Yeast Metabolism and Its Exploitation in Emerging Winemaking Trends: From Sulfite Tolerance to Sulfite Reduction
Abstract
:1. Introduction
1.1. Physical and Chemical Alternatives to SO2
1.2. Microbiological Alternatives to SO2
2. The Changing Role of Sulfur Metabolism in Yeast: From (High) Sulfite Tolerance to (Low) Sulfite Production
2.1. Sulfite Production by Yeast and Its Importance in New Winemaking Trends
2.2. Glutathione Production
3. Sulfite Detoxification through Membrane Efflux
3.1. Genetics and Strain Distribution of the Sulfite Transporter Ssu1p
3.2. Sulfite Efflux and Its Importance in New Winemaking Trends
4. Inducible Response Triggered by SO2
Sulfite Inducible Response and Its Importance in New Winemaking Trends
5. SO2-Binding Compounds Produced by Yeasts
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ribereau-Gayon, P.; Dubourdieu, D.; Doneche, B.; Lonvaud, A. Handbook of Enology: The Microbiology of Wine and Vinifications: Volume 1, 2nd ed.; John Wiley & Sons Inc.: Chichester, UK; Hoboken, NJ, USA, 2005; ISBN 978-0-470-01034-1. [Google Scholar]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. The Role of Sulfur Dioxide in Wine. In Principles and Practices of Winemaking; Boulton, R.B., Singleton, V.L., Bisson, L.F., Kunkee, R.E., Eds.; Springer: Boston, MA, USA, 1999; pp. 448–473. ISBN 978-1-4757-6255-6. [Google Scholar]
- Guerrero, R.F.; Cantos-Villar, E. Demonstrating the Efficiency of Sulphur Dioxide Replacements in Wine: A Parameter Review. Trends Food Sci. Technol. 2015, 42, 27–43. [Google Scholar] [CrossRef]
- Costanigro, M.; Appleby, C.; Menke, S.D. The Wine Headache: Consumer Perceptions of Sulfites and Willingness to Pay for Non-Sulfited Wines. Food Qual. Prefer. 2014, 31, 81–89. [Google Scholar] [CrossRef]
- Granchi, L.; Budroni, M.; Rauhut, D.; Zara, G. Wine Yeasts and Consumer Health. In Yeasts in the Production of Wine; Romano, P., Ciani, M., Fleet, G.H., Eds.; Springer: New York, NY, USA, 2019; pp. 343–373. ISBN 978-1-4939-9782-4. [Google Scholar]
- Jamuna, P. Evaluation of Certain Food Additives. Sixty-Ninth Report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Technical Report Series No. 952. 2009. World Health Organization. Geneva, Pages 208. J. Food Sci. Technol. 2010, 47, 465–467. [Google Scholar] [CrossRef] [Green Version]
- Staub, C.; Michel, F.; Bucher, T.; Siegrist, M. How Do You Perceive This Wine? Comparing Naturalness Perceptions of Swiss and Australian Consumers. Food Qual. Prefer. 2020, 79, 103752. [Google Scholar] [CrossRef]
- Cravero, M.C. Organic and Biodynamic Wines Quality and Characteristics: A Review. Food Chem. 2019, 295, 334–340. [Google Scholar] [CrossRef]
- D’Amico, M.; Di Vita, G.; Monaco, L. Exploring Environmental Consciousness and Consumer Preferences for Organic Wines without Sulfites. J. Clean. Prod. 2016, 120, 64–71. [Google Scholar] [CrossRef]
- Benito, S. The Management of Compounds That Influence Human Health in Modern Winemaking from an HACCP Point of View. Fermentation 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R. Chemical Constituents of Grapes and Wine. In Wine Science Principles and Application, 3rd ed.; Jackson, R., Ed.; Academic Press: Cambridge, MA, USA, 2000; pp. 232–280. ISBN 978-0-12-379062-0. [Google Scholar]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry, 1st ed.; John Wiley & Sons Inc.: Chichester, UK, 2016; ISBN 978-1-118-62780-8. [Google Scholar]
- Yıldırım, H.K.; Darıcı, B. Alternative Methods of Sulfur Dioxide Used in Wine Production. J. Microbiol. Biotech. Food Sci. 2020, 9, 675–687. [Google Scholar] [CrossRef]
