Bioethanol Production from Food Waste Applying the Multienzyme System Produced On-Site by Fusarium oxysporum F3 and Mixed Microbial Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials, Reagents, Microorganism
2.2. Chemical Analysis of FW
2.3. Pretreatment of FW
2.4. Media and Growth Conditions for the in Situ Production of Enzymes
2.5. Enzyme Extraction
2.6. Enzymatic Hydrolysis of FW
2.7. Conversion of FW into Bioethanol
2.8. Analytical Methods
3. Results and Discussion
3.1. Food Waste Composition
3.2. Multienzyme Production under Solid-State Cultivation
3.3. Hydrolysis of FW by the On-Site Produced Multienzyme System of F. Oxysporum F3
3.4. Bioethanol Production by Mixed Microbial Culture of F. Oxysporum F3 with the Yeast S. Cerevisiae
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat. Municipal Waste by Waste Operations; Eurostat: Brussels, Belgium, 2017. [Google Scholar]
- European Commission. A sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment—Updated Bioeconomy Strategy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Patel, A.; Hrůzová, K.; Rova, U.; Christakopoulos, P.; Matsakas, L. Sustainable biorefinery concept for biofuel production through holistic volarization of food waste. Bioresour. Technol. 2019, 294, 122247. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Cabello, M.; García, I.L.; Sáez-Bastante, J.; Pinzi, S.; Koutinas, A.A.; Dorado, M.P. Food waste from restaurant sector—Characterization for biorefinery approach. Bioresour. Technol. 2020, 301, 122779. [Google Scholar] [CrossRef] [PubMed]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development, A/Res/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- European Parliament and Council of the European Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; European Parliament and Council of the European Union: Brussels, Belgium, 2009. [Google Scholar]
- European Parliament and Council of the European Union. Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast); European Parliament and Council of the European Union: Brussels, Belgium, 2018. [Google Scholar]
- Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Liquid biofuels from the organic fraction of municipal solid waste: A review. Renew. Sustain. Energy Rev. 2019, 110, 298–314. [Google Scholar] [CrossRef]
- Padella, M.; O’Connell, A.; Prussi, M. What is still limiting the deployment of cellulosic ethanol? Analysis of the Current Status of the Sector. Appl. Sci. 2019, 9, 4523. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.K.; Sadhukhan, J.; Ng, D.K.S. Techno-economic evaluations for feasibility of sago-based biorefinery, Part 2: Integrated bioethanol production and energy systems. Chem. Eng. Res. Des. 2016, 107, 102–116. [Google Scholar] [CrossRef]
- Siqueira, J.G.W.; Rodrigues, C.; Vandenberghe, L.P.D.S.; Woiciechowski, A.L.; Soccol, C.R. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass Bioenerg 2020, 132, 105419. [Google Scholar] [CrossRef]
- Da Rosa-Garzon, N.G.; Laure, H.J.; Rosa, J.C.; Cabral, H. Fusarium oxysporum cultured with complex nitrogen sources can degrade agricultural residues: Evidence from analysis of secreted enzymes and intracellular proteome. Renew. Energ. 2019, 133, 941–950. [Google Scholar] [CrossRef]
- Sharma, S.; Kuila, A.; Sharma, V. Enzymatic hydrolysis of thermochemically pretreated biomass using a mixture of cellulolytic enzymes produced from different fungal sources. Clean Technol. Environ. 2017, 19, 1577–1584. [Google Scholar] [CrossRef]
- Christakopoulos, P.; Macris, B.J.; Kekos, D. Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb. Technol. 1989, 11, 236–239. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; AOAC Inc.: Rockville, MD, USA, 1990. [Google Scholar]
- Phatak, L.; Chang, K.C.; Brown, G. Isolation and characterization of pectin in sugar-beet pulp. J. Food Sci. 1988, 53, 830–833. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2012. Available online: https://www.nrel.gov/docs/gen/fy13/42618.pdf (accessed on 8 January 2020).
