0.63 | 0.71 | 0.74 | 0.78 | 0.83 | 0.86 |
±0.3 d | ±0.02 c | ±0.02 bc | ±0.02 b | ±0.02 a | ±0.02 a | |
Solid not-fat [g 100 g−1] | 7.13 | 9.85 | 11.5 | 13.24 | 15.11 | 17.32 |
±0.21 f | ±0.19 e | ±0.15 d | ±0.15 c | ±0.04 b | ±0.36 a | |
Available carbohydrates # [g 100 g−1] | 3.7 | 6.41 | 8.02 | 9.69 | 11.52 | 13.67 |
±0.24 f | ±0.18 e | ±0.17 d | ±0.18 c | ±0.04 b | ±0.30 a | |
Fiber [g 100 g−1] | - | 0.21 | 0.33 | 0.41 | 0.5 | 0.64 |
±0.02 e | ±0.03 d | ±0.03 c | ±0.03 b | ±0.06 a | ||
pH | 4.71 | 4.54 | 4.52 | 4.53 | 4.51 | 4.49 |
±0.04 a | ±0.04 b | ±0.04 b | ±0.03 b | ±0.04 b | ±0.03 b | |
Titratable acidity ** | 0.75 | 0.87 | 0.88 | 0.89 | 0.88 | 0.9 |
±0.1 b | ±0.01 a | ±0.01 a | ±0.01 a | ±0.01 a | ±0.01 a | |
WHC % | 76.63 | 79.65 | 81.68 | 84.52 | 79.75 | 73.38 |
±0.33 c | ±0.31 b | ±0.32 b | ±0.46 a | ±0.48 b | ±0.55 d |
Minerals [mg 100 g−1] | FCM Fortified with SKD * | |||||
---|---|---|---|---|---|---|
FCM | FCM | FCM | FCM | FCM | FCM | |
+0% SKD | +5% SKD | +7.5% SKD | +10% SKD | +12.5% SKD | +15% SKD | |
Macroelements | ||||||
Na | 51.38 a | 49.01 ab | 48.68 ab | 46.69 b | 45.54 b | 44.41 b |
±1.40 | ±1.73 | ±2.41 | ±2.32 | ±1.92 | ±2.10 | |
Ca | 102.75 a | 103.02 a | 103.16 a | 103.30 a | 103.43 a | 105.30 a |
±2.80 | ±2.79 | ±1.41 | ±2.11 | ±2.09 | ±3.88 | |
K | 110.33 f | 132.79 e | 145.86 d | 153.46 c | 163.11 b | 172.32 a |
±1.50 | ±2.35 | ±3.60 | ±3.97 | ±3.43 | ±4.07 | |
P | 60.00 a | 57.42 ab | 57.13 ab | 54.88 b | 53.62 b | 52.37 b |
±1.63 | ±2.03 | ±2.82 | ±1.42 | ±2.26 | ±1.35 | |
Mg | 8.88 e | 12.32 cd | 14.20 c | 15.51 bc | 17.01 ab | 18.45 a |
±0.59 | ±0.44 | ±0.70 | ±0.81 | ±0.71 | ±0.87 | |
Microelements | ||||||
Zn | 0.52 b | 0.93 ab | 1.15 ab | 1.31 ab | 1.49 a | 1.66 a |
±0.03 | ±0.08 | ±0.14 | ±0.17 | ±0.15 | ±0.19 | |
Fe | 0.60 a | 0.77 a | 0.86 a | 0.92 a | 0.99 a | 1.06 a |
±0.04 | ±0.07 | ±0.10 | ±0.12 | ±0.10 | ±0.12 | |
Cu | 0.19 b | 0.28 ab | 0.33 ab | 0.37 ab | 0.41 ab | 0.45 a |
±0.02 | ±0.04 | ±0.06 | ±0.07 | ±0.04 | ±0.05 |
Items | FCM Fortified with SKD * | |||||
---|---|---|---|---|---|---|
FCM | FCM | FCM | FCM | FCM | FCM | |
+0% SKD | +5% SKD | +7.5% SKD | +10% SKD | +12.5% SKD | +15% SKD | |
