Sensory Characteristics of Two Kinds of Alcoholic Beverages Produced with Spent Coffee Grounds Extract Based on Electronic Senses and HS-SPME-GC-MS Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Yeast Strain
2.2. Fermentation Process
2.3. Analysis of Yeast Growth
2.4. Analysis of CO2 Production
2.5. Analysis of Physicochemical Properties
2.6. Analysis of Volatile Profile
2.7. Electronic Nose Analysis
2.8. Electronic Tongue Analysis
2.9. Sensory Evaluation
2.10. Statistical Data Analysis
3. Results and Discussion
3.1. Analysis of Fermentation Blocked in SCG Extract
3.2. Optimization of Nitrogen Source for SFB
3.3. Physicochemical and Sensory Characteristics of SCG Alcoholic Beverages
3.4. Analysis of Electronic Nose and Electronic Tongue
3.4.1. Analysis of Electronic Nose
3.4.2. Analysis of Electronic Tongue
3.5. Volatile Profile of SCG Alcoholic Beverages
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Açıkalın, B.; Sanlier, N. Coffee and its effects on the immune system. Trends Food Sci. Technol. 2021, 114, 625–632. [Google Scholar] [CrossRef]
- Ruta, L.L.; Farcasanu, I.C. Coffee and yeasts: From flavor to biotechnology. Fermentation 2021, 7, 9. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Mussatto, S.J.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, composition and application of coffee and its industrial residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.; Nebra, S.A.; Machado Silva, M.J.; Sanchez, C.G. The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenerg. 1998, 14, 457–467. [Google Scholar] [CrossRef]
- da Silveira, J.S.; Durand, N.; Lacour, S.; Belleville, M.P.; Perez, A.; Loiseau, G.; Dornier, M. Solid-state fermentation as a sustainable method for coffee pulp treatment and production of an extract rich in chlorogenic acids. Food Bioprod. Process. 2019, 115, 175–184. [Google Scholar] [CrossRef]
- Simões, G.; Demétrio, G.B.; de Paula, G.F.; Ladeira, D.C.; Matsumoto, L.S. Influence of spent coffee grounds on soil microbiological attributes and maize crop. Res. Soc. Dev. 2020, 9, e818986400. [Google Scholar] [CrossRef]
- Araújo, M.N.; Azevedo, A.Q.P.L.; Hamerski, F.; Voll, F.A.P.; Corazza, M.L. Enhanced extraction of spent coffee grounds oil using high-pressure CO2 plus ethanol solvents. Ind. Crop Prod. 2019, 141, 111723. [Google Scholar] [CrossRef]
- Martinez-Saez, N.; García, A.T.; Pérez, I.D.; Rebollo-Hernanz, M.; Mesías, M.; Morales, F.J.; Martín-Cabrejas, M.A.; del Castillo, M.D. Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 2017, 216, 114–122. [Google Scholar] [CrossRef]
- Panusa, A.; Zuorro, A.; Lavecchia, R.; Marrosu, G.; Petrucci, R. Recovery of natural antioxidants from spent coffee grounds. J. Agric. Food Chem. 2013, 61, 4162–4168. [Google Scholar] [CrossRef]
