Control of N-Propanol Production in Simulated Liquid State Fermentation of Chinese Baijiu by Response Surface Methodology
Abstract
1. Introduction
2. Material and Methods
2.1. Raw Materials and Strains
2.2. Liquid Fermentation Process
2.3. Optimization of Fermentation Parameters
2.4. Box–Behnken Design
2.5. Determination of N-Propanol Concentration
2.6. Data Analysis
3. Results and Discussion
3.1. Effect of Glucose to Threonine Ratio on N-Propanol Production
3.2. Effect of Temperature on N-Propanol Production
3.3. Effect of Initial pH on N-Propanol Production
3.4. Prediction Model for Regulation of N-Propanol Content
3.5. Analysis of Response Surface (3D) and Corresponding Contour (2D) on N-Propanol
3.6. Model Verification Test Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Sun, B. Effect of Fermentation Processing on the Flavor of Baijiu. J. Agric. Food Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zou, W.; Shen, C.; Yang, J. Basic flavor types and component characteristics of Chinese traditional liquors: A review. J. Food Sci. 2020, 85, 4096–4107. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, L.; Xiao, Z.; Niu, Y. Characterization of the key aroma compounds in mulberry fruits by application of gas chromatography–olfactometry (GC-O), odor activity value (OAV), gas chromatography-mass spectrometry (GC–MS) and flame photometric detection (FPD). Food Chem. 2018, 245, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Zhu, Y.; Xu, Y. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. [Google Scholar] [CrossRef]
- Qi’an, H.; Junling, S.; Jing, Z.; Hongliang, L.; Shuangkui, D. Enzymes extracted from apple peels have activity in reducing higher alcohols in Chinese liquors. J. Agric. Food Chem. 2014, 62, 9529–9538. [Google Scholar]
- Genovese, A.; Piombino, P.; Gambuti, A.; Moio, L. Simulation of retronasal aroma of white and red wine in a model mouth system. Investigating the influence of saliva on volatile compound concentrations. Food Chem. 2009, 114, 100–107. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, A.; Zhang, Y.; Wu, Z.; Li, B.; Lou, H.; Huang, G.; Wen, H. Reducing higher alcohols by nitrogen compensation during fermentation of Chinese rice wine. Food Sci. Biotechnol. 2020, 29, 805–816. [Google Scholar] [CrossRef]
- Yang, D.; Luo, X.; Wang, X. Characteristics of traditional Chinese shanlan wine fermentation. J. Biosci. Bioeng. 2014, 117, 203–207. [Google Scholar] [CrossRef]
- Hazelwood, L.A.; Daran, J.M.; Maris, A.; Pronk, J.T.; Dickinson, J.R. The Ehrlich Pathway for Fusel Alcohol Production: A Century of Research on Saccharomyces cerevisiae Metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef]
- Procopio, S.; Krause, D.; Hofmann, T.; Becker, T. Significant amino acids in aroma compound profiling during yeast fermentation analyzed by PLS regression. LWT-Food Sci. Technol. 2013, 51, 423–432. [Google Scholar] [CrossRef]
- Avalos, J.L.; Fink, G.R.; Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 2013, 31, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chen, X.; Mishra, P.; Ching, C. Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production. Appl. Microbiol. Biotechnol. 2017, 101, 465–474. [Google Scholar] [CrossRef]
- Molina, A.M.; Guadalupe, V.; Varela, C.; Swiegers, J.H.; Pretorius, I.S.; Agosin, E. Differential synthesis of fermentative aroma compounds of two related commercial wine yeast strains. Food Chem. 2009, 117, 189–195. [Google Scholar] [CrossRef]
- Carrau, F.; Medina, K.; Farina, L.; Boido, E.; Dellacassa, E. Effect of Saccharomyces cerevisiae inoculum size on wine fermentation aroma compounds and its relation with assimilable nitrogen content. Int. J. Food Microbiol. 2010, 143, 81–85. [Google Scholar] [CrossRef]
- Wei, L.; ShiJia, C.; JianHui, W.; CuiYing, Z.; Yu, S.; XueWu, G.; YeFu, C.; DongGuang, X. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation. Appl. Microbiol. Biotechnol. 2018, 102, 1783–1795. [Google Scholar] [CrossRef]
