Kluyveromyces marxianus: Current State of Omics Studies, Strain Improvement Strategy and Potential Industrial Implementation
Abstract
:1. Introduction
2. Omics Studies in K. marxianus upon Stress Conditions
3. Advanced Techniques in Kluyveromyces marxianus Strain Improvement
4. Mono-, Co-Culture Systems and Other Fermentation Process Configurations in Bioethanol Production Using K. marxianus
5. Studies of Crabtree Effect in K. marxianus
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Radecka, D.; Mukherjee, V.; Mateo, R.; Stojiljkovic, M.; Foulquie-Moreno, M.; Thevelein, J. Looking beyond Saccharomyces: The potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res. 2015, 15, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, M.; Bracher, J.; Papapetridis, I.; Verhoeven, M.; de Bruijn, H.; de Waal, P.; van Maris, A.; Klaassen, P.; Pronk, J. Saccharomyces cerevisiae strains for second-generation ethanol production: From academic exploration to industrial implementation. FEMS Yeast Res. 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Gerliani, N.; Aider, M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int. J. Food Microbiol. 2020, 333. [Google Scholar] [CrossRef] [PubMed]
- Groeneveld, P.; Stouthamer, A.; Westerhoff, H. Super life-how and why “cell selection” leads to the fastest-growing eukaryote. FEBS J. 2009, 276, 254–270. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Wang, M.; Zhan, R.; Yu, Y.; He, Y.; Lu, H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol. Biofuels 2019, 12. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, G.; Heinzle, E.; Wittmann, C.; Gombert, A. The yeast Kluyveromyces marxianus and its biotechnology potential. Appl. Microbiol. Biotechnol. 2008, 79, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Morrissey, J. Kluyveromyces marxianus: A yeast emerging from its sister’s shadow. Fungal. Biol. Rev. 2010, 24, 17–26. [Google Scholar] [CrossRef]
- Chang, J.; Ho, C.; Mao, C.; Barham, N.; Huang, Y.; Ho, F.; Wu, Y.; Hou, Y.; Shih, M.; Li, W.; et al. A thermo- and toxin-tolerant kefir yeast for biorefinery and biofuel production. Appl. Energy 2014, 132, 465–474. [Google Scholar] [CrossRef]
- Diniz, R.; Villada, J.; Alvim, M.; Vidigal, P.; Vieira, N.; Maceiras, M.; Cerdan, M.; Gonzalez-Siso, M.; Lahtvee, P.; da Silveira, W. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Appl. Microbiol. Biotechnol. 2017, 101, 6969–6980. [Google Scholar] [CrossRef]
- Vanegas, J.; Contreras, M.; Faller, R.; Longo, M. Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys. J. 2012, 102. [Google Scholar] [CrossRef] [Green Version]
- Alvim, M.; Vital, C.; Barros, E.; Vieira, N.; da Silveira, F.; Balbino, T.; Diniz, R.; Brito, A.; Bazzolli, D.; de Oliveira-Ramos, H.; et al. Ethanol stress responses of Kluyveromyces marxianus CCT7735 revealed by proteomic and metabolomic analyses. Antonie Van Leeuwenhoek 2019, 112, 827–845. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, D.; Yang, X.; Hong, J. Transcriptomic analysis of thermotolerant yeast Kluyveromyces marxianus in multiple inhibitors tolerance. RSC Adv. 2018, 8, 14177–14192. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Li, P.; Zhang, L.; Li, S. Understanding the stress responses of Kluyveromyces marxianus after an arrest during high temperature ethanol fermentation based on integration of RNA-seq and metabolite data. Appl. Microbiol. Biotechnol. 2019, 103, 2715–2729. [Google Scholar] [CrossRef] [PubMed]
- Lahtvee, P.; Kumar, R.; Hallstrom, B.; Nielsen, J. Adaptation to different types of stress converge on mitochondrial metabolism. Mol. Biol. Cell 2016, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piper, P. The heat shock and ethanol stress responses of yeast exhibit extrensive similarity and functional overlap. FEMS Microbiol. Lett. 1995, 134, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yuan, W.; Li, Y.; Xiang, R.; Hou, S.; Zhong, S.; Bai, F. Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnol. Biofuels 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Holwerda, E.; Thorne, P.; Olson, D.; Amador-Noguez, D.; Engle, N.; Tschaplinski, T.; van Dijken, J.; Lynd, L. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Biotechnol. Biofuels 2014, 7, 155. Available online: http://www.biotechnologyforbiofuels.com/content/7/1/155 (accessed on 20 October 2020). [CrossRef] [PubMed]