- Sampaio, A.; Dragone, G.; Vilanova, M.; Oliveira, J.M.; Teixeira, J.A.; Mussatto, S.I. Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground. LWT-Food. Sci. Technol. 2013, 54, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Gouvea, B.M.; Torres, C.; Franca, A.S.; Oliveira, L.S.; Oliveira, E.S. Feasibility of ethanol production from coffee husks. Biotechnol. Lett. 2009, 31, 1315–1319. [Google Scholar] [CrossRef]
- Hughes, S.R.; López-Núñez, J.C.; Jones, M.A.; Moser, B.R.; Cox, E.J.; Lindquist, M.; Galindo-Leva, L.A.; Riaño-Herrera, N.M.; Rodriguez-Valencia, N.; Gast, F.; et al. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Appl. Microbiol. Biotechnol. 2014, 98, 8413–8431. [Google Scholar] [CrossRef] [Green Version]
- Machado, E.; Mussatto, S.; Teixeira, J.; Vilanova, M.; Oliveira, J. Increasing the sustainability of the coffee agro-industry: Spent coffee grounds as a source of new beverages. Beverages 2018, 4, 105. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.V.; Kim, Y.T. Spent coffee grounds and coffee silverskin as potential materials for packaging: A review. J. Polym. Environ. 2021, 29, 2372–2384. [Google Scholar] [CrossRef]
- Liu, Y.J.; Yuan, W.Q.; Lu, Y.Y.; Liu, S.Q. Biotransformation of spent coffee grounds by fermentation with monocultures of Saccharomyces cerevisiae and Lachancea thermotolerans aided by yeast extracts. LWT-Food Sci. Technol. 2021, 138, 110751. [Google Scholar] [CrossRef]
- Liu, Y.J.; Seah, R.H.; Abdul Rahaman, M.S.; Lu, Y.Y.; Liu, S.Q. Concurrent inoculations of Oenococcus oeni and Lachancea thermotolerans: Impacts on non-volatile and volatile components of spent coffee grounds hydrolysates. LWT-Food Sci. Technol. 2021, 148, 111795. [Google Scholar] [CrossRef]
- Liu, Y.J.; Lu, Y.Y.; Liu, S.Q. The potential of spent coffee grounds hydrolysates fermented with Torulaspora delbrueckii and Pichia kluyveri for developing an alcoholic beverage: The yeasts growth and chemical compounds modulation by yeast extracts. Curr. Res. Food Sci. 2021, 4, 489–498. [Google Scholar] [CrossRef]
- Buratti, S.; Ballabio, D.; Benedetti, S.; Cosio, M.S. Prediction of Italian red wine sensorial descriptors from electronic nose, electronic tongue and spectrophotometric measurements by means of Genetic Algorithm regression models. Food Chem. 2007, 100, 211–218. [Google Scholar] [CrossRef]
- Jo, Y.; Gu, S.Y.; Chung, N.; Gao, Y.; Kim, H.J.; Jeong, M.H.; Jeong, Y.J.; Kwon, J.H. Comparative analysis of sensory profiles of commercial cider vinegars from Korea, China, Japan, and US by SPME/GC-MS, E-nose, and E-tongue October Korean. J. Food Sci. Technol. 2016, 48, 430–436. [Google Scholar]
- Zhao, G.Z.; Feng, Y.X.; Hadiatullah, H.; Zheng, F.P.; Yao, Y.P. Chemical characteristics of three kinds of Japanese soy sauce based on electronic senses and GC-MS analyses. Front. Microbiol. 2021, 11, 3222. [Google Scholar] [CrossRef]