- Wang, Y.P.; Sun, Z.G.; Wei, X.Q.; Guo, X.W.; Xiao, D.G. Identification of Core Regulatory Genes and Metabolic Pathways for the n -Propanol Synthesis in Saccharomyces cerevisiae. J. Agric. Food Chem. 2021, 69, 1637–1646. [Google Scholar] [CrossRef] [PubMed]
- XingLin, H.; DeLiang, W.; WuJiu, Z.; ShiRu, J. The production of the Chinese baijiu from sorghum and other cereals. J. Inst. Brew. 2017, 123, 600–604. [Google Scholar] [CrossRef]
- Varela, C.; Torrea, D.; Schmidt, S.A.; Ancin-Azpilicueta, C.; Henschke, P.A. Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae. Food Chem. 2012, 135, 2863–2871. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Mizutani, M.; Yamada, K.; Iwaizono, H.; Takayama, K.; Hino, M.; Kudo, T.; Ohta, H.; Kida, K.; Morimura, S. Characteristics of aromatic compound production using new shochu yeast MF062 isolated from shochu mash. J. Inst. Brew. 2012, 118, 406–411. [Google Scholar] [CrossRef]
- Barbosa, C.; Mendes-Faia, A.; Mendes-Ferreira, A. The nitrogen source impacts major volatile compounds released by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol. 2012, 160, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.W.; Huang, Y.H.; Lai, C.H.; Ho, W.J.; Ko, W.C. Develop a Novel Method for Removing Fusel Alcohols from Rice Spirits Using Nanofiltration. J. Food Sci. 2010, 75, N25–N29. [Google Scholar] [CrossRef]
- Tang, J.; Wang, H.Y.; Xu, Y. Effect of mixed culture of Saccharomyces cerevisiae and Pichia anomala on fermentation efficiency and flavor compounds in Chinese Liquor. Microbiol. China 2012, 39, 921–930. [Google Scholar]
- Yaping, W.; Shuang, X.; Zhongguan, S.; Dongguang, X. Factors Influencing Higher Alcohol in the Liquid Fermentation of Daqu Baijiu. J. Tianjin Univ. Sci. Technol. 2019, 34, 39–44. [Google Scholar] [CrossRef]
- Xiao, R.; Chen, X.; Guo, Y.; Huang, X.; Wu, Y. Fermentation of Xiaoqu Fen-flavor Baijiu using Amaranthus tricolor seeds. China Brew. 2018, 37, 127–131. [Google Scholar]
- Rufei, M.A.; Yubo, M.A.; Tong, S.; Liu, P. Optimization of Liquid-State Fermentation of Qingxiang Baijiu with Corn as Main Raw Material. Liquor-Mak. Sci. Technol. 2018, 11, 80–84. [Google Scholar] [CrossRef]
- Alenyorege, E.A.; Ma, H.; Aheto, J.H.; Ishmael, A.; Zhou, C. Response surface methodology centred optimization of mono-frequency ultrasound reduction of bacteria in fresh-cut Chinese cabbage and its effect on quality. LWT-Food Sci. Technol. 2020, 122, 108991. [Google Scholar] [CrossRef]
- Rollero, S.; Bloem, A.; Camarasa, C.; Sanchez, I.; Mouret, J.R. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Appl. Microbiol. Biotechnol. 2014, 99, 2291–2304. [Google Scholar] [CrossRef] [PubMed]
- Uysal, S.; Cvetanović, A.; Zengin, G.; Đurović, S.; Aktumsek, A. Optimization of the extraction process of antioxidants from loquat leaves using response surface methodology. J. Food Process. Preserv. 2017, 41, e13185. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, L.; Wang, Y.; Wang, X.; Xiao, D. Higher alcohols metabolism by Saccharomyces cerevisiae: A mini review. Chin. J. Biotechnol. 2021, 37, 429–447. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, M.; Wang, Y.; Xing, S.; Hong, K.; Chen, Y.; Guo, X.; Xiao, D. Identification by comparative transcriptomics of core regulatory genes for higher alcohol production in a top-fermenting yeast at different temperatures in beer fermentation. Appl. Microbiol. Biotechnol. 2019, 103, 4917–4929. [Google Scholar] [CrossRef]
- Graham, S. The Production of Secondary Metabolites with Flavour Potential during Brewing and Distilling Wort Fermentations. Fermentation 2017, 3, 63. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Wang, H.; Yang, F.; Xu, Y. Effects of initial temperature on microbial community succession rate and volatile flavors during Baijiu fermentation process. Food Res. Int. 2020, 141, 109887. [Google Scholar] [CrossRef]