- Lisanti, M.T.; Blaiotta, G.; Nioi, C.; Moio, L. Alternative Methods to SO2 for Microbiological Stabilization of Wine. Compr. Rev. Food Sci. Food Saf. 2019, 18, 455–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrer-Gallego, R.; Puxeu, M.; Martín, L.; Nart, E.; Hidalgo, C.; Andorrà, I. Microbiological, Physical, and Chemical Procedures to Elaborate High-Quality SO2-Free Wines. Grapes Wines Adv. Prod. Process. Anal. Valorization 2017. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.C.; Nunes, C.; Saraiva, J.A.; Coimbra, M.A. Chemical and Physical Methodologies for the Replacement/Reduction of Sulfur Dioxide Use during Winemaking: Review of Their Potentialities and Limitations. Eur. Food Res. Technol. 2012, 234, 1–12. [Google Scholar] [CrossRef]
- Vestergaard, M.; Ingmer, H. Antibacterial and Antifungal Properties of Resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef]
- Vivancos, M.; Moreno, J.J. Effect of Resveratrol, Tyrosol and Beta-Sitosterol on Oxidised Low-Density Lipoprotein-Stimulated Oxidative Stress, Arachidonic Acid Release and Prostaglandin E2 Synthesis by RAW 264.7 Macrophages. Br. J. Nutr. 2008, 99, 1199–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardi, T. Microbial Resources as a Tool for Enhancing Sustainability in Winemaking. Microorganisms 2020, 8, 507. [Google Scholar] [CrossRef] [Green Version]
- Bordet, F.; Joran, A.; Klein, G.; Roullier-Gall, C.; Alexandre, H. Yeast–Yeast Interactions: Mechanisms, Methodologies and Impact on Composition. Microorganisms 2020, 8, 600. [Google Scholar] [CrossRef] [Green Version]
- Capece, A.; Pietrafesa, R.; Siesto, G.; Romano, P. Biotechnological Approach Based on Selected Saccharomyces cerevisiae Starters for Reducing the Use of Sulfur Dioxide in Wine. Microorganisms 2020, 8, 738. [Google Scholar] [CrossRef]
- Simonin, S.; Roullier-Gall, C.; Ballester, J.; Schmitt-Kopplin, P.; Quintanilla-Casas, B.; Vichi, S.; Peyron, D.; Alexandre, H.; Tourdot-Maréchal, R. Bio-Protection as an Alternative to Sulphites: Impact on Chemical and Microbial Characteristics of Red Wines. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comitini, F.; Capece, A.; Ciani, M.; Romano, P. New Insights on the Use of Wine Yeasts. Curr. Opin. Food Sci. 2017, 13, 44–49. [Google Scholar] [CrossRef]
- Mannazzu, I.; Domizio, P.; Carboni, G.; Zara, S.; Zara, G.; Comitini, F.; Budroni, M.; Ciani, M. Yeast Killer Toxins: From Ecological Significance to Application. Crit. Rev. Biotechnol. 2019, 39, 603–617. [Google Scholar] [CrossRef]
- Vuuren, H.J.J.V.; Jacobs, C.J. Killer Yeasts in the Wine Industry: A Review. Am. J. Enol. Vitic. 1992, 43, 119–128. [Google Scholar]
- Ciani, M.; Fatichenti, F. Killer Toxin of Kluyveromyces phaffii DBVPG 6076 as a Biopreservative Agent to Control Apiculate Wine Yeasts. Appl. Environ. Microbiol. 2001, 67, 3058–3063. [Google Scholar] [CrossRef] [Green Version]
- Comitini, F.; De Ingeniis, J.; Ingeniis De, J.; Pepe, L.; Mannazzu, I.; Ciani, M. Pichia anomala and Kluyveromyces wickerhamii Killer Toxins as New Tools against Dekkera/Brettanomyces Spoilage Yeasts. FEMS Microbiol. Lett. 2004, 238, 235–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oro, L.; Zara, S.; Fancellu, F.; Mannazzu, I.; Budroni, M.; Ciani, M.; Comitini, F. TpBGL2 Codes for a Tetrapisispora phaffii Killer Toxin Active against Wine Spoilage Yeasts. FEMS Yeast Res. 2014, 14, 464–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carboni, G.; Fancello, F.; Zara, G.; Zara, S.; Ruiu, L.; Marova, I.; Pinna, G.; Budroni, M.; Mannazzu, I. Production of a Lyophilized Ready-to-Use Yeast Killer Toxin with Possible Applications in the Wine and Food Industries. Int. J. Food Microbiol. 2020, 335, 108883. [Google Scholar] [CrossRef]
- Guerrini, S.; Bastianini, A.; Granchi, L.; Vincenzini, M. Effect of Oleic Acid on Oenococcus oeni Strains and Malolactic Fermentation in Wine. Curr. Microbiol. 2002, 44, 5–9. [Google Scholar] [CrossRef]
- Zara, G.; Bardi, L.; Belviso, S.; Farris, G.A.; Zara, S.; Budroni, M. Correlation between Cell Lipid Content, Gene Expression and Fermentative Behaviour of Two Saccharomyces cerevisiae Wine Strains. J. Appl. Microbiol. 2008, 104, 906–914. [Google Scholar] [CrossRef]