- Thompson, R.; Trinh, C. Overflow metabolism and growth cessation in Clostridium thermocellum DSM1313 during high cellulose loading fermentations. Biotechnol. Bioeng. 2017, 114. [Google Scholar] [CrossRef]
- Papini, M.; Nookaew, I.; Scalcinati, G.; Siewers, V.; Nielsen, J. Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: Physiological investigation and transcriptome analysis. Biotechnol. J. 2010, 5, 1016–1027. [Google Scholar] [CrossRef] [Green Version]
- Gasnier, B. Characterization of low- and high-affinity glucose transports in the yeast Kluyveromyces marxianus. Biochim. Biophys. Acta 1987, 903, 425–433. [Google Scholar] [CrossRef]
- Carvalho-Silva, M.; Spencer-Martins, I. Modes of lactose uptake in the yeast species Kluyveromyces marxianus. Antonie Van Leeuwenhoek 1990, 57, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Postma, E.; van den Broek, P. Continuous culture study of the regulation of glucose and fructose transport in Kluyveromyces marxianus CBS 6556. J. Bacteriol. 1990, 172, 2871–2876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Leeuween, C.; Postma, E.; van den Broek, P.; van Steveninck, J. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. J. Biol. Chem. 1991, 266, 12146–12151. [Google Scholar]
- Stambuk, B.; Franden, M.; Singh, A.; Zhang, M. D-xylose transport by Candida succiphila and Kluyveromyces marxianus. Appl. Biochem. Biotechnol. 2003, 105–108, 255–263. [Google Scholar] [CrossRef]
- Fonseca, A.; Spencer-Martins, I.; van Uden, N. Transport of lactic acid in Kluyveromyces marxianus: Evidence for a monocarboxylate uniport. Yeast 1991, 7, 775–780. [Google Scholar] [CrossRef]
- Queiros, O.; Casal, M.; Althoff, S.; Moradas-Ferreira, P.; Leao, C. Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast 1998, 14, 401–407. [Google Scholar] [CrossRef]
- Kucharska, K.; Rybarczyk, P.; Holowacz, I.; Lukajtis, R.; Glinka, M.; Kaminski, M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 2018, 23, 2937. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Ho, C.; Ho, F.; Tsai, T.; Ke, H.; Wang, C.; Chen, H.; Shih, M.; Huang, C.; Li, W. PGASO: A synthetic biology tool for engineering a cellulolytic yeast. Biotechnol. Biofuels 2012, 5, 1–12. Available online: http://www.biotechnologyforbiofuels.com/content/5/1/53 (accessed on 20 October 2020). [CrossRef] [Green Version]
- Chang, J.; Ho, F.; Ho, C.; Wu, Y.; Hou, Y.; Huang, C.; Shih, M.; Li, W. Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol. Biofuels 2013, 6, 1–13. Available online: http://www.biotechnologyforbiofuels.com/content/6/1/19 (accessed on 20 October 2020). [CrossRef] [Green Version]
- Demain, A.; David Wu, J. Cellulase, Clostridia, and Ethanol. Microbiol. Mol. Biol. Rev. 2005, 69, 124–154. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Sun, J.; Zhao, H. Yeast surface display of trifunctional mini-cellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol. 2010, 76, 1251–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.; Zhang, Z.; Yu, X.; Xue, Y.; Tan, T. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc. Natl. Acad. Sci. USA 2012, 109, 13260–13265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, S.; DaSilva, N.; Chen, W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth. Biol. 2013, 2, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Ang, E.; Zhao, H. Engineered Pentafunctional Minicellulosome for Simultaneous Saccharification and Ethanol Fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2014, 80, 6677–6684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Lin, Y.; Lay, C.; Thia, C.; Wu, Y.; Hou, Y.; Huang, C.; Li, W. Constructing a cellulosic yeast host with an efficient cellulase cocktail. Biotechnol. Bioeng. 2018, 115. [Google Scholar] [CrossRef]
- Chang, J.; Anandharaj, M.; Ho, C.; Tsuge, K.; Tsai, T.; Ke, H.; Lin, Y.; Ha Tran, M.; Li, W.; Huang, C. Biomimetic strategy for constructing Clostridium thermocellum cellulosomal operons in Bacillus subtilis. Biotechnol. Biofuels 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Anandharaj, M.; Lin, Y.; Rani, R.; Nadendla, E.; Ho, M.; Huang, C.; Cheng, J.; Chang, J.; Li, W. Constructing a yeast to express the largest cellulosome complex on the cell surface. Proc. Natl. Acad. Sci. USA 2020, 117, 2385–2394. [Google Scholar] [CrossRef]