- Lingling, P.; Mingyou, L.; Mei, W.; Shidong, B.; Shuyi, Q.; Xueyu, F. Effect of fermentation temperature on fusel oil content in strong-flavor Baijiu. China Brew. 2021, 40, 106–110. [Google Scholar]
- Ough, C.S.; Guymon, J.F.; Crowell, E.A. Formation of Higher Alcohols during Grape Juice Fermentations at Various Temperatures. J. Food Sci. 2010, 31, 620–625. [Google Scholar] [CrossRef]
- Zhao, C.; Yan, X.; Yang, S.; Chen, F. Screening of Bacillus strains from Luzhou-flavor liquor making for high-yield ethyl hexanoate and low-yield propanol. LWT Food Sci. Technol. 2017, 77, 60–66. [Google Scholar] [CrossRef]
- Oo, K.S.; Than, S.S.; Oo, T.H. Osmotic Dehydration of Toddy Fruit Cubes in Sugar Solution Using Response Surface Methodology. Am. J. Food Sci. Technol. 2019, 7, 175–181. [Google Scholar] [CrossRef]
- Dobladomaldonado, A.F.; Janssen, F.; Gomand, S.; Ketelaere, B.D.; Goderis, B.; Delcour, J.A. A response surface analysis of the aqueous leaching of amylose from maize starch. Food Hydrocoll. 2017, 63, 265–272. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
Variables | Symbol Coded | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Glucose/Threonine | A | 8:2 | 6:4 | 4:6 |
Temperature | B | 28 °C | 32 °C | 37 °C |
Initial pH | C | 4.00 | 4.50 | 5.00 |
Number | Variables | Y N-Propanol Production (mg/L) | ||
---|---|---|---|---|
A | B | C | ||
1 | −1 | −1 | 0 | 71.99 |
2 | 1 | −1 | 0 | 110.41 |
3 | −1 | 1 | 0 | 73.99 |
4 | 1 | 1 | 0 | 104.58 |
5 | −1 | 0 | −1 | 88.49 |
6 | 1 | 0 | −1 | 129.34 |
7 | −1 | 0 | 1 | 103.30 |
8 | 1 | 0 | 1 | 133.19 |
9 | 0 | −1 | −1 | 135.69 |
10 | 0 | 1 | −1 | 93.14 |
11 | 0 | −1 | 1 | 121.23 |
12 | 0 | 1 | 1 | 103.44 |
13 | 0 | 0 | 0 | 58.61 |
14 | 0 | 0 | 0 | 55.30 |
15 | 0 | 0 | 0 | 59.54 |
16 | 0 | 0 | 0 | 66.765 |
17 | 0 | 0 | 0 | 54.43 |
Source | Sum of Squares | Df a | Mean Squared | F Value | p Value | |
---|---|---|---|---|---|---|
Model | 12,352.02 | 9 | 1372.45 | 17.16 | 0.0006 | Significant |
A-Glucose/Threonine | 2441.26 | 1 | 2441.26 | 30.52 | 0.0009 | ** |
B-Temperature | 514.72 | 1 | 514.72 | 6.43 | 0.0389 | * |
C-Initial pH | 26.28 | 1 | 26.28 | 0.33 | 0.5844 | |
AB | 15.33 | 1 | 15.33 | 0.19 | 0.6748 | |
AC | 30.03 | 1 | 30.03 | 0.38 | 0.5594 | |
BC | 153.26 | 1 | 153.26 | 1.92 | 0.2088 | |
A2 | 1045.70 | 1 | 1045.70 | 13.07 | 0.0086 | ** |
B2 | 1018.67 | 1 | 1018.67 | 12.74 | 0.0091 | ** |
C2 | 6368.71 | 1 | 6368.71 | 79.62 | <0.0001 | ** |
Residual | 559.93 | 7 | 79.99 | |||
Lack of Fit | 464.64 | 3 | 154.88 | 6.50 | 0.0511 | Not significant |
Pure Error | 95.29 | 4 | 23.82 | |||
Cor Total | 12,911.95 | 16 | ||||
R2 = 0.9566 b Radj2 = 0.9009 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Han, X.; Lu, Y.; Li, J.; Zhang, Z.; Xia, X.; Zhao, S.; Liang, Y.; Sun, B.; Hu, Y. Control of N-Propanol Production in Simulated Liquid State Fermentation of Chinese Baijiu by Response Surface Methodology. Fermentation 2021, 7, 85. https://doi.org/10.3390/fermentation7020085
Yin Y, Han X, Lu Y, Li J, Zhang Z, Xia X, Zhao S, Liang Y, Sun B, Hu Y. Control of N-Propanol Production in Simulated Liquid State Fermentation of Chinese Baijiu by Response Surface Methodology. Fermentation. 2021; 7(2):85. https://doi.org/10.3390/fermentation7020085
Chicago/Turabian StyleYin, Yajie, Xinglin Han, Yifan Lu, Jinshan Li, Zongjie Zhang, Xian Xia, Shumiao Zhao, Yunxiang Liang, Baoguo Sun, and Yuanliang Hu. 2021. "Control of N-Propanol Production in Simulated Liquid State Fermentation of Chinese Baijiu by Response Surface Methodology" Fermentation 7, no. 2: 85. https://doi.org/10.3390/fermentation7020085
APA StyleYin, Y., Han, X., Lu, Y., Li, J., Zhang, Z., Xia, X., Zhao, S., Liang, Y., Sun, B., & Hu, Y. (2021). Control of N-Propanol Production in Simulated Liquid State Fermentation of Chinese Baijiu by Response Surface Methodology. Fermentation, 7(2), 85. https://doi.org/10.3390/fermentation7020085