- Liu, P.-T.; Duan, C.-Q.; Yan, G.-L. Comparing the Effects of Different Unsaturated Fatty Acids on Fermentation Performance of Saccharomyces cerevisiae and Aroma Compounds during Red Wine Fermentation. Molecules 2019, 24, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San-Juan, F.; Ferreira, V.; Cacho, J.; Escudero, A. Quality and Aromatic Sensory Descriptors (Mainly Fresh and Dry Fruit Character) of Spanish Red Wines Can Be Predicted from Their Aroma-Active Chemical Composition. J. Agric. Food Chem. 2011, 59, 7916–7924. [Google Scholar] [CrossRef]
- Peña, R.; Chávez, R.; Rodríguez, A.; Ganga, M.A. A Control Alternative for the Hidden Enemy in the Wine Cellar. Fermentation 2019, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Rizk, Z.; Rayess, Y.E.; Ghanem, C.; Mathieu, F.; Taillandier, P.; Nehme, N. Identification of Multiple-Derived Peptides Produced by Saccharomyces cerevisiae Involved in Malolactic Fermentation Inhibition. FEMS Yeast Res. 2018, 18. [Google Scholar] [CrossRef]
- Albergaria, H.; Arneborg, N. Dominance of Saccharomyces cerevisiae in Alcoholic Fermentation Processes: Role of Physiological Fitness and Microbial Interactions. Appl. Microbiol. Biotechnol. 2016, 100, 2035–2046. [Google Scholar] [CrossRef] [PubMed]
- Zara, G.; Bou Zeidan, M.; Fancello, F.; Sanna, M.L.; Mannazzu, I.; Budroni, M.; Zara, S. The Administration of L-Cysteine and L-Arginine Inhibits Biofilm Formation in Wild-Type Biofilm-Forming Yeast by Modulating FLO11 Gene Expression. Appl. Microbiol. Biotechnol. 2019, 103, 7675–7685. [Google Scholar] [CrossRef] [PubMed]
- Bou Zeidan, M.; Zara, G.; Viti, C.; Decorosi, F.; Mannazzu, I.; Budroni, M.; Giovannetti, L.; Zara, S. L-Histidine Inhibits Biofilm Formation and FLO11-Associated Phenotypes in Saccharomyces cerevisiae Flor Yeasts. PLoS ONE 2014, 9, e112141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zara, G.; Budroni, M.; Mannazzu, I.; Fancello, F.; Zara, S. Yeast Biofilm in Food Realms: Occurrence and Control. World J. Microbiol. Biotechnol. 2020, 36, 134. [Google Scholar] [CrossRef]
- Taylor, S.L.; Higley, N.A.; Bush, R.K. Sulfites in Foods: Uses, Analytical Methods, Residues, Fate, Exposure Assessment, Metabolism, Toxicity, and Hypersensitivity. In Advances in Food Research; Chichester, C.O., Mrak, E.M., Schweigert, B.S., Eds.; Academic Press: Cambridge, MA, USA, 1986; Volume 30, pp. 1–76. [Google Scholar]
- Scampicchio, M.; Lawrence, N.S.; Arecchi, A.; Mannino, S. Determination of Sulfite in Wine by Linear Sweep Voltammetry. Electroanalysis 2008, 20, 444–447. [Google Scholar] [CrossRef]
- Noble, J.; Sanchez, I.; Blondin, B. Identification of New Saccharomyces cerevisiae Variants of the MET2 and SKP2 Genes Controlling the Sulfur Assimilation Pathway and the Production of Undesirable Sulfur Compounds during Alcoholic Fermentation. Microb. Cell Factories 2015, 14, 68. [Google Scholar] [CrossRef] [Green Version]
- Marullo, P.; Aigle, M.; Bely, M.; Masneuf-Pomarède, I.; Durrens, P.; Dubourdieu, D.; Yvert, G. Single QTL Mapping and Nucleotide-Level Resolution of a Physiologic Trait in Wine Saccharomyces cerevisiae Strains. FEMS Yeast Res. 2007, 7, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Ambroset, C.; Petit, M.; Brion, C.; Sanchez, I.; Delobel, P.; Guérin, C.; Chiapello, H.; Nicolas, P.; Bigey, F.; Dequin, S.; et al. Deciphering the Molecular Basis of Wine Yeast Fermentation Traits Using a Combined Genetic and Genomic Approach. G3 Genes Genomes Genet. 2011, 1, 263–281. [Google Scholar] [CrossRef] [Green Version]
- Blondin, B.; Noble, J.; Sanchez, I. Method for Controlling the Production of Sulphites, of Hydrogen Sulphide and of Acetaldehyde by Yeasts. European Patent Office No. EP2807247A2, 25 October 2017. [Google Scholar]
- A New Generation of Wine Yeasts That Helps to Manage Undesirable Sulfur Compounds in Wines. Available online: https://www.winemak-in.com/en/publications/a-new-generation-of-wine-yeasts-that-helps-to-manage-undesirable-sulfur-compounds-in-wines (accessed on 22 February 2021).