- Gao, J.; Yuan, W.; Li, Y.; Bai, F.; Jiang, Y. Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors. Microb. Cell Factories 2017, 16, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Iraqui, I.; Kienda, G.; Soeur, J.; Faye, G.; Baldacci, G.; Kolodner, R.; Huang, M. Peroxiredoxin Tsa1 is the key peroxidase suppressing genome instability and protecting against cell death in Saccharomyces cerevisiae. PLoS Genet. 2009, 5. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Feng, H.; Yuan, W.; Li, Y.; Hou, J.; Zhong, S.; Bai, F. Enhanced fermentative performance under stresses of multiple lignocellulose-derived inhibitors by overexpression of a typical 2-Cys peroxiredoxin from Kluyveromyces marxianus. Biotechnol. Biofuels 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Shui, W.; Xiong, Y.; Xiao, W.; Qi, X.; Zhang, Y.; Lin, Y.; Guo, Y.; Zhang, Z.; Wang, Q.; Ma, Y. Understanding the Mechanism of Thermotolerance Distinct From Heat Shock Response Through Proteomic Analysis of Industrial Strains of Saccharomyces cerevisiae. Mol. Cell. Proteomics 2015, 14, 1885–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Fu, X.; Zhang, L.; Zhang, Z.; Li, J.; Li, S. The transcription factors Hsf1 and Msn2 of thermotolerant Kluyveromyces marxianus promote cell growth and ethanol fermentation of Saccharomyces cerevisiae at high temperatures. Biotechnol. Biofuels 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silveira, F.; de Oliveira-Soares, D.; Bang, K.; Balbino, T.; de Moura-Ferreira, M.; Diniz, R.; de Lima, L.; Brandao, M.; Villas-Boas, S.; da Silveira, W. Assessment of ethanol tolerance of Kluyveromyces marxianus CCT 7735 selected by adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 2020, 104, 7483–7494. [Google Scholar] [CrossRef] [PubMed]
- Dragosits, M.; Mattanovich, D. Adaptive laboratory evolution-principles and applications for biotechnology. Microb. Cell Factories 2013, 12, 1–17. Available online: http://www.microbialcellfactories.com/content/12/1/64 (accessed on 20 October 2020). [CrossRef] [Green Version]
- Caspeta, L.; Chen, Y.; Ghiaci, P.; Feizi, A.; Buskov, S.; Hallstrom, B.; Petranovic, D.; Nielsen, J. Altered sterol composition renders yeast thermotolerant. Science 2014, 346, 75–78. [Google Scholar] [CrossRef]
- Alper, H.; Moxley, J.; Nevoigt, E.; Fink, G.; Stephanopoulos, G. Engineering Yeast Transcription Machinery for Improved Ethanol Tolerance and Production. Science 2006, 314, 1565–1568. [Google Scholar] [CrossRef] [Green Version]
- Lam, F.; Hartner, F.; Fink, G.; Stephanopoulos, G. Chapter 20-enhancing stress resistance and production phenotypes through transcriptome engineering. In Methods in Enzymology-Guide to Yeast Genetics: Functional Genomics, Proteomics, and Other Systems Analysis; Weissman, J., Guthrie, C., Fink, G., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; Volume 470, pp. 509–532. ISBN 978-0-12-375171-3. [Google Scholar]
- Li, P.; Fu, X.; Li, S.; Zhang, L. Engineering TATA-binding protein Spt15 to improve ethanol tolerance and production in Kluyveromyces marxianus. Biotechnol. Biofuels 2018, 11. [Google Scholar] [CrossRef]
- Heo, P.; Yang, T.; Chung, S.; Cheon, Y.; Kim, J.; Park, J.; Koo, H.; Cho, K.; Seo, J.; Park, J.; et al. Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. J. Biotechnol. 2013, 167, 323–325. [Google Scholar] [CrossRef]
- Löbs, A.; Engel, R.; Schwartz, C.; Flores, A.; Wheeldon, I. CRISPR–Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus. Biotechnol. Biofuels 2017, 10. [Google Scholar] [CrossRef]
- Posada, J.; Patel, A.; Roes, A.; Blok, K.; Faaij, A.; Patel, M. Potential of bioethanol as a chemical building block for biorefineries: Preliminary sustainability assessment of 12 bioethanol-based products. Bioresour. Technol. 2013, 135, 490–499. [Google Scholar] [CrossRef]
- Villegas-Silva, P.; Toledano-Thompson, T.; Canto-Canché, B.; Larqué-Saavedra, A.; Barahona-Perez, L. Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production. BMC Biotechnol. 2014, 14, 14. Available online: http://www.biomedcentral.com/1472-6750/14/14 (accessed on 20 October 2020). [CrossRef] [PubMed] [Green Version]
