Nutritional Compositions of Optimally Processed Umqombothi (a South African Indigenous Beer)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Traditional Beer (Umqombothi) Brewing Process
2.2. Sample Preparation
2.3. Proximate Compositions and Total Energy Determination
2.4. Mineral Compositions Determination Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.5. Determination of Amino Acid Compositions
2.6. Determination of Sugar Compounds
2.7. Determination of B-Group Vitamins
2.8. Statistical Analysis
3. Results
3.1. Proximate Compositions
3.2. Mineral Composition
3.3. Amino Acid (AA) Compositions
3.4. B-Group Vitamins
3.5. Sugars
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sawadogo-Lingani, H.; Owusu-Kwarteng, J.; Glover, R.; Diawara, B.; Jakobsen, M.; Jespersen, L. Sustainable Production of African Traditional Beers with Focus on Dolo, a West African Sorghum-Based Alcoholic Beverage. Front. Sustain. Food Syst. 2021, 5, 143. [Google Scholar] [CrossRef]
- Lues, J.; Ikalafeng, B.; Maharasoa, M.; Shale, K. Brewing and Consumptions Practices of Indigenous Traditional Beer in A Typical South African Semi Urban Area. Indilinga Afr. J. Indig. Knowl. Syst. 2009, 8, 163–170. [Google Scholar]
- Lyumugabe, F.; Gros, J.; Nzungize, J.; Bajyana, E.; Thonart, P. Characteristics of African traditional beers brewed with sorghum malt: A review. Biotechnol. Agron. Soc. Environ. 2012, 16, 509–530. [Google Scholar]
- Abdoul-latif, F.; Bassolé, I.; Dicko, M. Proximate composition of traditional local sorghum beer “dolo” manufactured in Ouagadougou. Afr. J. Biotechnol. 2013, 12, 1517–1522. [Google Scholar]
- Konfo, C.; Chabi, N.; Dahouenon-Ahoussi, E.; Cakpo-Chichi, M.; Soumanou, M.; Sohounhloue, D. Improvement of African traditional sorghum beers quality and potential applications of plants extracts for their stabilization: A review. J. Microbiol. Biotechnol. Food Sci. 2015, 5, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Nyanzi, R.; Jooste, P.J. Cereal-based functional foods. In Probiotics; Cid Rigobelo, E., Ed.; Intech Open: London, UK, 2012; pp. 161–196. [Google Scholar]
- Mandishona, E.; Moyo, V.; Gordeuk, V.; Khumalo, H.; Saungweme, T.; Gangaidzo, I.; Gomo, Z.; Rouault, T.; MacPhail, A. A traditional beverage prevents iron deficiency in African women of child bearing age. Eur. J. Clin. Nutr. 1999, 53, 722–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikalafeng, B.K. Microbiota and Mycotoxins in Traditional Beer of The Greater Kimberley Area and Associated Brewing and Consumption Practices. Ph.D. Thesis, Central University of Technology, Free State, South Africa, 5 August 2008. [Google Scholar]
- Hlangwani, E.; Adebiyi, J.A.; Doorsamy, W.; Adebo, O.A. Processing, Characteristics and Composition of Umqombothi (a South African Traditional Beer). Processes 2020, 8, 1451. [Google Scholar] [CrossRef]
- Kalui, C.M.; Mathara, J.M.; Kutima, P.M. Probiotic potential of spontaneously fermented cereal based foods–A review. Afr. J. Biotechnol. 2010, 9, 2490–2498. [Google Scholar]
- Aka, S.; Konan, G.; Fokou, G.; Dje, K.M.; Bonfoh, B. Review on African traditional cereal beverages. Am. J. Res. Commun. 2014, 2, 103–153. [Google Scholar]
- Setta, M.C.; Matemu, A.; Mbega, E.R. Potential of probiotics from fermented cereal-based beverages in improving health of poor people in Africa. J. Food Sci. Technol. 2020, 57, 3935–3946. [Google Scholar] [CrossRef]
- Sunley, N. Nutritional information in food labelling: What does it really mean to consumers? S. Afr. J. Clin. Nutr. 2012, 25, 7–8. [Google Scholar] [CrossRef]
- Battersby, J.; Haysom, G. ‘Fake Food’ in South Africa: Myths, Misinformation and Not Enough Data. 2018. Available online: https://theconversation.com/fake-food-in-south-africa-myths-misinformation-and-not-enough-data-103168 (accessed on 27 July 2021).