- Penninckx, M.J. An Overview on Glutathione in Saccharomyces versus Non-Conventional Yeasts. FEMS Yeast Res. 2002, 2, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, K.; Penninckx, M.J. An Important Role for Glutathione and Gamma-Glutamyltranspeptidase in the Supply of Growth Requirements during Nitrogen Starvation of the Yeast Saccharomyces cerevisiae. Microbiol. Read. Engl. 1997, 143, 1885–1889. [Google Scholar] [CrossRef] [Green Version]
- Du Toit, W.J.; Lisjak, K.; Stander, M.; Prevoo, D. Using LC-MSMS to Assess Glutathione Levels in South African White Grape Juices and Wines Made with Different Levels of Oxygen. J. Agric. Food Chem. 2007, 55, 2765–2769. [Google Scholar] [CrossRef]
- Badea, G.; Antoce, O. Glutathione As A Possible Replacement Of Sulfur Dioxide In Winemaking Technologies: A Review. Sci. Pap. Ser. B Hortic. 2015, 59, 123–140. [Google Scholar]
- Wegmann-Herr, P.; Ullrich, S.; Schmarr, H.-G.; Durner, D. Use of Glutathione during White Wine Production—Impact on S-off-Flavors and Sensory Production. BIO Web Conf. 2016, 7, 02031. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Bencomo, J.J.; Andújar-Ortiz, I.; Sánchez-Patán, F.; Moreno-Arribas, M.V.; Pozo-Bayón, M.A. Fate of the Glutathione Released from Inactive Dry Yeast Preparations during the Alcoholic Fermentation of White Musts. Aust. J. Grape Wine Res. 2016, 22, 46–51. [Google Scholar] [CrossRef] [Green Version]
- De Vero, L.; Bonciani, T.; Verspohl, A.; Mezzetti, F.; Giudici, P. High-Glutathione Producing Yeasts Obtained by Genetic Improvement Strategies: A Focus on Adaptive Evolution Approaches for Novel Wine Strains. AIMS Microbiol. 2017, 3, 155–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezzetti, F.; De Vero, L.; Giudici, P. Evolved Saccharomyces cerevisiae Wine Strains with Enhanced Glutathione Production Obtained by an Evolution-Based Strategy. FEMS Yeast Res. 2014, 14, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Avram, D.; Bakalinsky, A.T. SSU1 Encodes a Plasma Membrane Protein with a Central Role in a Network of Proteins Conferring Sulfite Tolerance in Saccharomyces cerevisiae. J. Bacteriol. 1997, 179, 5971–5974. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Bakalinsky, A.T. SSU1 Mediates Sulphite Efflux in Saccharomyces cerevisiae. Yeast 2000, 16, 881–888. [Google Scholar] [CrossRef]
- Aa, E.; Townsend, J.P.; Adams, R.I.; Nielsen, K.M.; Taylor, J.W. Population Structure and Gene Evolution in Saccharomyces cerevisiae. FEMS Yeast Res. 2006, 6, 702–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Ortín, J.E.; Querol, A.; Puig, S.; Barrio, E. Molecular Characterization of a Chromosomal Rearrangement Involved in the Adaptive Evolution of Yeast Strains. Genome Res. 2002, 12, 1533–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, A.; Durand, C.; Loira, N.; Durrens, P.; Sherman, D.J.; Marullo, P. QTL Dissection of Lag Phase in Wine Fermentation Reveals a New Translocation Responsible for Saccharomyces cerevisiae Adaptation to Sulfite. PLoS ONE 2014, 9, e86298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Ríos, E.; Nuévalos, M.; Barrio, E.; Puig, S.; Guillamón, J.M. A New Chromosomal Rearrangement Improves the Adaptation of Wine Yeasts to Sulfite. Environ. Microbiol. 2019, 21, 1771–1781. [Google Scholar] [CrossRef] [Green Version]
- Querol, A.; Fernández-Espinar, M.T.; lí del Olmo, M.; Barrio, E. Adaptive Evolution of Wine Yeast. Int. J. Food Microbiol. 2003, 86, 3–10. [Google Scholar] [CrossRef]
- García-Ríos, E.; Guillamón, J.M. Mechanisms of Yeast Adaptation to Wine Fermentations. In Yeasts in Biotechnology and Human Health: Physiological Genomic Approaches; Progress in Molecular and Subcellular Biology; Sá-Correia, I., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 37–59. ISBN 978-3-030-13035-0. [Google Scholar]