- Loizidou, M.; Alamanou, D.G.; Sotiropoulos, A.; Lytras, C.; Mamma, D.; Malamis, D.; Kekos, D. Pilot scale system of two horizontal rotating bioreactors for bioethanol production from household food waste at high solid concentrations. Waste Biomass Valorization 2017, 8, 1709–1719. [Google Scholar] [CrossRef]
- Toyama, N.; Ogawa, K. Cellulase production by Trichoderma viride in solid and submerged culture conditions. In Proceedings of the Symposium for the Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein, New Delhi, India, 21–23 February 1977; Ghose, T.K., Ed.; IIT: New Delhi, India, 1978; pp. 325–327. [Google Scholar]
- Dogaris, I.; Vakontios, G.; Kalogeris, E.; Mamma, D.; Kekos, D. Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind. Crop. Prod. 2009, 29, 404–411. [Google Scholar] [CrossRef]
- Alamanou, D.G.; Malamis, D.; Mamma, D.; Kekos, D. Bioethanol from dried household food waste applying non-isothermal simultaneous saccharification and fermentation at high substrate concentration. Waste Biomass Valorization 2015, 6, 353–361. [Google Scholar] [CrossRef]
- Yazid, N.A.; Barrena, R.; Komilis, D.; Sánchez, A. Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review. Sustainability 2017, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y. Bioconversion of food waste to energy: A review. Fuel 2014, 134, 389–399. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int. J. Biol. Macromol. 2016, 86, 656–669. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- De Castro, R.J.S.; Sato, H.H. Enzyme Production by Solid State Fermentation: General Aspects and an Analysis of the Physicochemical Characteristics of Substrates for Agro-industrial Wastes Valorization. Waste Biomass Valorization 2015, 6, 1085–1093. [Google Scholar] [CrossRef]
- Panagiotou, G.; Kekos, D.; Macris, B.J.; Christakopoulos, P. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind. Crop. Prod. 2003, 18, 37–45. [Google Scholar] [CrossRef]
- El-Shishtawy, R.M.; Mohamed, S.A.; Asiri, A.M.; Gomaa, A.A.; Ibrahim, I.H.; Al-Talhi, H.A. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. BMC Biotechnol. 2015, 15, 37. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Verma, J.P. Sustainable bio-ethanol production from agro-residues: A review. Renew. Sustain. Energy Rev. 2015, 41, 550–567. [Google Scholar] [CrossRef]
- Mamma, D.; Koullas, D.; Fountoukidis, G.; Kekos, D.; Macris, B.J.; Koukios, E. Bioethanol from Sweet Sorghum: Simultaneous saccharification and fermentation of carbohydrates by a mixed microbial culture. Process Biochem. 1996, 31, 377–381. [Google Scholar] [CrossRef]
- Dogaris, I.; Gkounta, O.; Mamma, D.; Kekos, D. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa. Appl. Microbiol. Biot. 2012, 95, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.; Vadlani, P.; Madl, R.; Ugorowski, P.; Hohn, K.L. Ethanol Fermentation from Food Processing Waste. Environ. Prog. Sustain. 2013, 32, 1280–1283. [Google Scholar] [CrossRef] [Green Version]
- Matsakas, L.; Christakopoulos, P. Ethanol Production from Enzymatically Treated Dried Food Waste Using Enzymes Produced On-Site. Sustainability 2015, 7, 1446–1458. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, J.C.; Pak, D. Feasibility of producing ethanol from food waste. Waste Manag. 2011, 31, 2121–2125. [Google Scholar] [CrossRef]
- Cekmecelioglu, D.; Uncu, O.N. Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Manag. 2013, 33, 735–739. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, H.; Xu, W.; Gong, L.; Zhang, W.; Zou, D. Ethanol production from kitchen garbage using response surface methodology. Biochem. Eng. J. 2008, 39, 604–610. [Google Scholar] [CrossRef]
- Kiran, E.U.; Liu, Y. Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel 2015, 159, 463–469. [Google Scholar] [CrossRef]
- Johnson, E. Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod. Biorefin. 2016, 10, 164–174. [Google Scholar] [CrossRef] [Green Version]
Component | %(w/w, Dry Basis) |
---|---|
Water Soluble Materials a | 27.29 ± 1.71 |
Starch | 10.68 ± 0.07 |
Cellulose | 10.31 ± 0.07 |
Hemicellulose | 11.32 ± 0.02 |
Pectin | 3.27 ± 0.82 |
Protein | 13.70 ± 3.31 |
Lipids | 12.26 ± 0.11 |
Lignin | 6.75 ± 0.16 |
Ash | 5.16 ± 0.20 |
Microorganism | Type of Process | Enzymes Used | Ethanol (g/L) | Productivity (g/L/h) | Reference |
---|---|---|---|---|---|
S.cerevisiae | SHF | amylase, glucoamylase | 8.0 | 0.33 | [32] |
S. cerevisiae (dry baker’s yeast) | SHF | on-site produced enzymes 1 | 19.7 | 0.92 | [33] |
S. cerevisiae | SSF | Carbohydrase 2 | 20.0 | 0.8 | [34] |
S. cerevisiae (dry baker’s yeast) | SHF | amylase glucoamylase cellulase b-glucosidase | 23.3 | 0.49 | [35] |
S. cerevisiae | SSF | glucoamylase | 33.0 | 0.49 | [36] |
S. cerevisiae (dry baker’s yeast) | SHF | on-site produced enzymes 2 | 58.0 | 1.8 | [37] |
F. oxysporum- S. cerevisiae | SSF | on-site produced enzymes + glucoamylase | 30.8 | 1.4 | Present study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasoulas, G.; Gentikis, A.; Konti, A.; Kalantzi, S.; Kekos, D.; Mamma, D. Bioethanol Production from Food Waste Applying the Multienzyme System Produced On-Site by Fusarium oxysporum F3 and Mixed Microbial Cultures. Fermentation 2020, 6, 39. https://doi.org/10.3390/fermentation6020039
Prasoulas G, Gentikis A, Konti A, Kalantzi S, Kekos D, Mamma D. Bioethanol Production from Food Waste Applying the Multienzyme System Produced On-Site by Fusarium oxysporum F3 and Mixed Microbial Cultures. Fermentation. 2020; 6(2):39. https://doi.org/10.3390/fermentation6020039
Chicago/Turabian StylePrasoulas, George, Aggelos Gentikis, Aikaterini Konti, Styliani Kalantzi, Dimitris Kekos, and Diomi Mamma. 2020. "Bioethanol Production from Food Waste Applying the Multienzyme System Produced On-Site by Fusarium oxysporum F3 and Mixed Microbial Cultures" Fermentation 6, no. 2: 39. https://doi.org/10.3390/fermentation6020039
APA StylePrasoulas, G., Gentikis, A., Konti, A., Kalantzi, S., Kekos, D., & Mamma, D. (2020). Bioethanol Production from Food Waste Applying the Multienzyme System Produced On-Site by Fusarium oxysporum F3 and Mixed Microbial Cultures. Fermentation, 6(2), 39. https://doi.org/10.3390/fermentation6020039