- Sharma, S.; Mahant, K.; Sharma, S.; Thakur, A.D. Effect of nitrogen source and citric acid addition on wine preparation from Japanese persimmon. J. I. Brewing 2017, 123, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Hlaing, M.T.; Joshy, C.G. Optimization of fermentation process for the preparation of coffee wine by response surface methodology. Dagon Univ. Commem. 25th Anniv. Silver Jubil. Res. J. 2019, 9, 2. [Google Scholar]
- Yu, L.; Du, J.H.; Wang, X.J.; Yin, Q. Study on resistance of Saccharomyces cerevisiae sp. to citric acid. Sci. Technol. Food Ind. 2008, 29, 148–151. [Google Scholar]
- Wang, B.S.; Li, L.B.; Wu, Z.W.; Zhang, L.; Chen, F.; Chen, L.; Zhang, M.X. Inhibiting effects of high concentration of citric acid on the growth of Saccharomyces cerevisiae. China Brew. 2018, 37, 56–60. [Google Scholar]
- Li, Z.T.; Li, C.F.; Jia, Y.Y.; Wang, Q.K.; Lu, Y.S.; Wang, M.Y.; Huang, Q.; Liu, S.X. Screening of yeast for coffee-grounds wine fermentation and research on nitrogen source for nutritional condition optimization. China Brew. 2016, 35, 61–64. [Google Scholar]
- Gutiérrez, A.; Chiva, R.; Sancho, M.; Beltran, G.; Arroyo-López, F.N.; Guillamon, J.M. Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must. Food Microbiol. 2012, 31, 25–32. [Google Scholar] [CrossRef]
- Beltran, G.; Novo, M.; Rozès, N.; Mas, A.; Guillamón, J.M. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res. 2004, 4, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Lucero, P.; Moreno, E.; Lagunas, R. Catabolite inactivation of the sugar transporters in Saccharomyces cerevisiae is inhibited by the presence of a nitrogen source. FEMS Yeast Res. 2002, 1, 307–314. [Google Scholar]
- Hernandez-Orte, P.; Ibarz, M.J.; Cacho, J.; Ferreira, V. Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine. Food Chem. 2005, 89, 163–174. [Google Scholar] [CrossRef]
- Santos, J.; Leitão-Correia, F.; Sousa, M.J.; Leão, C. Ammonium is a key determinant on the dietary restriction of yeast chronological aging in culture medium. Oncotarget 2015, 6, 6511–6523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forkert, P.G. Mechanisms of lung tumorigenesis by ethyl carbamate and vinyl carbamate. Drug Metab. Rev. 2010, 42, 355–378. [Google Scholar] [CrossRef] [PubMed]
- Silla, S.M.H. Biogenic amines: Their importance in foods. Int. J. Food Microbiol. 1996, 29, 213–231. [Google Scholar]
- Hernanz, D.; Gallo, V.; Recamales, A.F.; Melendez-Martinez, A.J.; Gonzalez-Miret, M.L.; Heredia, F.J. Effect of storage on the phenolic content, volatile composition and colour of white wines from the varieties zalema and colombard. Food Chem. 2009, 113, 530–537. [Google Scholar] [CrossRef]
- Bressani, A.P.P.; Martinez, S.J.; Sarmento, A.B.I.; Borém, F.M.; Schwan, R.F. Organic acids produced during fermentation and sensory perception in specialty coffee using yeast starter culture. Food Res. Int. 2020, 128, 108773. [Google Scholar] [CrossRef]