- Yuasa, N.; Nakagawa, Y.; Hayakawa, M.; Iimura, Y. Distribution of the Sulfite Resistance Gene SSU1-R and the Variation in Its Promoter Region in Wine Yeasts. J. Biosci. Bioeng. 2004, 98, 394–397. [Google Scholar] [CrossRef]
- Goto-Yamamoto, N.; Kitano, K.; Shiki, K.; Yoshida, Y.; Suzuki, T.; Iwata, T.; Yamane, Y.; Hara, S. SSU1-R, a Sulfite Resistance Gene of Wine Yeast, Is an Allele of SSU1 with a Different Upstream Sequence. J. Ferment. Bioeng. 1998, 86, 427–433. [Google Scholar] [CrossRef]
- Yuasa, N.; Nakagawa, Y.; Hayakawa, M.; Iimura, Y. Two Alleles of the Sulfite Resistance Genes Are Differentially Regulated in Saccharomyces cerevisiae. Biosci. Bitechnol. Biochem. 2005, 69, 1584–1588. [Google Scholar] [CrossRef] [Green Version]
- Divol, B.; du Toit, M.; Duckitt, E. Surviving in the Presence of Sulphur Dioxide: Strategies Developed by Wine Yeasts. Appl. Microbiol. Biotechnol. 2012, 95, 601–613. [Google Scholar] [CrossRef]
- Nardi, T.; Corich, V.; Giacomini, A.; Blondin, B. A Sulphite-Inducible Form of the Sulphite Efflux Gene SSU1 in a Saccharomyces cerevisiae Wine Yeast. Microbiology 2010, 156, 1686–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadai, C.; Treu, L.; Campanaro, S.; Giacomini, A.; Corich, V. Different Mechanisms of Resistance Modulate Sulfite Tolerance in Wine Yeasts. Appl. Microbiol. Biotechnol. 2016, 100, 797–813. [Google Scholar] [CrossRef]
- Treu, L.; Toniolo, C.; Nadai, C.; Sardu, A.; Giacomini, A.; Corich, V.; Campanaro, S. The Impact of Genomic Variability on Gene Expression in Environmental Saccharomyces cerevisiae Strains. Environ. Microbiol. 2014, 16, 1378–1397. [Google Scholar] [CrossRef]
- Crosato, G.; Nadai, C.; Carlot, M.; Garavaglia, J.; Ziegler, D.R.; Rossi, R.C.; De Castilhos, J.; Campanaro, S.; Treu, L.; Giacomini, A.; et al. The Impact of CUP1 Gene Copy-Number and XVI-VIII/XV-XVI Translocations on Copper and Sulfite Tolerance in Vineyard Saccharomyces cerevisiae Strain Populations. FEMS Yeast Res. 2020, 20. [Google Scholar] [CrossRef]
- Marullo, P.; Claisse, O.; Raymond Eder, M.L.; Börlin, M.; Feghali, N.; Bernard, M.; Legras, J.-L.; Albertin, W.; Rosa, A.L.; Masneuf-Pomarede, I. SSU1 Checkup, a Rapid Tool for Detecting Chromosomal Rearrangements Related to the SSU1 Promoter in Saccharomyces cerevisiae: An Ecological and Technological Study on Wine Yeast. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Fagnano, M.; Agrelli, D.; Pascale, A.; Adamo, P.; Fiorentino, N.; Rocco, C.; Pepe, O.; Ventorino, V. Copper Accumulation in Agricultural Soils: Risks for the Food Chain and Soil Microbial Populations. Sci. Total Environ. 2020, 734, 139434. [Google Scholar] [CrossRef]
- García-Ríos, E.; Guillamón, J.M. Sulfur Dioxide Resistance in Saccharomyces cerevisiae: Beyond SSU1. Microb. Cell 2019, 6, 527–530. [Google Scholar] [CrossRef]
- Lage, P.; Sampaio-Marques, B.; Ludovico, P.; Mira, N.P.; Mendes-Ferreira, A. Transcriptomic and Chemogenomic Analyses Unveil the Essential Role of Com2-Regulon in Response and Tolerance of Saccharomyces cerevisiae to Stress Induced by Sulfur Dioxide. Microb. Cell 2019, 6, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Hwang, Y.-S. Genome-Wide Transcriptional Responses to Sulfite in Saccharomyces cerevisiae. J. Microbiol. 2008, 46, 542–548. [Google Scholar] [CrossRef]
- Aranda, A.; Jiménez-Martí, E.; Orozco, H.; Matallana, E.; del Olmo, M. Sulfur and Adenine Metabolisms Are Linked, and Both Modulate Sulfite Resistance in Wine Yeast. J. Agric. Food Chem. 2006, 54, 5839–5846. [Google Scholar] [CrossRef]
- Gasch, A.P.; Spellman, P.T.; Kao, C.M.; Carmel-Harel, O.; Eisen, M.B.; Storz, G.; Botstein, D.; Brown, P.O. Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Mol. Biol. Cell 2000, 11, 4241–4257. [Google Scholar] [CrossRef] [PubMed]