- Alcazar-Valle, M.; Gschaedler, A.; Gutierrez-Pulido, H.; Arana-Sanchez, A.; Arellano-Plaza, M. Fermentative capabilities of native yeast strains grown on juices from different Agave species used for tequila and mezcal production. Biotechnol. Ind. Microbiol. 2019, 50, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhou, J.; Xiao, D. Improved Ethanol Production by Mixed Immobilized Cells of Kluyveromyces marxianus and Saccharomyces cerevisiae from Cheese Whey Powder Solution Fermentation. Appl. Biochem. Biotechnol. 2010, 160, 532–538. [Google Scholar] [CrossRef]
- Eiadpum, A.; Limtong, S.; Phisalaphong, M. High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae. J. Biosci. Bioeng. 2012, 114, 325–329. [Google Scholar] [CrossRef]
- Silveira, W.; Passos, F.; Mantovani, H.; Passos, F. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: A flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme Microb. Technol. 2005, 36, 930–936. [Google Scholar] [CrossRef]
- Limtong, S.; Sringiew, C.; Yongmanitchai, W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 2007, 98, 3367–3374. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Shinomiya, N.; Orikasa, Y.; Oda, Y. Efficient Production of Ethanol from Saccharified Crops Mixed with Cheese Whey by the Flex Yeast Kluyveromyces marxianus KD-15. Food Sci. Technol. Res. 2012, 18, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, D.; Suman, S.; Pandey, D.; Ghosh, D.; Khan, R.; Agrawal, D.; Jain, R.; Vadde, V.; Adhikari, D. Design and optimization of ethanol production from bagasse pith hydrolysate by a thermotolerant yeast Kluyveromyces sp. IIPE453 using response surface methodology. SpringerPlus 2013, 2, 1–10. Available online: http://www.springerplus.com/content/2/1/159 (accessed on 20 October 2020). [CrossRef] [PubMed] [Green Version]
- Goshima, T.; Negi, K.; Tsuji, M.; Inoue, H.; Yano, S.; Hoshino, T.; Matsushika, A. Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. J. Biosci. Bioeng. 2013, 116, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Madeira, J.V., Jr.; Gombert, A. Towards high-temperature fuel ethanol production using Kluyveromyces marxianus: On the search for plug-in strains for the Brazilian sugarcane-based biorefinery. Biomass Bioenergy 2018, 119, 217–228. [Google Scholar] [CrossRef]
- Karatay, S.; Demiray, E.; Donmez, G. Bioethanol production by newly isolated halotolerant Kluyveromyces marxianus strains. Environ. Prog. Sustain. Energy 2019, 38, 542–547. [Google Scholar] [CrossRef]
- Demiray, E.; Karatay, S.; Donmez, G. Efficient bioethanol production from pomegranate peels by newly isolated Kluyveromyces marxianus. Energy Sources Part Recovery Util. Environ. Eff. 2020, 42, 709–718. [Google Scholar] [CrossRef]
- Caceres-Farfan, M.; Lappe, P.; Larque-Saavedra, A.; Magdub-Mendez, A.; Barahona-Perez, L. Ethanol production from henequen (Agave fourcroydes Lem.) juice and molasses by a mixture of two yeasts. Bioresour. Technol. 2008, 99, 9036–9039. [Google Scholar] [CrossRef] [PubMed]
- Pessani, N.; Atiyeh, H.; Wilkins, M.; Bellmer, D.; Banat, I. Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: The effect of enzyme loading, temperature and higher solid loadings. Bioresour. Technol. 2011, 102, 10618–10624. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, C.; Nakagawa, A.; Koyanagi, T.; Tanaka, K.; Minami, H.; Tamaki, H.; Katayama, T.; Yamamoto, K.; Kumagai, H. Kluyveromyces marxianus-based platform for direct ethanol fermentation and recovery from cellulosic materials under air-ventilated conditions. J. Biosci. Bioeng. 2012, 113, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.; Ibarra, D.; Ballesteros, I.; Gonzalez, A.; Ballesteros, M. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresour. Technol. 2013, 135, 239–245. [Google Scholar] [CrossRef]
- Yu, C.; Jiang, B.; Duan, K. Production of Bioethanol from Carrot Pomace Using the Thermotolerant Yeast Kluyveromyces marxianus. Energies 2013, 6, 1794–1801. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.; de Souza, C.; Costa, P.; Rodrigues, M.; dos Santos, A.; Lopes, M.; Genier, H.; Silveira, W.; Fietto, L. Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Appl. Microbiol. Biotechnol. 2014, 98, 3829–3840. [Google Scholar] [CrossRef] [Green Version]