- Wright, C.A.; Bruhn, C.M.; Heymann, H.; Bamforth, C.W. Beer consumers’ perceptions of the health aspects of alcoholic beverages. J. Food Sci. 2008, 73, H12–H17. [Google Scholar] [CrossRef] [PubMed]
- Hlangwani, E.; Doorsamy, W.; Adebiyi, J.A.; Fajimi, L.I.; Adebo, O.A. A modeling method for the development of a bioprocess to optimally produce umqombothi (a South African traditional beer). Sci. Rep. 2021, accepted in press. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemist: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemist: Gaithersburg, MD, USA, 2010. [Google Scholar]
- FAO. Food Energy: Methods of Analysis and Conversion Factors Food and Paper Nutrition Paper; Food and Agriculture Organization: Rome, Italy, 2003. [Google Scholar]
- Adebiyi, J.A.; Obadina, A.O.; Adebo, O.A.; Kayitesi, E. Comparison of nutritional quality and sensory acceptability of biscuits obtained from native, fermented, and malted pearl millet (Pennisetum glaucum) flour. Food Chem. 2017, 232, 210–217. [Google Scholar] [CrossRef]
- Halász, A.; Lásztity, R. Use of Yeast Biomass in Food Production; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Lapeña, D.; Kosa, G.; Hansen, L.D.; Mydland, L.T.; Passoth, V.; Horn, S.J.; Eijsink, V.G. Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. Microb. Cell Fact. 2020, 19, 19. [Google Scholar] [CrossRef]
- Nanadoum, M.; Pourquie, J. Sorghum Beer: Production, Nutritional Value and Impact upon Human Health. In Beer in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2009; pp. 53–60. [Google Scholar]
- Hanisi, N. Nguni Fermented Foods: Working with Indigenous Knowledge in the Life Sciences: A Case Study. Ph.D. Thesis, Rhodes University, Eastern Cape, South Africa, March 2006. [Google Scholar]
- Nie, C.; Wang, C.; Zhou, G.; Dou, F.; Huang, M. Effects of malting conditions on the amino acid compositions of final malt. Afr. J. Biotechnol. 2010, 9, 9018–9025. [Google Scholar]
- Van Jaarsveld, P.J.; Faber, M.; van Stuijvenberg, M.E. Vitamin A, iron, and zinc content of fortified maize meal and bread at the household level in 4 areas of South Africa. Food Nutr. Bull. 2015, 36, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Xu, X. Sprouted Grains-Based Fermented Products. In Sprouted Grains; AACC International Press: Washington, DC, USA, 2019; pp. 143–173. [Google Scholar]
- Van Heerden, I. Nutrient content of sorghum beer strainings. S. Afr. J. Anim. Sci. 1987, 17, 171–175. [Google Scholar]
- Anderson, J.W.; Baird, P.; Davis, R., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.M.; Miller, M.J.; Freund, G.G. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism 2012, 61, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
- Ötles, S.; Ozgoz, S. Health effects of dietary fiber. Acta Sci. Pol. Technol. Aliment. 2014, 13, 191–202. [Google Scholar] [CrossRef]
- Gordon, R.; Power, A.; Chapman, J.; Chandra, S.; Cozzolino, D. A review on the source of lipids and their interactions during beer fermentation that affect beer quality. Fermentation 2018, 4, 89. [Google Scholar] [CrossRef] [Green Version]
- Olšovská, J.; Šterba, K.; Vrzal, T. Nutritional composition and energy value of different types of beer and cider. Kvasny Prumysl 2019, 65, 32–37. [Google Scholar] [CrossRef]
- Trius-Soler, M.; Vilas-Franquesa, A.; Tresserra-Rimbau, A.; Sasot, G.; Storniolo, C.E.; Estruch, R.; Lamuela-Raventós, R.M. Effects of the Non-Alcoholic Fraction of Beer on Abdominal Fat, Osteoporosis, and Body Hydration in Women. Molecules 2020, 25, 3910. [Google Scholar] [CrossRef] [PubMed]
- Van Heerden, I.V. The nutritive content of african beers brewed with maize grits or sorghum adjunct. J. Inst. Brew. 1989, 95, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Fontana, M.; Buiatti, S. Amino acids in beer. In Beer in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2009; pp. 273–284. [Google Scholar]
- Ncube, S.; Dube, S.; Nindi, M.M. Determination of volatile compounds during deterioration of African opaque beer using a stir bar sorptive extraction technique and gas chromatography-high resolution mass spectrometry. Curr. Res. Food Sci. 2020, 3, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.B.; Schmidt, F. The fate of carbohydrates during fermentation of low calorie beer. Carlsberg Res. Commun. 1985, 50, 325. [Google Scholar] [CrossRef] [Green Version]
- Jurková, M.; Čejka, P.; Štěrba, K.; Olšovská, J. Determination of total carbohydrate content in beer using its pre-column enzymatic cleavage and HPLC-RI. Food Anal. Methods 2014, 7, 1677–1686. [Google Scholar] [CrossRef]
- Adebo, O.A. African Sorghum-Based Fermented Foods: Past, Current and Future Prospects. Nutrients 2020, 12, 1111. [Google Scholar] [CrossRef]
- Oliver, G. How South Africa’s Poor Bear the Cost of Coronavirus. 2020. Available online: https://www.thenewhumanitarian.org/feature/2020/04/23/South-Africa-coronavirus-jobs-poverty (accessed on 29 June 2021).