- Simonin, S.; Alexandre, H.; Nikolantonaki, M.; Coelho, C.; Tourdot-Maréchal, R. Inoculation of Torulaspora delbrueckii as a Bio-Protection Agent in Winemaking. Food Res. Int. 2018, 107, 451–461. [Google Scholar] [CrossRef]
- Ribereau-Gayon, P.; Dubourdieu, D.; Doneche, B.; Lonvaud, A. Handbook of Enology, Volume 2: The Chemistry of Wine—Stabilization and Treatments, 2nd ed.; John Wiley & Sons Inc.: Chichester, UK; Hoboken, NJ, USA, 2005; ISBN 978-0-470-01034. [Google Scholar]
- Liu, S.-Q.; Pilone, G.J. An Overview of Formation and Roles of Acetaldehyde in Winemaking with Emphasis on Microbiological Implications. Int. J. Food Sci. Technol. 2000, 35, 49–61. [Google Scholar] [CrossRef]
- Jackowetz, J.N.; Dierschke, S.; Mira de Orduña, R. Multifactorial Analysis of Acetaldehyde Kinetics during Alcoholic Fermentation by Saccharomyces cerevisiae. Food Res. Int. 2011, 44, 310–316. [Google Scholar] [CrossRef]
- Li, E.; Mira de Orduña, R. Acetaldehyde Kinetics of Enological Yeast during Alcoholic Fermentation in Grape Must. J. Ind. Microbiol. Biotechnol. 2017, 44, 229–236. [Google Scholar] [CrossRef]
- Bely, M.; Stoeckle, P.; Masneuf-Pomarède, I.; Dubourdieu, D. Impact of Mixed Torulaspora delbrueckii- Saccharomyces cerevisiae Culture on High-Sugar Fermentation. Int. J. Food Microbiol. 2008, 122, 312–320. [Google Scholar] [CrossRef]
- Roudil, L.; Russo, P.; Berbegal, C.; Albertin, W.; Spano, G.; Capozzi, V. Non-Saccharomyces Commercial Starter Cultures: Scientific Trends, Recent Patents and Innovation in the Wine Sector. Recent Pat. Food Nutr. Agric. 2020, 11, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; de Orduña, R.M. Evaluation of the Acetaldehyde Production and Degradation Potential of 26 Enological Saccharomyces and Non-Saccharomyces Yeast Strains in a Resting Cell Model System. J. Ind. Microbiol. Biotechnol. 2011, 38, 1391–1398. [Google Scholar] [CrossRef] [Green Version]
- Wells, A.; Osborne, J.P. Production of SO2 Binding Compounds and SO2 by Saccharomyces during Alcoholic Fermentation and the Impact on Malolactic Fermentation. S. Afr. J. Enol. Vitic. 2011, 32, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Legras, J.-L.; Moreno-Garcia, J.; Zara, S.; Zara, G.; Garcia-Martinez, T.; Mauricio, J.C.; Mannazzu, I.; Coi, A.L.; Bou Zeidan, M.; Dequin, S.; et al. Flor Yeast: New Perspectives Beyond Wine Aging. Front. Microbiol. 2016, 7, 503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Shen, N.; Yin, H.; Liu, C.; Li, Y.; Li, Q. Development of Industrial Brewing Yeast with Low Acetaldehyde Production and Improved Flavor Stability. Appl. Biochem. Biotechnol. 2013, 169, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Liu, M.; Deng, Y.; Zhao, J.; Yu, J.; Dong, J.; Yang, M. Reduced Acetaldehyde Production by Genome Shuffling of an Industrial Brewing Yeast Strain. J. Inst. Brew. 2017, 123, 527–532. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Bao, M.; Niu, C.; Liu, C.; Zheng, F.; Li, Y.; Li, Q. Reverse Metabolic Engineering in Lager Yeast: Impact of the NADH/NAD+ Ratio on Acetaldehyde Production during the Brewing Process. Appl. Microbiol. Biotechnol. 2019, 103, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Ochando, T.; Mouret, J.-R.; Humbert-Goffard, A.; Aguera, E.; Sablayrolles, J.-M.; Farines, V. Comprehensive Study of the Dynamic Interaction between SO2 and Acetaldehyde during Alcoholic Fermentation. Food Res. Int. 2020, 136, 109607. [Google Scholar] [CrossRef] [PubMed]
Method | Target Microorganisms | Advantages | Limits/Disadvantages | Reviewed in |
---|---|---|---|---|