- Kuloyo, O.; du Preez, J.; Garcıa-Aparicio, M.; Kilian, S.; Steyn, L.; Görgens, J. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2014, 30, 3173–3183. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, P.; da Silveira, F.; dos Santos, R.; Genier, H.; Diniz, R.; Junior, J.; Fietto, L.; Passos, F.; da Silveira, W. Optimizing ethanol production by thermotolerant Kluyveromyces marxianus CCT 7735 in a mixture of sugarcane bagasse and ricotta whey. Food Sci. Biotechnol. 2015, 24, 1421–1427. [Google Scholar] [CrossRef]
- Jan, J.; Wei, Z.; Wang, Q.; He, M.; Li, S.; Irbis, C. Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresour. Technol. 2015, 193, 103–109. [Google Scholar] [CrossRef]
- Campos, B.; Diniz, R.; da Silveira, F.; Junior, J.; Fietto, L.; Machado, J.; da Silveira, W. Elephant grass (Pennisetum purpureum Schumach) is a promising feedstock for ethanol production by the thermotolerant yeast Kluyveromyces marxianus CCT 7735. Braz. J. Chem. Eng. 2019, 36, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Yanase, S.; Hasunuma, T.; Yamada, R.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, H. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl. Microbiol. Biotechnol. 2010, 88, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Chang, B.; Ren, J.; Liu, J.; Bai, F.; Li, Y. Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J. Appl. Microbiol. 2012, 112, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Goers, L.; Freemont, P.; Polizzi, K. Co-culture systems and technologies: Taking synthetic biology to the next level. J. R. Soc. Interface 2014, 11. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.; Chang, J.; Lee, S.; Chin, T.; Shih, M.; Li, W.; Huang, C. Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast. Appl. Energy 2012, 100, 27–32. [Google Scholar] [CrossRef]
- Rattanapan, A.; Limtong, S.; Phisalaphong, M. Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons. Appl. Energy 2011, 88, 4400–4404. [Google Scholar] [CrossRef]
- Lopez, C.; Beaufort, S.; Brandam, C.; Taillandier, P. Interactions between Kluyveromyces marxianus and Saccharomyces cerevisiae in tequila must type medium fermentation. World J. Microbiol. Biotechnol. 2014, 30, 2223–2229. [Google Scholar] [CrossRef] [Green Version]
- Abranches, J.; Morais, P.; Rosa, C.; Mendonca-Hagler, L.; Hagler, A. The incidence of killer activity and extracellular proteases in tropical yeast communities. Can. J. Microbiol. 1997, 43, 328–336. [Google Scholar] [CrossRef]
- Dai, Z.; Huang, M.; Chen, Y.; Siewers, V.; Nielsen, J. Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.; Larsson, C.; van Maris, A.; Pronk, J. Metabolic engineering of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol. 2013, 24, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Flikweert, M.; van der Zandens, L.; Janssen, W.; Steensma, H.; van Dijken, J.P.; Pronk, J. Pyruvate Decarboxylase: An Indispensable Enzyme for Growth of Saccharomyces cerevisiae on Glucose. Yeast 1996, 12, 247–257. [Google Scholar] [CrossRef]
- Sakihama, Y.; Hidese, R.; Hasunuma, T.; Kondo, A. Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardrop, F.; Liti, G.; Cardinali, G.; Walker, G. Physiological responses of Crabtree positive and Crabtree negative yeasts to glucose upshifts in a chemostat. Ann. Microbiol. 2004, 54, 103–114. [Google Scholar]
Omics Technologies | Growth Conditions | Important Findings | Sources |
---|---|---|---|
RNA-seq, HiSeq 2000 system (Illumina, San Diego, CA 92121, USA) | Yeast strain: Y179 Treatments: - 120 g/L inulin without aeration (120–N–24) - 230 g/L inulin without aeration (230–N–72) (control) - 230 g/L inulin with aeration (ORP -130 mV) (230–130 mV–36) Differentially expressed genes (DEGs) analysis: Module 1: 230–130 mV–36 vs. 230–N–72 Module 2: 120–N–24 vs. 230–N–72 | Result 1: Module 1 had 1840 DEGs, module 2 had 2658 DEGs Conclusion 1: Inulin concentrations had greater effect on transcriptome profiles than aeration and hypoxic condition. Result 2: More genes related to ethanol metabolism and transcriptional factors upregulated in 120–N–24 relative to 230–N–72 Conclusion 2: High inulin loading inhibited yeast metabolism Downregulated genes in 230–130 mV–36: GPM1 Downregulated genes in 120–N–24: GPM1 Upregulated genes in 230–130 mV–36: - Central carbon metabolic pathways: INU1, HXK1, GLK1, MDH1p, PDC1, ADH3, GPD1p, TRXR, GPX, KMALLA2475, TPO1, HSP31 - Upregulated genes in 120–N–24: - Central carbon metabolic pathways: INU1, HXK1, GLK1 - Upregulated genes in 230–N–72: PDC1, MIG1, ATG8 | [16] |