TPC [mg GAE g−1] | ND | 2.71 c | 4.06 bc | 5.23 abc | 6.42 ab | 7.56 a |
±0.23 | ±0.49 | ±0.66 | ±0.66 | ±0.87 | ||
TF [mg QE g−1] | ND | 2.95 d | 4.43 c | 5.90 bc | 7.38 ab | 9.00 a |
±0.59 | ±0.15 | ±0.29 | ±0.37 | ±0.81 | ||
TFL [mg QE g−1] | ND | 1.69 c | 2.54 bc | 3.27 abc | 4.01 ab | 4.73 a |
±0.15 | ±0.31 | ±0.41 | ±0.41 | ±0.55 | ||
DPPH-RSA [µmol of TE g−1] | 5.24 b | 9.17 ab | 11.17 ab | 12.72 a | 14.40 a | 16.01 a |
±0.67 | ±0.80 | ±1.35 | ±1.61 | ±1.49 | ±1.85 | |
ABTS-RSA [µmol of TE g−1] | 8.52 d | 12.70 c | 14.85 bc | 16.43 b | 18.18 ab | 19.86 a |
±0.29 | ±0.19 | ±0.80 | ±0.98 | ±0.88 | ±1.30 |
Treatments | Instrumental Color Parameters | Visual Color | ||||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | C | H° | BI | ∆E | ||
FCM +0% SKD | 89.24 a ±0.15 | 2.10 a ±0.17 | 1.05 e ±0.12 | 2.35 e ±0.12 | 26.71 b ±4.14 | 2.85 e ±0.10 | - | |
FCM +5% SKD | 81.41 b ±0.30 | 1.87 a ±0.42 | 16.75 d ±1.10 | 16.86 d ±1.05 | 83.61 a ±1.78 | 24.24 d ±1.46 | 17.70 d ±1.12 | |
FCM +7.5% SKD | 80.22 c ±0.51 | 1.47 a ±0.83 | 22.39 c ±0.93 | 22.45 c ±0.92 | 86.27 a ±2.12 | 33.35 c ±1.62 | 23.33 c ±1.07 | |
FCM +10% SKD | 78.28 d ±0.03 | 1.79 a ±1.22 | 24.00 b ±0.39 | 24.08 b ±0.32 | 85.76 a ±2.94 | 37.44 b ±1.90 | 25.60 b ±0.40 | |
FCM +12.5% SKD | 77.61 e ±0.44 | 2.51 a ±0.65 | 25.64 a ±0.12 | 25.77 a ±0.14 | 84.46 a ±1.44 | 41.57 a ±0.81 | 27.36 a ±0.30 | |
FCM +15% SKD | 76.95 f ±0.12 | 1.43 a ±0.79 | 26.24 a ±0.14 | 26.29 a ±0.12 | 86.92 a ±1.73 | 42.04 a ±0.65 | 28.20 a ±0.20 |
Bacterial Strain | Storage (Days) | FCM Fortified with SKD * | |||||
---|---|---|---|---|---|---|---|
FCM | FCM | FCM | FCM | FCM | FCM | ||
+0% SKD | +5% SKD | +7.5% SKD | +10% SKD | +12.5% SKD | +15% SKD | ||
Str. thermophilus [Log10 cfu mL−1] | 1 | 8.36 aD | 8.40 aC | 8.76 aA | 8.57 bB | 8.52 cBC | 8.51 aBCD |
±0.12 | ±0.20 | ±0.10 | ±0.20 | ±0.21 | ±0.12 | ||
8 | 8.32 aC | 8.47 aBC | 8.59 bB | 8.79 aA | 8.81 aA | 8.49 aB | |
±0.12 | ±0.21 | ±0.04 | ±0.09 | ±0.06 | ±0.15 | ||
15 | 7.95 bD | 8.43 aC | 8.55 bBC | 8.71 aA | 8.68 bAB | 8.49 aC | |
±0.12 | ±0.13 | ±0.11 | ±0.08 | ±0.09 | ±0.35 | ||
L. acidophilus [Log10 cfu mL−1] | 1 | 8.50 aD | 8.54 aCD | 8.91 aA | 8.71 bB | 8.66 cBC | 8.65 aBC |