- Choma, S.S.R.; Alberts, M.; Urdal, P. Effect of traditional beer consumption on the iron status of a rural South African population. S. Afr. J. Clin. Nutr. 2007, 20, 62–68. [Google Scholar] [CrossRef]
- Khumalo, F. First Draft of History: Meet Our Hero, Mr Sorghum Mqombothi. 2017. Available online: https://www.timeslive.co.za/sunday-times/opinion-and-analysis/2017-02-05-first-draft-of-history-meet-our-hero-mr-sorghum-mqombothi/ (accessed on 29 June 2021).
- FAO/WHO. September. Limit test for heavy metals in food additive specifications. In Explanatory note: Joint FAO/WHO Expert Committee on Food Additives, Fifty-Ninth Meeting; The Food and Agriculture Organization (FAO): Rome, Italy, 2002. [Google Scholar]
- Elbagermi, M.A.; Edwards, H.G.M.; Alajtal, A.I. Monitoring of heavy metal content in fruits & vegetables collected from production and market sites in the Misurata area of Libya. Int. Sch. Res. Not. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Aliasgharpour, M.; Rahnamaye Farzami, M. Trace elements in human nutrition: A review. J. Med. Investig. 2013, 2, 115–128. [Google Scholar]
- Garattini, S. Glutamic acid, twenty years later. Nutr. J. 2000, 130, 901S–909S. [Google Scholar] [CrossRef] [PubMed]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, S.; Ray, S.; Nagarajan, K. Glutamic acid as anticancer agent: An overview. Saudi Pharm. J. 2013, 21, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Coqueiro, A.Y.; Rogero, M.M.; Tirapegui, J. Glutamine as an anti-fatigue amino acid in sports nutrition. Nutrients 2019, 11, 863. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Li, F.; Li, Y.; Tang, Y.; Kong, X.; Feng, Z.; Anthony, T.G.; Watford, M.; Hou, Y.; Wu, G.; et al. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2016, 48, 41–51. [Google Scholar] [CrossRef]
- Katongole, J. The Microbial Succession in Indigenous Fermented Maize Products. Ph.D. Thesis, University of Free State, Bloemfontein, South Africa, February 2008. [Google Scholar]
- Krishnaswamy, K.; Nair, K.M. Importance of folate in human nutrition. Br. J. Nutr. 2001, 85, S115–S124. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.D.; Kim, Y.I.; Refsum, H. Is folic acid good for everyone? Am. J. Clin. Nutr. 2008, 87, 517–533. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.M.; Bailey, R.; O’Connor, D.L. Folate. Adv. Nutr. 2013, 4, 123–125. [Google Scholar] [CrossRef]
- Sami, R.; Li, Y.; Qi, B.; Wang, S.; Zhang, Q.; Han, F.; Ma, Y.; Jing, J.; Jiang, L. HPLC analysis of water-soluble vitamins (B2, B3, B6, B12, and C) and fat-soluble vitamins (E, K, D, A, and β-carotene) of okra (Abelmoschus esculentus). J. Chem. 2014, 2014, 831357. [Google Scholar] [CrossRef] [Green Version]
- Hucker, B.; Wakeling, L.; Vriesekoop, F. Vitamins in brewing: The impact of wort production on the thiamine and riboflavin vitamer content of boiled sweet wort. J. Inst. Brew. 2014, 120, 164–173. [Google Scholar] [CrossRef]