RNA-seq, (SOLiD 5500 XL sequencer, Thermo Fisher Scientific, Waltham, MA, USA) | Yeast strain: CCT 7735 Treatments: High ethanol exposure 6% (v/v) DEGs analysis: Module 1: 1 h vs. 0 h Module 2: 4 h vs. 0 h Module 3: 1 h vs. 4 h | Downregulated genes in ethanol treatment: - Unsaturated fatty acid and ergosterol biosynthesis: FEN1, SUR4, FAS1, SCS7, KLMA-40623, ERG25, ERG3, SUR2, OLE1, KLMA_20527, KLMA_10244, KLMA_20392 - Central carbon metabolic pathway: RAG5, GLK1, RAG2, FBA1, GAP3, GAP1, PGK, GPM1, ENO, PYK1, LAT1, PYC2, ACO2b, LSC2 - Leloir pathway: GAL1, GAL7, GAL10 - Fermentation pathway: LAT1, ACS2, ADH, ADH1, ADH2, ADH3, ADH4b - Translation initiation factors: eIF3a, eIF3e, eIF5A Upregulated genes in ethanol treatment: - Central metabolic pathway: ZWF, KLMA70303, PYC2 - Heat shock protein: HSP26, HSP60, HSP78 | [9] |
RNA-seq, Illumina HiSeq 4000 instrument (Illumina, San Diego, CA 92121, USA) | Yeast strain: YHJ010 Treatments: Mixed inhibitors (0.7 g/L furfural + 0.7 g/L HMF + 3 g/L acetate acid + 0.28 g/L phenols (4-hydroxybenzaldehyde, syringaldehyde, catechol and vanillin, 0.07 g/L each) DEGs analysis: Mixed inhibitors treatment vs. Control (without stress) | Downregulated genes in mixed inhibitors: - Central carbon metabolism: HXK1, GND1, PGI1, PFK1, PFK2, FBA1, TPI1, TDH1, TDH3, PGK1, GPM1, GPM2, ENO1, PYK1, PDC, ADH2, DAK1 - Fatty acid and ergosterol metabolism: OLE1, SCS7, FAS2, DUG3, LipA, ERG25, LTA4H, ERG1, ATH1, ERG20 - B1 & B6 metabolism: KMAR_30698, KMAR_30699, KMAR_30041, KMAR_20540, KMAR_40549, KMAR_30339 - Transporters: KMAR_50344, KMAR_10529, KMAR_10514, KMAR_10360, KMAR_10458, KMAR_10759, KMAR_20313, KMAR_70169, KMAR_20003, KMAR_70277, KMAR_30323, KMAR_40422, KMAR_60332, KMAR_50593 - Transcription factors: KMAR_40216, KMAR_40526, KMAR_70129, KMAR_10730, KMAR_60223 Upregulated genes in mixed inhibitors: - Central carbon metabolism: FBP1, TDH2, ADH3, ADH4, ADH6, ALD6, GUT2, MAE1, CIT1, ACO1, ACO2, IDH1, IDH2, KGD1, KGD2, SDH1, SDH2, SDH3, SDH4, MDH2, PCK1, ICL1, MLS1, GDH1 - Transcription factors: KMAR_30570, KMAR_50272, KMAR_30474, KMAR_30246, KMAR_60382, KMAR_50274, KMAR_40048 - Mitochondrial respiratory chain: NDI1, SDH1, SDH2, SDH3, SDH4, QCR1, QCR2, QCR9, RIP1, CYT1, ATP1, ATP16, ATP14, ATP6C - ROS detoxification: KMAR_70075, KMAR_20527, KMAR_40107, KMAR_80342, KMAR_40185, KMAR_50400 - Transporters: KMAR_80370, KMAR_30579, KMAR_80266, KMAR_50347, KMAR_20602, KMAR_70126, KMAR_10531, KMAR_40029, KMAR_50130, KMAR_80409, KMAR_60406, KMAR_10004, KMAR_40093, KMAR_10790, KMAR_20248, KMAR_40425, KMAR_60075, KMAR_30642, KMAR_30337, KMAR_40188, KMAR_40156, KMAR_70262, KMAR_10802, KMAR_80400, KMAR_40340, KMAR_20004, KMAR_30588, KMAR_70319 | [12] |
RNA-seq, HiSeq 4000 system (Illumina Inc., San Diago, CA 92121, USA) | Yeast strain: DMKU3-1042 Treatments: High temperature 45 °C DEGs analysis: 45 °C–14 h vs. 30 °C–14 h 45 °C–22 h vs. 30 °C–22 h | Downregulated genes at 45 °C vs. 30 °C: - Central carbon metabolic network: GLK1, RAG2, PFK1, GPD1, FBA1, TDH1, TDH3, RHR2, TPI1, PGK, ADH2, GPM1, PDX1, LAT1, ACS2, ALD4, CIT1, MDH1, MDH3, FUM1, LSC2, ACO2b, IDP1, KGD1 - BCAA biosynthesis: LEU1, LEU2, LEU4, SDL1, ILV3, ILV6 Upregulated genes at 45 °C vs. 30 °C: - Mitochondrial respiratory chain: COX5A, COX7, COX12, RIP, QCR2 - Glycerol and acetic acid generation: GPD2, ALD6 | [13] |
DEGs analysis: 45 °C–16 h vs. 45 °C–14 h 45 °C–18 h vs. 45 °C–14 h 45 °C–20 h vs. 45 °C–14 h 45 °C–22 h vs. 45 °C–14 h | Downregulated genes at 45 °C (16, 18, 20, 22 h vs. 14 h): - Central carbon metabolic network: HXK, ZWF, GPD1, FBA1, TDH1, TDH3, PGK, ADH1, ADH2, PDC1, ENO, ALD6, MDH1, MDH2, MDH3, SDH1, LSC2, KGD1 Upregulated genes at 45 °C (16, 18, 20, 22 h vs. 14 h): - Central carbon metabolic network: GLK1, RAG2, FBP1, GPD2, PFK1, RHR2, TPI1, GPM1, GPM3, PYK1, ADH3, ADH4b, ALD4, LAT1, PDX1, ACS2, FUM1, ACO2b, IDP1 | ||