±0.09 | ±0.21 | ±0.10 | ±0.17 | ±0.21 | ±0.11 | ||
8 | 8.46 aD | 8.61 aC | 8.74 bB | 8.93 aA | 8.96 aA | 8.64 aBC | |
±0.09 | ±0.18 | ±0.03 | ±0.10 | ±0.07 | ±0.18 | ||
15 | 8.10 bD | 8.57 aC | 8.70 bBC | 8.85 aA | 8.83 bAB | 8.64 aC | |
±0.09 | ±0.09 | ±0.08 | ±0.05 | ±0.09 | ±0.33 | ||
B. bifidum [Log10 cfu mL−1] | 1 | 7.10 bD | 7.14 bCD | 7.51 aA | 7.31 cB | 7.26 cBC | 7.26 bBC |
±0.09 | ±0.21 | ±0.10 | ±0.17 | ±0.21 | ±0.10 | ||
8 | 7.24 aC | 7.39 aB | 7.52 aB | 7.71 aA | 7.73 aA | 7.42 aB | |
±0.09 | ±0.18 | ±0.03 | ±0.10 | ±0.08 | ±0.18 | ||
15 | 6.79 cD | 7.27 aC | 7.40 bBC | 7.55 bA | 7.53 bAB | 7.33 abC | |
±0.09 | ±0.09 | ±0.08 | ±0.05 | ±0.09 | ±0.34 |
Attributes | Storage (Days) | FCM Fortified with SKD * | |||||
---|---|---|---|---|---|---|---|
FCM | FCM | FCM | FCM | FCM | FCM | ||
+0% SKD | +5% SKD | +7.5% SKD | +10% SKD | +12.5% SKD | +15% SKD | ||
Flavor (30) | 1 | 23.00 bD | 24.50 abC | 26.00 aB | 27.83 bA | 26.50 aBC | 21.17 cE |
±2.61 | ±1.05 | ±2.37 | ±1.94 | ±2.26 | ±1.72 | ||
8 | 24.17 aD | 25.17 aC | 26.67 aB | 28.67 aA | 26.50 aB | 22.67 bE | |
±1.47 | ±0.75 | ±1.86 | ±1.51 | ±1.64 | ±1.37 | ||
15 | 23.17 bC | 24.17 bBC | 24.33 bBC | 27.83 bA | 26.67 aA | 23.67 aC | |
±1.47 | ±0.75 | ±1.97 | ±1.94 | ±1.97 | ±1.63 | ||
Body and Texture (30) | 1 | 14.67 bE | 20.50 bD | 25.17 bAB | 24.83 bB | 26.17 bA | 22.50 aC |
±2.16 | ±2.07 | ±2.04 | ±0.75 | ±1.17 | ±1.76 | ||
8 | 16.17 aE | 21.83 aD | 25.83 abB | 26.67 aAB | 27.00 aA | 23.17 aC | |
±2.14 | ±1.72 | ±1.72 | ±1.21 | ±1.55 | ±1.72 | ||
15 | 15.67 aD | 21.83 aC | 26.00 aA | 26.67 aA | 25.67 bA | 23.17 aB | |
±1.63 | ±1.94 | ±2.00 | ±1.86 | ±1.63 | ±1.33 | ||
Color and appearance (20) | 1 | 18.17 aA | 17.83 abAB | 17.17 abB | 17.00 bB | 13.50 bC | 12.33 cD |
±0.75 | ±1.17 | ±1.83 | ±1.41 | ±1.38 | ±2.16 | ||
8 | 18.67 aA | 18.33 aAB | 17.67 aB | 18.17 aAB | 15.00 aC | 13.00 bD | |
±0.52 | ±0.82 | ±1.21 | ±1.17 | ±0.47 | ±1.79 | ||
15 | 18.33 aA | 17.50 bAB | 16.83 bB | 18.50 aA | 14.67 aC | 14.17 aC | |
±0.82 | ±1.05 | ±1.72 | ±1.52 | ±0.52 | ±1.33 | ||
Consistency (10) | 1 | 5.17 bD | 7.33 aC | 7.67 bBC | 8.17 bAB | 8.50 aA | 7.50 bC |
±0.75 | ±1.03 | ±1.03 | ±0.75 | ±0.84 | ±1.38 | ||