- Hucker, B.; Vriesekoop, F.; Vriesekoop-Beswick, A.; Wakeling, L.; Vriesekoop-Beswick, H.; Hucker, A. Vitamins in brewing: Effects of post-fermentation treatments and exposure and maturation on the thiamine and riboflavin vitamer content of beer. J. Inst. Brew. 2016, 122, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, H.; Charpentier, C. Biochemical aspects of stuck and sluggish fermentation in grape must. J. Ind. Microbiol. Biotechnol. 1998, 20, 20–27. [Google Scholar] [CrossRef]
- Labuschagne, P.W.J.; Divol, B. Thiamine: A key nutrient for yeasts during wine alcoholic fermentation. Appl. Microbiol. Biotechnol. 2021, 1–21. [Google Scholar]
- He, Y.; Dong, J.; Yin, H.; Zhao, Y.; Chen, R.; Wan, X.; Chen, P.; Hou, X.; Liu, J.; Chen, L. Wort composition and its impact on the flavour-active higher alcohol and ester formation of beer–a review. J. Inst. Brew. 2014, 120, 157–163. [Google Scholar] [CrossRef]
- Vanbeneden, N.; Vanderputten, D.; Vanderhaegen, B.; Derdelinckx, G.; Van Landschoot, A. Influence of the sugar composition of the added extract on the refermentation of beer in bottles. Am. Soc. Brew. Chem. 2006, 64, 206–213. [Google Scholar] [CrossRef]
- Lagunas, R. Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 1993, 10, 229–242. [Google Scholar] [CrossRef]
- Godswill, A.C. Sugar alcohols: Chemistry, production, health concerns and nutritional importance of mannitol, sorbitol, xylitol, and erythritol. Int. J. Agron. Agric. Res. 2017, 3, 31–66. [Google Scholar]
- Gonçalves, C.; Ferreira, C.; Gonçalves, L.G.; Turner, D.L.; Leandro, M.J.; Salema–Oom, M.; Santos, H.; Gonçalves, P. A new pathway for mannitol metabolism in yeasts suggests a link to the evolution of alcoholic fermentation. Front. Microbiol. 2019, 10, 2510. [Google Scholar] [CrossRef]
- Wakai, A.; Roberts, I.G.; Schierhout, G. Mannitol for acute traumatic brain injury. Cochrane Database Syst. Rev. 2013, 84, CD001049. [Google Scholar] [CrossRef] [PubMed]
Parameters (%) | RI | CB | OPB |
---|---|---|---|
Ash | 0.7 a ± 0.1 | 0.9 b ± 0.0 | 1.0 c ± 0.1 |
Carbohydrate | 33.1 c ± 1.7 | 30.7 a ± 2.3 | 32.5 b ± 0.2 |
Crude fat | 0.2 b ± 0.0 | 0.1 a ± 0.1 | 0.1 a ± 0.0 |
Crude fibre | 50.7 a ± 1.4 | 56.8 c ± 2.4 | 54.6 b ± 0.3 |
Crude protein | 7.5 a ± 0.1 | 8.1 b ± 0.1 | 8.6 c ± 0.4 |
Moisture | 7.7 c ± 0.3 | 3.4 b ± 0.3 | 3.2 a ± 0.1 |
Energy value (kcal/100 g) | 164.5 b ± 6.5 | 156.2 a ± 9.6 | 165.0 c ± 0.7 |
Mineral (mg/kg) | RI | CB | OPB |
---|---|---|---|
As | ND | ND | ND |
Ca | 139.3 a ± 0.2 | 299.8 c ± 0.2 | 222.0 b ± 0.2 |
Co | ND | 0.1 a ± 0.0 | ND |
Cr | 0.2 b ± 0.0 | 0.2 b ± 0.0 | 0.1 a ± 0.0 |
Cu | 1.6 a ± 0.0 | 2.8 c ± 0.0 | 2.5 b ± 0.0 |
Fe | 31.6 a ± 0.0 | 44.1 c ± 0.0 | 36.0 b ± 0.0 |
K | 1864.3 a ± 0.8 | 2993.8 c ± 1.4 | 2584.6 b ± 1.0 |
Mg | 684.1 a ± 0.1 | 1170.5 c ± 0.1 | 1059.9 b ± 0.1 |