- De Bruyn, F.; Zhang, S.J.; Pothakos, V.; Torres, J.; Lambot, C.; Moroni, A.V.; Callanan, M.; Sybesma, W.; Weckx, S.; De Vuyst, L. Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Appl. Environ. Microbiol. 2016, 83, e02398-16. [Google Scholar] [CrossRef] [Green Version]
- Evangelista, S.R.; da Cruz Pedrozo Miguel, M.G.; de Souza Cordeiro, C.; Silva, C.F.; Pinheiro, A.C.M.; Schwan, R.F. Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process. Food Microbiol. 2014, 44, 87–95. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.X.; Zhang, B.C.; Zhang, Y. Research on the difference between Chinese quality brandy and French quality brandy. Liquor-Mak. Sci. Technol. 2011, 1, 47–51. [Google Scholar]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, M.K.; Lee, K.G. Effect of reversed coffee grinding and roasting process on physicochemical properties including volatile compound profiles. Innov. Food Sci. Emerg. Technol. 2017, 44, 97–102. [Google Scholar] [CrossRef]
- Ribeiro, L.S.; Miguel, M.G.; Evangelista, S.R.; Machado Martins, P.M.; van Mullem, J.; Belizario, M.H.; Schwan, R.F. Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Res. Int. 2017, 92, 26–32. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Q.K.; Wu, W.Y.; Zhang, Y.X.; Liu, S.X.; Li, C.F. Evaluation of different Saccharomyces cerevisiae strains on the profile of volatile compounds in pineapple wine. J. Food Sci. Technol. 2018, 55, 4119–4130. [Google Scholar] [CrossRef]
- Nyanga, L.K.; Nout, M.J.; Smid, E.J.; Boekhout, T.; Zwietering, M.H. Fermentation characteristics of yeasts isolated from traditionally fermented masau (Ziziphus mauritiana) fruits. Int. J. Food Microbiol. 2013, 166, 426–432. [Google Scholar] [CrossRef]
- Lin, X.; Wu, L.F.; Wang, X.; Yao, L.L.; Wang, L. Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100284. [Google Scholar]
- Wu, L.F.; Li, L.; Chen, S.J.; Wang, L.; Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 2020, 274, 117014. [Google Scholar] [CrossRef]
- Lin, X.; Jia, Y.; Li, K.; Hu, X.P.; Li, C.F.; Liu, S.X. Effect of the inoculation strategies of selected Metschnikowia agaves and Saccharomyces cerevisiae on the volatile profile of pineapple wine in mixed fermentation. J. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Sun, S.Y.; Jiang, W.G.; Zhao, Y.P. Evaluation of different Saccharomyces cerevisiae strains on the profile of volatile compounds and polyphenols in cherry wines. Food Chem. 2011, 2, 547–555. [Google Scholar] [CrossRef]
Indexes | SFB | SDS |
---|---|---|
Residual sugar (g/L) | 6.27 ± 0.51 | / |
Ethanol (% vol) | 12.5 ± 0.1 | 50.5 ± 0.2 |
Total acidity (g/L) | 9.07 ± 0.43 | 0.37 ± 0.02 |
Total esters (mg/L) | 730.42 ± 46.65 | 426.93 ± 44.28 |