MALDI-TOF/TOF (Ultraflex III, Bruker, Daltonics, Bremen, Germany) | Yeast strain: CCT 7735 Treatments: High ethanol exposure 6% (v/v) Protein abundance analysis: 1 h and 4 h after ethanol exposure vs. 1 h and 4 h (absence of ethanol) (control) | Less abundant at 1 h (ethanol stress) vs. control - Central carbon metabolism: Enolase_8, Enolase_9, Triosephosphate isomerase_2, Triosephosphate isomerase_3, Phosphoglycerate mutase 1_3, NAD(P)H-dependent D-xylose reductase_1, Pyruvate kinase, Fructose-bisphosphate aldolase_1, Phosphoglycerate kinase, Transaldolase_1, Transaldolase_2, Triosephosphate isomerase_1 - Heat shock proteins: HSP SSA3_9, HSP SSA2 - Translational proteins: 40S ribosomal protein S14, 40S ribosomal protein S18 More abundant at 1 h (ethanol stress) vs. control - Central carbon metabolism: Enolase_1, Enolase_2, Enolase_4, Enolase_5, Enolase_6, Enolase_7, Enoate reductase 1_1, Enoate reductase 1_3, Enoate reductase 1_4, Hexokinase, Phosphoglycerate mutase 1_2, Phosphoglycerate mutase 1_4, Malate dehydrogenase, Alcohol dehydrogenase 1, Alcohol dehydrogenase 2_2 - Heat shock proteins: HSP SSA3_1, HSP SSA3_2, HSP SSA3_3, HSP SSA3_4, HSP SSA3_5, HSP SSA3_6, HSP SSA3_7, HSP SSA3_8 Less abundant at 4 h (ethanol stress) vs. control - Central carbon metabolism: Phosphoglycerate kinase, Fructose-bisphosphate aldolase_1, Enolase_8, Enolase_9, Transaldolase_1, Triosephosphate isomerase_1, Enolase_1, Enolase_2, Enolase_3, Enolase_4, Enolase_5, Enoate reductase 1_2 - Heat shock proteins: HSP SSA2, HSP104 More abundant at 4 h (ethanol stress) vs. control - Central carbon metabolism: Enolase_6, Enolase_7, Enoate reductase 1_1, Enoate reductase 1_3, Enoate reductase 1_4, Fructose-bisphosphate aldolase_2, Transaldolase_2, NAD(P)H-dependent D-xylose reductase_1 - Heat shock proteins: HSP78, HSP26 | [11] |
Strain | Growth Condition | Theoretical Ethanol Yield (%) | Ethanol Yield (g eth/g sugar) | Maximum Ethanol (g/L) | Sources |
---|---|---|---|---|---|
Monoculture and direct fermentation | |||||
UFV-3 | Aerobic: 30 °C, 250 rpm, whey permeate (240 g/L lactose) | - | 0.35 | 57 | [56] |
Hypoxia: 30 °C, 40 rpm, whey permeate (170 g/L lactose) | - | 0.53 | 76 | ||
Anoxia: 30 °C, whey permeate (170 g/L lactose) | - | 0.51 | 80 | ||
DMKU 3-1042 | 37 °C, sugarcane juice (22% total sugars) | 77.5 | - | 8.7 | [57] |
KD-15 | 30 °C, 90 rpm, 60 h, saccharified flour mixed with cheese whey (99.3 g/L glucose, 59.4 g/L lactose) | - | 0.45 ± 0.027 | 71.4 ± 2.6 | [58] |
30 °C, 90 rpm, 60 h, saccharified potato tubers mixed with cheese whey (137 g/L glucose, 19.1 g/L lactose) | - | 0.44 ± 0.05 | 69.1 ± 3.9 | ||
Kluyveromyces sp. IIPE453 | 45 °C, pH 4.5, 16 h, pretreated sugarcane bagasse pith (40 g/L total sugar) | 88 | - | 17.4 | [59] |
DMB3-7 | 30 °C, 40 g/L xylose, 96 h | - | 0.187 ± 0.01 | 6.9 | [60] |
- | 30 ± 2 °C, enzyme-hydrolyzed henequen leaf juice (74.4 ± 3.29 g/L reducing sugar) | 80.04 ± 5.29 | - | 16.5 ± 0.56 | [52] |
Engineered TATA-binding protein Spt15 strain | 45 °C, 100 rpm, 200 g/L glucose | - | - | 58 | [48] |
UFV-3 | 48 °C, 100 rpm, 10 g/L glucose | - | 0.4 ± 0.01 | - | [61] |
PW | 30 ± 1 °C, pH 6, 4% (w/v) NaCl, 10% (v/v) molasses | 39.1 | - | 7.92 | [62] |
OFF1 | 30 °C, A. angustifolia juice (140 g/L reducing sugar) | - | 0.38 | 52.27 | [53] |
- | 30 °C, 24 h, 100 rpm, pomegranate peels (100 g/L~16.83 g/L reducing sugar) | 83.1 | 0.48 | 7.2 | [63] |
Coculture | |||||
K. marxianus (isolated from the henequen plant) & S. cerevisiae (commercial strain) (25% Km/75% Sc) | 35 ± 2 °C, henequen leaf juice + molasses (69.4 g/L total sugar) | - | - | 41.2 | [64] |
K. marxianus TY-3 & S. cerevisiae AY-5 | 30 °C, alginate-immobilized cells, cheese whey powder (100 g/L total sugar) | - | 0.43 | 41.8 | [54] |
K. marxianus DMKU 3-1042 & S. cerevisiae M30 | 37 °C, thin-shell silk cocoon-immobilized cells (IC-TSC), sugarcane juice or blackstrap molasses (220 g/L total sugar) | - | 0.41 | 81.4 | [55] |
40 °C, thin-shell silk cocoon-immobilized cells (IC-TSC), sugarcane juice or blackstrap molasses (220 g/L total sugar) | - | 0.43 | 77.3 | ||
Other process configurations | |||||
IMB3 | SSF: 45 °C, 168 h, hydrothemolysis pretreated switchgrass 8% (w/v) + 0.7 mL Accellerase 1500/g glucan | 86.3 | 22.5 | [65] | |
β-glucosidase-producing strain YG1027 | SSF: 45 °C, air ventilation (3 L/min), 100 g/L cellobiose, 48 h | 51 | 29.5 | [66] | |
CECT 10875 | SSF: 42 °C, 72 h, 150 rpm, 50 mM sodium citrate buffer + 15 FPU cellulase/g substrate + 15 IU β-glucosidase/g substrate | 10.8 | 0.06 | 10.8 | [67] |
PSSF: Pre-saccharification 50 °C, 8 h, 150 rpm, + 15 FPU cellulase/g substrate + 15 IU beta-glucosidase/g substrate, followed by SSF, 42 °C, 72 h | 10.7 | 0.05 | 10.7 | ||