8 | 5.83 aE | 7.76 aD | 8.17 aCD | 9.17 aA | 8.83 aAB | 8.33 aBC | |
±1.17 | ±0.82 | ±0.75 | ±0.75 | ±0.98 | ±0.52 | ||
15 | 4.67 cD | 7.50 aC | 8.00 abC | 9.33 aA | 8.67 aB | 7.50 bC | |
±0.82 | ±0.84 | ±0.89 | ±0.82 | ±1.03 | ±0.84 | ||
Mouth feel (10) | 1 | 4.83 bD | 7.00 aC | 7.83 bB | 9.17 aA | 8.67 bA | 7.17 bC |
±0.75 | ±0.89 | ±1.17 | ±0.75 | ±0.52 | ±0.98 | ||
8 | 5.50 aE | 7.33 aD | 8.17 abC | 9.50 aA | 9.00 abAB | 8.50 aBC | |
±0.55 | ±0.52 | ±0.75 | ±0.55 | ±0.63 | ±0.84 | ||
15 | 4.83 bE | 7.17 aC | 8.33 aB | 9.33 aA | 9.17 aA | 6.67 cD | |
±0.75 | ±0.98 | ±1.37 | ±0.52 | ±0.41 | ±0.82 | ||
Overall acceptability (100) | 1 | 65.83 cE | 77.17 bC | 83.83 bB | 87.00 bA | 83.33 bB | 70.67 bD |
±3.19 | ±1.72 | ±4.83 | ±3.52 | ±4.84 | ±4.55 | ||
8 | 70.33 aE | 80.33 aC | 86.50 aB | 92.17 aA | 86.33 aB | 75.67 aD | |
±2.07 | ±2.34 | ±3.08 | ±1.83 | ±2.16 | ±3.20 | ||
15 | 66.67 bE | 79.17 aC | 83.50 bB | 91.67 aA | 84.83 abB | 75.17 aD | |
±0.07 | ±2.32 | ±5.09 | ±3.01 | ±4.22 | ±2.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljutaily, T.; Barakat, H.; Moustafa, M.M.A.; Rehan, M. Incorporation of Sukkari Date in Probiotic-Enriched Fermented Camel Milk Improves the Nutritional, Physicochemical, and Organoleptical Characteristics. Fermentation 2022, 8, 5. https://doi.org/10.3390/fermentation8010005
Aljutaily T, Barakat H, Moustafa MMA, Rehan M. Incorporation of Sukkari Date in Probiotic-Enriched Fermented Camel Milk Improves the Nutritional, Physicochemical, and Organoleptical Characteristics. Fermentation. 2022; 8(1):5. https://doi.org/10.3390/fermentation8010005
Chicago/Turabian StyleAljutaily, Thamer, Hassan Barakat, Mahmoud M. A. Moustafa, and Medhat Rehan. 2022. "Incorporation of Sukkari Date in Probiotic-Enriched Fermented Camel Milk Improves the Nutritional, Physicochemical, and Organoleptical Characteristics" Fermentation 8, no. 1: 5. https://doi.org/10.3390/fermentation8010005
APA StyleAljutaily, T., Barakat, H., Moustafa, M. M. A., & Rehan, M. (2022). Incorporation of Sukkari Date in Probiotic-Enriched Fermented Camel Milk Improves the Nutritional, Physicochemical, and Organoleptical Characteristics. Fermentation, 8(1), 5. https://doi.org/10.3390/fermentation8010005