Preparation of Oil Palm Empty Fruit Bunch Hydrolysate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrothermal Pretreatment
2.2. HPLC Analysis of Sugar, Aldehyde, and Organic Acid
2.3. Acidic Hydrolysis of the Solid Phase
2.4. Determination of Cellulose, Hemicellulose, and Lignin Yields
2.5. Enzymatic Hydrolysis
3. Results and Discussion
3.1. Hydrothermal Pretreatment of OPEFB
3.2. Acidic Hydrolysis of the Residual Solid Phase After Hydrothermal Treatment
3.3. Enzymatic Hydrolysis of the Hydrothermally Treated Solid Phase
3.4. Comparison of the Sugar, Aldehyde, and Organic Acid Yields
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahlia, T.M.I.; Ismail, N.; Hossain, N.; Silitonga, A.S.; Shamsuddin, A.H. Palm oil and its wastes as bioenergy sources: A comprehensive review. Environ. Sci. Pollut. Res. Int. 2019, 26, 14849–14866. [Google Scholar] [CrossRef] [PubMed]
- Saba, N.; Jawaid, M.; Sultan, M.T.H. Thermal properties of oil palm biomass based composites. In Lignocellulosic Fibre and Biomass-Based Composite Materials, 1st ed.; Jawaid, M., Paridah, M.T., Saba, N., Eds.; Woodhead Publishing: Sawston, Cambridge, UK, 2017; Volume 6, pp. 95–122. [Google Scholar]
- Padzil, F.N.M.; Lee, S.H.; Ainun, Z.M.A.; Lee, C.H.; Abdullah, L.C. Potential of oil palm empty fruit bunch resources in nanocellulose hydrogel production for versatile applications: A review. Materials 2020, 13, 1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mood, S.H.; Golfeshan, A.H.; Tabatabaei, M.; Jouzani, G.S.; Najafi, G.H.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Limayem, A.; Ricke, S.C. Lignocellulosic biomass for bioethanol production: Current perspectives, potentialissues and future prospects. Prog. Energy Combust. Sci. 2012, 38, 449–467. [Google Scholar] [CrossRef]
- Robak, K.; Balcerek, M. Review of second generation bioethanol production from residual biomass. Food Technol. Biotechnol. 2018, 56, 174–187. [Google Scholar] [CrossRef]
- Fujii, T.; Fang, X.; Inoue, H.; Murakami, K.; Sawayama, S. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol. Biofuels 2009, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Mathibe, B.N.; Malgas, S.; Radosavljevic, L.; Kumar, V.; Shukla, P.; Pletschke, B.I. Lignocellulosic pretreatment-mediated phenolic by-products generation and their effect on the inhibition of an endo-1,4-β-xylanase from Thermomyces lanuginosus VAPS-24. 3 Biotech. 2020, 10, 349. [Google Scholar] [CrossRef]
- Nakashima, N.; Akita, H.; Hoshino, T. Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Metab. Eng. 2014, 25, 204–214. [Google Scholar] [CrossRef]
- Akita, H.; Nakashima, N.; Hoshino, T. Bacterial production of isobutanol without expensive reagents. Appl. Microbiol. Biotechnol. 2015, 99, 991–999. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Hassan, S.E.D.; Alrefaey, H.M.A.; Elsakhawy, T. Efficient co-utilization of biomass-derived mixed sugars for lactic acid production by Bacillus coagulans Azu-10. Fermentation 2021, 7, 28. [Google Scholar] [CrossRef]
- Kayikci, Ö.; Nielsen, J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 2015, 15, fov068. [Google Scholar] [CrossRef] [Green Version]
- Simpson-Lavy, K.; Kupiec, M. Carbon catabolite repression in yeast is not limited to glucose. Sci. Rep. 2019, 9, 6491. [Google Scholar] [CrossRef] [PubMed]
- Mohd, Y.M.Z.; Akita, H.; Hassan, M.A.; Fujimoto, S.; Yoshida, M.; Nakashima, N.; Hoshino, T. Production of acetoin from hydrothermally pretreated oil mesocarp fiber using metabolically engineered Escherichia coli in a bioreactor system. Bioresour. Technol. 2017, 245, 1040–1048. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J.J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol. 2005, 96, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.S.; Inoue, H.; Endo, T.; Yano, S.; Bon, E.P. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 2010, 101, 7402–7409. [Google Scholar] [CrossRef] [PubMed]
- Overend, R.P.; Chornet, E.; Gascoigne, J.A. Fractionation of lignocellulosics by steam–aqueous pretreatments. Philos. Trans. R. Soc. A 1987, 321, 523–536. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. NREL Rep. 2008, TP–510–42618. [Google Scholar]