Mo | 0.1 a ± 0.0 | 0.2 b ± 0.0 | 0.2 b ± 0.0 |
Mn | 7.1 a ± 0.0 | 12.4 c ± 0.0 | 11.1 b ± 0.0 |
Na | 22.4 a± 0.0 | 68.3 c ± 0.0 | 56.2 b ± 0.0 |
Ni | 0.5 a ± 0.0 | 0.8 c ± 0.0 | 0.6 b ± 0.0 |
P | 1264.2 a ± 0.3 | 2100.7 c ± 0.6 | 1860.8 b ± 0.5 |
Pb | ND | ND | ND |
S | 5728.6 c ± 39.1 | 5047.7 a ± 3.8 | 5702.0 b ± 40.0 |
Se | ND | 0.2 a ± 0.0 | ND |
Zn | 21.7 b ± 0.0 | 22.1 c ± 0.0 | 19.3 a ± 0.0 |
Amino acid (g/100 g) | RI | CB | OPB |
---|---|---|---|
Essential | |||
Histidine | 0.3 a ± 0.1 | 0.4 b ± 0.1 | 0.5 c ± 0.0 |
Isoleucine | 0.3 a ± 0.0 | 0.3 a ± 0.0 | 0.3 a ± 0.0 |
Leucine | 1.0 a ± 0.1 | 1.0 a ± 0.0 | 1.1 b ± 0.0 |
Lysine | 0.2 a ± 0.0 | 0.2 a ± 0.0 | 0.2 a ± 0.1 |
Methionine | 0.1 a ± 0.0 | 0.2 b ± 0.0 | 0.1 a ± 0.0 |
Phenylalanine | 0.4 a ± 0.0 | 0.4 a ± 0.1 | 0.4 a ± 0.0 |
Threonine | 0.3 a ± 0.0 | 0.3 a ± 0.0 | 0.3 a ± 0.0 |
Valine | 0.4 a± 0.0 | 0.4 a ± 0.0 | 0.5 b ± 0.1 |
Nonessential | |||
Alanine | 0.6 a ± 0.0 | 0.6 a ± 0.1 | 0.7 b ± 0.1 |
Arginine | 0.4 a ± 0.0 | 0.4 a ± 0.0 | 0.4 a ± 0.0 |
Aspartic acid | 0.5 a ± 0.0 | 0.5 a ± 0.1 | 0.6 b ± 0.0 |
Glutamic acid | 1.5 a ± 0.0 | 1.5 a ± 0.0 | 1.6 b ± 0.0 |
Glycine | 0.6 b ± 0.1 | 0.3 a ± 0.0 | 0.3 a ± 0.0 |
HO-proline | ND | ND | ND |
Proline | 0.7 a ± 0.0 | 0.7 a ± 0.0 | 0.7 a ± 0.0 |
Serine | 0.4 a ± 0.0 | 0.4 a ± 0.1 | 0.4 a ± 0.1 |
Tyrosine | 0.3 a ± 0.1 | 0.3 a ± 0.0 | 0.3 a ± 0.1 |
Total AAs | 8.0 | 7.9 | 8.4 |
Vitamin (µg/g) | RI | CB | OPB |
---|---|---|---|
Thiamine (B1) | 0.6 b ± 0.1 | 0.3 a ± 0.1 | 0.3 a ± 0.0 |
Riboflavin (B2) | ND | ND | ND |
Nicotinamide (B3) | 2.7 c ± 0.0 | 0.1 a ± 0.0 | 0.2 b ± 0.0 |
Nicotinic acid (B3) | 2.0 c ± 0.8 | 0.5 a ± 0.2 | 0.7 b ± 0.0 |
Pantothenic acid (B5) | ND | ND | ND |
Pyridoxine hydrochloride (B6) | 0.1 b ± 0.0 | 0.03 a ± 0.0 | 0.0 a ± 0.0 |
Biotin (B7) | ND | ND | ND |
Folic acid (B9) | 20.0 b ± 2.3 | 0.6 a ± 0.1 | 0.6 a ± 0.1 |
Cyanocobalamin (B12) | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlangwani, E.; Adebiyi, J.A.; Adebo, O.A. Nutritional Compositions of Optimally Processed Umqombothi (a South African Indigenous Beer). Fermentation 2021, 7, 225. https://doi.org/10.3390/fermentation7040225
Hlangwani E, Adebiyi JA, Adebo OA. Nutritional Compositions of Optimally Processed Umqombothi (a South African Indigenous Beer). Fermentation. 2021; 7(4):225. https://doi.org/10.3390/fermentation7040225
Chicago/Turabian StyleHlangwani, Edwin, Janet Adeyinka Adebiyi, and Oluwafemi Ayodeji Adebo. 2021. "Nutritional Compositions of Optimally Processed Umqombothi (a South African Indigenous Beer)" Fermentation 7, no. 4: 225. https://doi.org/10.3390/fermentation7040225
APA StyleHlangwani, E., Adebiyi, J. A., & Adebo, O. A. (2021). Nutritional Compositions of Optimally Processed Umqombothi (a South African Indigenous Beer). Fermentation, 7(4), 225. https://doi.org/10.3390/fermentation7040225