Colour and lustre | Yellowish-brown, clear, and transparent | Light amber, clear, and transparent |
Aroma | Typical coffee, sweet fruity, and good wine aromas | A typical and rich coffee aroma with a pure wine aroma |
Taste | Full-bodied wine with a harmonious and palatable sour, sweet, and bitter taste | Mellow, soft, and elegant wine |
Code | Compounds | Odor Description * | Concentration (μg/L) | ||
---|---|---|---|---|---|
SCG Extract | SFB | SDS | |||
Esters | |||||
E1 | Ethyl acetate | Pineapple | 7105 ± 30 B | 36690 ± 64 A | 5094 ± 22 C |
E2 | Ethyl propionate | Fruit | 230 ± 4 B | 936 ± 12 A | 19 ± 2 C |
E3 | Ethyl 2-methylpropanoate | Sweet, rubber | - | - | 33 ± 2 |
E4 | 2-Methyl-1-propyl acetate | Fruit, apple, banana | - | 33 ± 3 | - |
E5 | Ethyl butanoate | Apple | - | 148 ± 5 | - |
E6 | Ethyl 2-methylbutanoate | Apple | - | - | 75 ± 3 |
E7 | Ethyl 3-methylbutanoate | Fruit | - | 4 ± 0.2 | - |
E8 | Isoamyl acetate | Banana | 46 ± 2 C | 1346 ± 12 A | 342 ± 5 B |
E9 | Ethyl hexanoate | Apple peel, fruit | 63 ± 2 C | 651 ± 7 A | 152 ± 4 B |
E10 | Ethyl octanoate | Fruit, fat | 172 ± 5 C | 717 ± 12 B | 878 ± 16 A |
E11 | Ethyl nonanoate | - | 55 ± 3 | 11 ± 1 | |
E12 | Furfuryl acetate | - | 2194 ± 22 | - | |
E13 | Ethyl decanoate | Grape | 62 ± 2 B | 257 ± 4 A | 265 ± 4 A |
E14 | Ethyl butyrate | Apple | 84 ± 4 | - | - |
E15 | Phenethyl acetate | Rose, honey, tobacco | - | 149 ± 2 | - |
Alcohols | |||||
A1 | 2-Methyl-1-butanol | Wine, onion | 473 ± 7 C | 7421 ± 22 A | 3898 ± 15 B |
A2 | 3-Methyl-1-butanol | Whiskey, malt, burnt | 810 ± 21 C | 11804 ± 32 B | 12565 ± 43 A |
A3 | Isobutanol | Wine, solvent, bitter | 78 ± 2 C | 1480 ± 10 A | 377 ± 4 B |
A4 | 2-Heptanol | Mushroom | 35 ± 4 | - | - |
A5 | 2,3-Butanediol | Fruit, onion | 616 ± 11 | - | - |
A6 | 2-Furylmethanol | Burnt | 854 ± 22 B | 1789 ± 14 A | - |
A7 | Benzyl alcohol | Sweet, flower | 88 ± 4 A | 29 ± 1 B | - |
A8 | 2-Phenylethyl alcohol | Honey, spice, rose, lilac | 435 ± 9 B | 10183 ± 34 A | - |
Acids | |||||
AC1 | Acetic acid | Sour | 62 ± 4 B | 1017 ± 23 A | 58 ± 3 B |
Aldehydes | |||||
Al1 | Ethanal | Pungent, ether | - | 617 ± 10 B | 1792 ± 14 A |
Al2 | Isovaleraldehyde | Malt | 25 ± 2 | - | - |
Al3 | Acetaldehyde diethyl acetal | - | - | 6395 ± 21 | |
Al4 | (Z)-4-heptenal | Biscuit, cream | 42 ± 2 | - | - |
Al5 | Octanal | Fat, soap, lemon, green | 34 ± 2 | - | - |
Al6 | Nonanal | Fat, citrus, green | 289 ± 5 | - | - |
Al7 | Furfural | Bread, almond, sweet | - | - | 1027 ± 22 |
Al8 | Phenylacetaldehyde | Hawthorne, honey, sweet | 44 ± 3 B | - | 1093 ± 13 A |
Ketones | |||||
K1 | 2-Methylpentan-3-one | Mint | 29 ± 2 A | 21 ± 2 B | - |
K2 | 2,3,4-Trimethyl-cyclopent-2-enone | 137 ± 4 | - | - | |
K3 | Cyclopentanone | - | - | 19 ± 1 | |
Phenols | |||||
P1 | Phenol | Phenol | 322 ± 7 A | 80 ± 3 B | - |
P2 | 4-Ethyl-2-methoxyphenol | Spice, clove | 1835 ± 20 A | 1232 ± 16 B | 89 ± 4 C |