- Fujimoto, S.; Inoue, S.; Yoshida, M. High solid concentrations during the hydrothermal pretreatment of eucalyptus accelerate hemicellulose decomposition and subsequent enzymatic glucose production. Bioresour. Technol. Rep. 2018, 4, 16–20. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Hirata, S.; Fujimoto, S.; Hassan, M.A. Combined pretreatment with hot compressed water and wet disk milling opened up oil palm biomass structure resulting in enhanced enzymatic digestibility. Bioresour. Technol. 2015, 193, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Zakaria, M.R.; Mohd, Y.M.Z.; Fujimoto, S.; Inoue, H.; Ariffin, H.; Hassan, M.A.; Shirai, Y. Subcritical water-carbon dioxide pretreatment of oil palm mesocarp fiber for xylooligosaccharide and glucose production. Molecules 2018, 23, 1310. [Google Scholar] [CrossRef] [Green Version]
- Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 2010, 1, 36–50. [Google Scholar] [PubMed]
- Plácido, J.; Capareda, S. Ligninolytic enzymes: A biotechnological alternative for bioethanol production. Bioresour. Bioprocess. 2015, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, M.R.; Hirata, S.; Hassan, M.A. Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber. Bioresour. Technol. 2014, 169, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akita, H.; Watanabe, M.; Suzuki, T.; Nakashima, N.; Hoshino, T. Characterization of the Kluyveromyces marxianus strain DMB1 YGL157w gene product as a broad specificity NADPH-dependent aldehyde reductase. AMB Express 2015, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Akita, H.; Watanabe, M.; Suzuki, T.; Nakashima, N.; Hoshino, T. Molecular cloning and characterization of two YGL039w genes encoding broad specificity NADPH-dependent aldehyde reductases from Kluyveromyces marxianus strain DMB1. FEMS Microbiol. Lett. 2015, 362, fnv116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Hydrothermal Pretreatment Temperature (°C) | Glucose (mg/g-OPEFB) | Xylose (mg/g-OPEFB) | Galactose (mg/g-OPEFB) | Arabinose (mg/g-OPEFB) | Mannose (mg/g-OPEFB) |
---|---|---|---|---|---|
180 | 330 ± 3.07 | 127 ± 1.11 | 11.9 ± 0.476 | 4.77 ± 0.204 | 11.9 ± 0.210 |
190 | 335 ± 0.388 | 52.1 ± 1.64 | N.D. | N.D. | 11.8 ± 0.886 |
200 | 322 ± 2.47 | 23.1 ± 0.854 | N.D. | N.D. | 7.89 ± 0.371 |
Hydrothermal Treatment Temperature (°C) | Glucose (%) | Xylose (%) |
---|---|---|
180 | 46.0 | 32.2 |
190 | 54.1 | 16.8 |
200 | 61.7 | 9.86 |
Source Material | Hydrothermal Temperature (°C) | SF | Glucose (mg/g) | Xylose (mg/g) | Galactose (mg/g) | Arabinose (mg/g) | Mannose (mg/g) | Cellobiose (mg/g) | Reference |
---|---|---|---|---|---|---|---|---|---|
Eucalyptus | 200 | 4.22 | 272 ± 19.2 | 90.3 ± 4.39 | 20.1 ± 1.98 | 2.19 ± 1.47 | N.R. | N.R. | [19] |
OPFF | 190 | 3.60 | 229 | 63.9 | N.R. | N.R. | N.R. | N.R. | [21] |
OPMF | 200 | 4.25 | 140 | 46.9 | N.R. | N.R. | N.R. | N.R. | [24] |
OPEFB | 180 | 3.66 | 178 ± 1.13 | 70.9 ± 0.542 | 4.9 ± 0.0121 | 1.51 ± 0.0306 | 6.64 ± 0.0491 | 24.4 ± 0.211 | This study |
OPEFB | 190 | 3.94 | 205 ± 2.33 | 36.9 ± 0.00891 | 4.16 ± 0.112 | N.D. | 5.45 ± 0.0154 | 16.9 ± 0.327 | This study |
OPEFB | 200 | 4.25 | 234 ± 1.90 | 21.7 ± 0.202 | 4.27 ± 0.0228 | N.D. | 5.69 ± 0.164 | 13.8 ± 0.511 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akita, H.; Yusoff, M.Z.M.; Fujimoto, S. Preparation of Oil Palm Empty Fruit Bunch Hydrolysate. Fermentation 2021, 7, 81. https://doi.org/10.3390/fermentation7020081
Akita H, Yusoff MZM, Fujimoto S. Preparation of Oil Palm Empty Fruit Bunch Hydrolysate. Fermentation. 2021; 7(2):81. https://doi.org/10.3390/fermentation7020081
Chicago/Turabian StyleAkita, Hironaga, Mohd Zulkhairi Mohd Yusoff, and Shinji Fujimoto. 2021. "Preparation of Oil Palm Empty Fruit Bunch Hydrolysate" Fermentation 7, no. 2: 81. https://doi.org/10.3390/fermentation7020081
APA StyleAkita, H., Yusoff, M. Z. M., & Fujimoto, S. (2021). Preparation of Oil Palm Empty Fruit Bunch Hydrolysate. Fermentation, 7(2), 81. https://doi.org/10.3390/fermentation7020081