Thermal treatments | Highly active against yeast and bacteria | During vinification favors the extraction of anthocyanins and other polyphenols (thermovinification) Inhibition of oxidative enzymes Stabilization of sweet wines | Changes in wine chemical composition and sensorial properties Appearance of cooked flavors Thermal degradation of polyphenols May require wine filtration | [13,14] |
Microfiltration | Active against LAB, AAB and yeast depending on membrane porosity | Clarification, stabilization and sterile filtration combined in a single operation Easily to automate | Very oxidative process could reduce the sensorial quality of the wine. Risk of recontamination after the treatment High cost of disposable materials (filters) Decreases in flavor and color compounds of wine | [14,15] |
High hydrostatic pressure (HHP) | Active against LAB and yeast | Minimal effects on the physiochemical and organoleptic properties of the wine | Limited activity against AAB Possible activation of oxidative enzymes Impossibility to use in a continuous process. Requires flexible packaging | [13,14,15,16] |
Ultrasounds | Active against LAB and yeast | Acceleration of wine maturation Increased extraction of phenolic compounds in red wines Reduction of the activity of oxidative enzymes | Possible effects on wine sensory properties | [13,16] |
Ultraviolet irradiation | Active against LAB, AAB and yeast | Lower energy requirements than thermal processes Increased extraction of phenolic compounds in red wines Applied to grapes increases the content of bioactive compounds (stilbenes) | Less effective in red than in white wines, as phenolic compounds reduce the antimicrobial activity High turbidity of wine reduces the effectiveness of the treatment High residence times and small volumes | [13,15,16] |
Pulsed electric fields (PEF) | Active against LAB and yeast | Minimal effect on wine quality Reduction of maceration time Acceleration of wine maturation Inactivation of yeasts in sweet wine Reduction of the activity of oxidative enzymes | Bacteria are more resistant than yeasts Reduction of the amount of anthocyanins in pink wines | [14,15,16] |
Compound | Target Microorganisms | Application | Advantages | Limits/Disadvantages | Recommended Dosage | Reviewed in |
---|---|---|---|---|---|---|
Lysozyme | Highly active against LAB | Delay or inhibition of malolactic fermentation | Negligible effects on wine aroma Lower volatile acidity and biogenic amine content of wine Alcoholic fermentation not inhibited | Allergenic (requires specific label indications above 0.25 mg/L) Does not affect yeast growth Low activity against Gram-negative bacteria Lactobacillus and Pediococcus are more resistant than Oenococcus Binds with polyphenols and produce color loss in red wine Leads to the formation of haze in white wine | 500 mg/L (Regulation EC No 606/2009). | [14,15,16] |
Sorbic acid | Active against S. cerevisiae | Prevent refermentation of sweet wines | Neutral taste and odor Biodegradable | Not effective against LAB, AAB and some spoilage yeast genera (Brettanomyces, Saccharomycodes and Zygosaccharomyces) If metabolized by LAB causes geranium off-odor Possible negative effects on human health | 200 mg/L | [14] |
Dimethyl dicarbonate | Very effective against yeasts | Microbiological stabilization of sweet, semi-sweet and semi-dry wines | Increase in color intensity of red wines More effective against yeast than SO2 | Less effective against bacteria Not recommended during wine storage (ephemeral effect) Hydrolyzes into methanol | 200 mg/L (Regulation EC No 643/2006) | [14,16] |