P3 | 2-Ethylphenol | 61 ± 3 | - | - | |
P4 | 4-Allyl-2-methoxyphenol | Clove, honey | 249 ± 6 A | 239 ± 6 A | - |
Pyrazines | |||||
Py1 | 2-Methypyrazine | Popcorn | 159 ± 8 C | 1130 ± 21 A | 221 ± 5 B |
Py2 | 2,5-Dimethyl pyrazine | Cocoa, roasted nut, roast beef, medicine | 60 ± 2 B | 477 ± 13 A | - |
Py3 | 2-Eethyl pyrazine | Peanut butter, wood | 64 ± 5 B | 192 ± 4 A | 24 ± 2 C |
Py4 | 2-Ethyl-6-methylpyrazine | - | - | 12 ± 1 | |
Py5 | 2-Ethyl-5-methyl pyrazine | Fruit, sweet | 1901 ± 22 A | 1117 ± 12 B | - |
Py6 | 2-Methyl-3-ethylpyrazine | Roast | 77 ± 5 B | 424 ± 8 A | - |
Py7 | 2-Ethyl-3,6-dimethylpyrazine | Potato, roast | 1761 ± 15 A | 1538 ± 26 B | - |
Py8 | 3,5-Diethyl-2-methylpyrazine | Baked | 340 ± 9 B | 381 ± 8 A | - |
Py9 | 2,3-Diethyl-5-methylpyrazine | Potato, meat, roast | 313 ± 6 A | 286 ± 6 B | - |
Furans | |||||
F1 | 2-(2-Propenyl)furan | - | - | 52 ± 2 | |
F2 | Furfuryl ethyl ether | - | 1518 ± 16 A | 408 ± 7 B | |
F3 | 2,5-Dimethylfuran | 20 ± 1 B | 11 ± 2 C | 40 ± 1 A | |
F4 | 2-(2-Pentenyl)furan | - | - | 225 ± 2 | |
F5 | 5-Methyl-2-acetylfuran | 70 ± 2 | - | - | |
F6 | 2-Vinylfuran | 269 ± 7 A | 39 ± 1 B | 38 ± 1 B | |
F7 | 5-Methyl-2-furanaldehyde | Almond, caramel, burnt sugar | - | - | 156 ± 3 |
F8 | 2-Methyl-Furan | 36 ± 2 | - | - | |
F9 | Benzofuran | 18 ± 1 | - | - | |
F10 | 2-Acetylfuran | Balsamic | 550 ± 6 B | 2350 ± 21 A | 152 ± 3 C |
F11 | 5-Methyl-2-propenyl furan | 105 ± 2 A | 4 ± 1 C | 27 ± 1 B | |
F12 | Methyl Furfuryl Disulphide | Smoke | 66 ± 3 | - | - |
F13 | 2-(2-Furfuryl)furan | 768 ± 14 A | 70 ± 3 C | 309 ± 6 B | |
F14 | 5-Methyl-2-propiony furan | 252 ± 5 | - | - | |
F15 | Difurfuryl ether | 1015 ± 10 A | 608 ± 9 B | - | |
F16 | 2-Furfuryl-5-methyl furan | 532 ± 11 A | 64 ± 1 C | 82 ± 1 B | |
Terpenes | |||||
T1 | β-Myrcene | Balsamic, must, spice | 13 ± 1 B | - | 99 ± 3 A |
T2 | DL-Limonene | 80 ± 2 B | 48 ± 3 B | 396 ± 9 A | |
T3 | Styrene | Balsamic, gasoline | 538 ± 11 B | - | 1030 ± 10 A |
T4 | cis-Linaloloxide (2-methyl-2-vinyl-5-(alpha hydroxyisopropyl) tetrahydrofuran) | Flower, wood | 308 ± 3 A | 213 ± 6 B | - |
T5 | Camphor | Camphor | 199 ± 4 | - | - |
T6 | Linalool | 273 ± 3 A | 254 ± 6 B | - | |
T7 | β-Damascenone | Apple. rose, honey | 173 ± 2 A | 19 ± 1 B | - |
Pyrroles | |||||
Pyr1 | 3-Methylpyrrole | 53 ± 4 B | 368 ±7 A | - | |
Pyr2 | N-methyl-2-acetyl pyrrole | 571 ± 14 B | 808 ± 9 A | - | |
Pyr3 | 1-Furfurylpyrrole | 893 ± 15 | - | - | |
Lactones | |||||
L1 | γ-Butyrolactone | Caramel, sweet | 83 ± 2 B | 167 ± 5 A | - |
Others | |||||
O1 | 3,4-Diethylthiophene | - | - | 19 ± 2 | |
O2 | 4-Methylthiazole | Roasted meat | 63 ± 4 | - | - |
Code | Compounds | Odor Description * | SCG Extract | SFB | SDS |
---|---|---|---|---|---|
Esters | |||||
E1 | Ethyl acetate | Pineapple | 1421.0 | 4.9 | 0.8 |