LSSF: 50 °C, 8 h, 150 rpm + 10 IU laccase/g substrate, followed by SSF, 42 °C, 72 h | 69.2 | 0.35 | |||
LPSSF: Pre-saccharification 50 °C, 8 h, 150 rpm, + 10 IU laccase/g substrate + 15 FPU cellulase/g substrate + 15 IU beta-glucosidase/g substrate, followed by SSF 42 °C, 72 h | 70.9 | 0.36 | 10.7 | ||
K213 | PSSF: pretreated carrot pomace, 50 °C, 84 h, 15 FPU Accellerase TM 1000/g dry carrot pomace + 52.3 U pectinase/g dry carrot pomace, followed by SSF with 10% (w/v) resultant carrot pomace, 15 FPU AccelleraseTM 1000/g dry carrot pomace + 52.3 U pectinase/g dry carrot pomace, 42 °C, pH 5, 680 rpm | - | 0.18 | 18 | [68] |
K. marxianus UFV-3 | PSSF: 8% (w/v) pretreated sugarcane bagasse, 50 °C, 72 h, 15 FPU cellulase/g substrate, 180 rpm, followed by SSF, 37 °C | - | 0.28 | 22.62 | [69] |
S. cerevisiae CAT-1 | PSSF: 8% (w/v) pretreated sugarcane bagasse, 50 °C, 72 h, 15 FPU cellulase/g substrate, 180 rpm, followed by SSF 42 °C | - | 0.29 | 22.84 | |
Km UOFS Y-2791 Sc UOFS Y-0528 | SHF: Pretreated slurry of O. ficus-indica cladode + 15 FPU cellulase/g substrate + 15 IU beta-glucosidase/g substrate + 100 U pectinase/g substrate, 50 °C, 300 rpm, 48 h. SHF: non aeration (S. cerevisiae 35 °C, 36 h; K. marxianus, 40 °C, 48 h) | - | 0.4; 0.42 | 19.6; 19.5 | [70] |
SSF: Pretreated slurry of O. ficus-indica cladode + 15 FPU cellulase/g substrate + 15 IU beta-glucosidase/g substrate + 100 U pectinase/g substrate, non-aeration (S. cerevisiae 35 °C, 36 h; K. marxianus 40 °C, 48 h) | 70; 64 | - | 20.6; 19.3 | ||
CCT 7735 | SSF: 39.5 °C, 72.5 rpm, pH 5.05, 72 h, 22.5 FPU cellulase/g substrate, saccharified sugarcane bagasse (80 g/L) + ricotta whey 5% (w/v), hipoxia | - | - | 49.65 | [71] |
K213 | SHF: NaOH/H2O2-pretreated water hyacinth, 52.29 FPU/g substrate, 50 °C, incubated 3 days, 150 rpm. | - | 0.13 | 6.41 | [72] |
SSF: 42 °C, 20 mL fermentation medium, 52.29 FPU cellulase, 1 g NaOH/H2O2-pretreated water hyacinth | - | 0.16 | 7.34 | ||
KR9 (glycoside hydrolase from A. niger, T. reesei, N. patriciarum) | 37 °C, 200 rpm, saccharified rice straw (~60 g/L glucose) | 90 | - | 50 | [35] |
CCT 7735 | PSSF: Pre-saccharification of pretreated elephant grass (16%, w/v) + 60 FPU cellulase/mL substrate, 50 °C, 72 h, gentle agitation, followed by SSF, 38 °C, pH 4.8, 50 rpm | - | - | 45.5 | [73] |
Consolidated bioprocessing (CBP) | |||||
Engineered K. marxianus (T. reesei endoglucanase, A. aculeatus β-glucosidase) | 48 °C, 10 g/L ꞵ-glucan, 12 h | 92.2 | 0.47 | 4.24 | [74] |
Engineered K. marxianus KR5 (T. reesei endoglucanase, exoglucanase, cow rumen fungus beta-glucosidase) | 37 °C, 120 rpm, 2% (w/v) cellobiose, 168 h | 93 | - | 8.5 | [28] |
37 °C, 120 rpm, 2% (w/v) ꞵ-glycan, 168 h | 74 | - | 5.4 | ||
Inulinase-producing strain Y179 | Aeration (0.025 vvm): 33 °C, pH 4.7, 250 rpm, Jerusalem artichoke tuber meal (210 g/L total sugars), 48 h | 77.1 | 0.4 ± 0.01 | 75.6 ± 1.6 | [75] |
Without aeration: 33 °C, pH 4.7, Jerusalem artichoke tuber meal (210 g/L total sugars), 84 h | 86.9 | 0.45 ± 0.01 | 83.1 ± 1.5 | ||
Engineered K. marxianus (H. thermocellum largest cellulosome complex OlpB) | 1% (w/v) Avicel, 37 °C, 300 rpm | - | - | 3.09 | [37] |
1% (w/v) PASC, 37 °C, 300 rpm | - | - | 8.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha-Tran, D.M.; Nguyen, T.T.M.; Huang, C.-C. Kluyveromyces marxianus: Current State of Omics Studies, Strain Improvement Strategy and Potential Industrial Implementation. Fermentation 2020, 6, 124. https://doi.org/10.3390/fermentation6040124
Ha-Tran DM, Nguyen TTM, Huang C-C. Kluyveromyces marxianus: Current State of Omics Studies, Strain Improvement Strategy and Potential Industrial Implementation. Fermentation. 2020; 6(4):124. https://doi.org/10.3390/fermentation6040124
Chicago/Turabian StyleHa-Tran, Dung Minh, Trinh Thi My Nguyen, and Chieh-Chen Huang. 2020. "Kluyveromyces marxianus: Current State of Omics Studies, Strain Improvement Strategy and Potential Industrial Implementation" Fermentation 6, no. 4: 124. https://doi.org/10.3390/fermentation6040124
APA StyleHa-Tran, D. M., Nguyen, T. T. M., & Huang, C. -C. (2020). Kluyveromyces marxianus: Current State of Omics Studies, Strain Improvement Strategy and Potential Industrial Implementation. Fermentation, 6(4), 124. https://doi.org/10.3390/fermentation6040124