Phenolic compounds | Active against LAB and pathogenic bacteria | Used in wine ageing | Supposed health benefits Antioxidant activity Increased color intensity Lower production of acetaldehyde Fermentation process not negatively affected | At low concentrations stimulate LAB growth Increased yellow color value in red wines (gallotannins and procyanidins) Less active than SO2 Hydroxycinnamic acids may be metabolized by Brettanomyces | - | [13,14,15,16] |
Chitosan | Prevent wine spoilage by AAB and the yeast Brettanomyces spp. | Suggested as fining agent and for the reduction of Brettanomyces spp. (Reg EC 606/2009, Reg EC 53/2011, Reg EC 315/2012) | Biodegradable, biocompatible and nontoxic Reduces the oxidation of polyphenols and thiols Alcoholic fermentation not inhibited Reduces wine contamination by heavy metals and mycotoxins | Could affect color parameters of red wines (intensity and hue value) Little activity against Gram-positive bacteria (LAB) | Approved by OIV (OIV-OENO 336A-2009). | [13,14,15] |
Bacteriocins | Active against LAB | Control of undesirable MLF Control of spoilage LAB | Nisin has the GRAS status Do not affect wine color or smell Nontoxic Do not affect yeast growth | Little or no activity against Gram-negative bacteria (AAB) | - | [14] |
Colloidal silver complex (CSC) | Active against LAB, AAB and yeasts | Control of malolactic fermentation Reduction of microbial load prior to starter addition Reduction of wine off-odors | Added at the dose of 1 g/kg control AAB and LAB development, while not affecting the growth of S. cerevisiae | Wine composition was slightly affected by CSC treatment Reduction of polyphenol concentrations | Ag residues should not exceed 0.1 mg/L (EU Regulation 1576/201) | [13,14] |
Metabolites | Target Organisms | Advantages | Limits/Disadvantages | Ref. |
---|---|---|---|---|
Killer toxins (mycocines) | Active against spoilage and contaminant yeast species | Safe for human consumption Starter yeasts producing killer toxins are commercially available Killer toxins from selected non-Saccharomyces yeasts do not inhibit S. cerevisiae and LAB | Killer toxin activity is affected by pH and ethanol concentration of wine Studies on the application of purified toxins in winemaking are scarce Direct addition of killer non-Saccharomyces yeasts may negatively affect wine quality | [14,25,26,27,28,29,30] |
Short-/medium-chain fatty acids | Inhibition of yeast growth Active against LAB | Monolaurin has GRAS Status Approved by OIV as antifoaming agents in winemaking Fatty acid esters contribute to wine fruitiness | Responsible for cheesy, fatty, and rancid odors | [14,31,32,33,34] |
Antimicrobial peptides (AMP) from wine yeasts | Active against bacteria (LAB), spoilage and biofilm forming yeast | Selected AMP does not affect S. cerevisiae growth Nontoxic | Lack of biotechnological tools for larger production at an industrial scale Effects of pH and sugar concentrations on AMP activity should be clarified Studies in actual winemaking are scarce | [14,35,36,37,38,39,40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zara, G.; Nardi, T. Yeast Metabolism and Its Exploitation in Emerging Winemaking Trends: From Sulfite Tolerance to Sulfite Reduction. Fermentation 2021, 7, 57. https://doi.org/10.3390/fermentation7020057
Zara G, Nardi T. Yeast Metabolism and Its Exploitation in Emerging Winemaking Trends: From Sulfite Tolerance to Sulfite Reduction. Fermentation. 2021; 7(2):57. https://doi.org/10.3390/fermentation7020057
Chicago/Turabian StyleZara, Giacomo, and Tiziana Nardi. 2021. "Yeast Metabolism and Its Exploitation in Emerging Winemaking Trends: From Sulfite Tolerance to Sulfite Reduction" Fermentation 7, no. 2: 57. https://doi.org/10.3390/fermentation7020057
APA StyleZara, G., & Nardi, T. (2021). Yeast Metabolism and Its Exploitation in Emerging Winemaking Trends: From Sulfite Tolerance to Sulfite Reduction. Fermentation, 7(2), 57. https://doi.org/10.3390/fermentation7020057