E2 | Ethyl propionate | Fruit | 255.6 | 20.8 | / |
E3 | Ethyl 2-methylpropanoate | Sweet, rubber | - | - | 7.3 |
E5 | Ethyl butyrate | Apple | 560.0 | - | - |
E7 | Ethyl 3-methylbutanoate | Fruit | - | 1.3 | - |
E8 | Isoamyl acetate | Banana | 0.2 | 44.9 | 6.2 |
E9 | Ethyl hexanoate | Apple peel, fruit | 12.6 | 46.5 | 0 |
E10 | Ethyl octanoate | Fruit, fat | 8.9 | 35.9 | 6.0 |
E13 | Ethyl decanoate | Grape | 12.4 | 1.3 | 0.2 |
E15 | Phenethyl acetate | Rose, honey, tobacco | - | 0.6 | - |
Alcohols | |||||
A1 | 2-Methyl-1-butanol | Wine, onion | 29.7 | 0.2 | 0.1 |
A2 | 3-Methyl-1-butanol | Whiskey, malt, burnt | / | 0.4 | 0.7 |
A4 | 2-Heptanol | Mushroom | 0.5 | - | - |
Aldehydes | |||||
Al1 | Ethanal | Pungent, ether | - | 0.5 | 1629.1 |
Al3 | Acetaldehyde diethyl acetal | - | - | 6.4 | |
Al4 | (Z)-4-heptenal | Biscuit, cream | 12.4 | - | - |
Al5 | Octanal | Fat, soap, lemon, green | 1.5 | - | - |
Al6 | Nonanal | Fat, citrus, green | 15.9 | - | - |
Al8 | Phenylethanal | Hawthorne, honey, sweet | 55.0 | - | 1.0 |
Ketones | |||||
K1 | 2-Methylpentan-3-one | Mint | 5.8 | / | - |
Phenols | |||||
P2 | 4-Ethyl-2-methoxyphenol | Spice, clove | 26.4 | 37.3 | 1.8 |
P4 | 4-Allyl-2-methoxyphenol | Clove, honey | 1464.7 | 39.8 | - |
Furans | |||||
F2 | Furfuryl ethyl ether | - | 138.0 | 0.9 | |
Terpenes | |||||
T3 | Styrene | Balsamic, gasoline | / | - | 4.1 |
T6 | Linalool | 2.7 | 10.2 | - | |
T7 | β-Damascenone | Apple. rose, honey | / | 380.0 | - |
Pyrroles | |||||
Pyr3 | 1-Furfurylpyrrole | 8.9 | - | - | |
Lactones | |||||
L1 | γ-Butyrolactone | Caramel, sweet | 2.4 | 4.8 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yang, X.; Li, Z.; Lin, X.; Hu, X.; Liu, S.; Li, C. Sensory Characteristics of Two Kinds of Alcoholic Beverages Produced with Spent Coffee Grounds Extract Based on Electronic Senses and HS-SPME-GC-MS Analyses. Fermentation 2021, 7, 254. https://doi.org/10.3390/fermentation7040254
Wang L, Yang X, Li Z, Lin X, Hu X, Liu S, Li C. Sensory Characteristics of Two Kinds of Alcoholic Beverages Produced with Spent Coffee Grounds Extract Based on Electronic Senses and HS-SPME-GC-MS Analyses. Fermentation. 2021; 7(4):254. https://doi.org/10.3390/fermentation7040254
Chicago/Turabian StyleWang, Lu, Xu Yang, Zhuoting Li, Xue Lin, Xiaoping Hu, Sixin Liu, and Congfa Li. 2021. "Sensory Characteristics of Two Kinds of Alcoholic Beverages Produced with Spent Coffee Grounds Extract Based on Electronic Senses and HS-SPME-GC-MS Analyses" Fermentation 7, no. 4: 254. https://doi.org/10.3390/fermentation7040254
APA StyleWang, L., Yang, X., Li, Z., Lin, X., Hu, X., Liu, S., & Li, C. (2021). Sensory Characteristics of Two Kinds of Alcoholic Beverages Produced with Spent Coffee Grounds Extract Based on Electronic Senses and HS-SPME-GC-MS Analyses. Fermentation, 7(4), 254. https://doi.org/10.3390/fermentation7040254