Activity Interactions of Crude Biopreservatives against Spoilage Yeast Consortia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeasts Selection, Growth Inhibition Activity (GIA), and Screening Assays (Plate Assays)
2.2. Media, Inoculum Preparations, and Crude Biopreservative Production
2.3. Preparation of Crude Growth Inhibition Mixtures and Spoilage Yeast Consortia
2.3.1. Mixtures of Crude Biopreservatives
2.3.2. Spoilage Yeast Consortia Preparation
2.4. Effect of Proteolytic Enzymes on the Denaturation of Crude Biopreservatives
2.5. Effect of pH and Temperature on Activity and Stability of Crude Biopreservatives
2.6. Growth Inhibition Study of Crude Biopreservative Mixtures against Spoilage Yeast Consortia
2.6.1. Effect of Cell Free Supernatants on Growth Inhibition Activity of Single Spoilage Organism
2.6.2. Effect of Cell Free Supernatants from Single Yeasts on Growth Inhibition Activity of Spoilage Yeast Consortia
2.6.3. Effect of Mixed Crude Biopreservatives on the Growth Inhibition of Single and Consortia of Spoilage Organisms
3. Results and Discussion
3.1. Growth Inhibition Activity Screening and Crude Pounds Production
3.2. Effect of Proteolytic Enzymes on the Denaturation of the Crude Biopreservatives
3.3. Effect of pH and Temperature on Activity and Stability of Crude Biopreservatives
3.4. Growth Inhibition Interactions
3.4.1. Effect of Single Isolates and Their Cell Free Supernatants on Growth Inhibition Activity of Single Spoilage
3.4.2. Growth Inhibition Activity of Crude Biopreservatives from Individual Yeasts against Consortia of Spoilage Yeast
3.4.3. Effect of Crude Biopreservative Mixtures on the Growth Inhibition of Single Spoilage Yeasts
3.4.4. Effect of Crude Biopreservative Mixtures on the Growth of Spoilage Yeast Consortia
4. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Comitini, F.; De, J.I.; Pepe, L.; Mannazzu, I.; Ciani, M. Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol. Lett. 2004, 238, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Mehlomakulu, N.N.; Setati, M.E.; Divol, B. Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Int. J. Food Microbiol. 2014, 188, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.P. Compendium of the Microbiological Spoilage of Foods and Beverages; Springer: New York, NY, USA, 2009. [Google Scholar]
- Ruiz-Capillas, C.; Jiménez-Colmenero, F. Application of flow injection analysis for determining sulphites in food and beverages: A review. Food Chem. 2009, 112, 487–493. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’Donnell, C.P.; Muthukumarappan, K.; Cullen, P.J. Effect of sonication on orange juice quality parameters during storage. J. Food Sci. Technol. 2009, 44, 586–595. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.; Nunes, C.; Saraiva, J.A.; Coimbra, M.A. Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: Review of their potentialities and limitations. Eur. Food Res. Technol. 2012, 234, 1–12. [Google Scholar] [CrossRef]
- Leistner, L. Combined methods for food preservation. J. Food Sci. Technol. 1999, 457–486. [Google Scholar] [CrossRef]
- Farkas, J.; Doyle, M.P.; Beuchat, L.R. Physical methods of food preservation. Food Microbiol. Fundam. Front. 2007, 685–712. [Google Scholar] [CrossRef]
- Droby, S. Improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials. In ISHS Acta Horticulturae 709, Proceedings of the I International Symposium on Natural Preservatives in Food Systems, Princeton, NJ, USA, 30–31 March 2005; ISHS: Princeton, NJ, USA; pp. 45–52.
- Ross, R.P.; Morgan, S.; Hill, C. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol. 2002, 79, 3–16. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef]
- De Ingeniis, J.; Raffaelli, N.; Ciani, M.; Mannazzu, I. Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Appl. Environ. Microbiol. 2009, 75, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)—Prospects and challenges. Biocontrol Sci. Technol. 2019, 29, 207–228. [Google Scholar] [CrossRef]
- Ciani, M.; Fatichenti, F. Killer Toxin of Kluyveromyces phaffiiDBVPG 6076 as a Biopreservative Agent to Control apiculate wine yeasts. Appl. Environ. Microbiol. 2001, 67, 3058–3063. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Li, G.Q.; Zhang, J.; Yang, L.; Che, H.J.; Jiang, D.H.; Huang, H.C. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 2011, 101, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Xiao, H.; Cheng, X.; Zhou, H.; Si, L. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production. Food Microbiol. 2017, 63, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Mewa-Ngongang, M.; du Plessis, H.W.; Ntwampe, S.K.; Chidi, B.S.; Hutchinson, U.F.; Mekuto, L.; Jolly, N.P. Grape pomace extracts as fermentation medium for the production of potential biopreservation compounds. Foods 2019, 8, E51. [Google Scholar] [CrossRef] [PubMed]
- Contarino, R.; Brighina, S.; Fallico, B.; Cirvilleri, G.; Parafati, L.; Restuccia, C. Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiol. 2019, 82, 70–74. [Google Scholar] [CrossRef]
- Mewa-Ngongang, M.; du Plessis, H.W.; Hutchinson, U.F.; Mekuto, L.; Ntwampe, S.K. Kinetic modelling and optimisation of antimicrobial compound production by Candida pyralidae KU736785 for control of Candida guilliermondii. Food Sci. Technol. Int. 2017, 23, 358–370. [Google Scholar] [CrossRef]
- Mewa-Ngongang, M.; du Plessis, H.W.; Ntwampe, S.K.O.; Chidi, B.S.; Hutchinson, U.F.; Mekuto, L.; Jolly, N.P. Fungistatic and Fungicidal Properties of Candida Pyralidae Y1117, Pichia Kluyveri Y1125 and Pichia Kluyveri Y1164 on the Biocontrol of Botrytis Cinereal. In Proceedings of the 10th International Conference on Advances in Science, Engineering, Technology and Healthcare (ASETH-18), Cape Town, South Africa, 19–20 November 2018. [Google Scholar] [CrossRef]
- Chen, W.-B.; Han, Y.F.; Jong, S.C.; Chang, S.C. Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Appl. Environ. Microbiol. 2000, 66, 5348–5352. [Google Scholar] [CrossRef]
- Kumar, K.H.; Jagadeesh, K.S. Microbial consortia-mediated plant defense against phytopathogens and growth benefits. South Indian J. Biol. Sci. 2016, 2, 395–403. [Google Scholar] [CrossRef]
- Calvo, J.; Calvente, V.; de Orellano, M.E.; Benuzzi, D.; de Tosetti, M.I.S. Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixtures. Biocontrol 2003, 48, 579–593. [Google Scholar] [CrossRef]
- Conway, W.; Janisiewicz, W.; Leverentz, B.; Saftner, R.; Camp, M. Control of blue mold of apple by combining controlled atmosphere, antagonist mixtures, and sodium bicarbonate. Phytopathology 2005, 34, 11–20. [Google Scholar] [CrossRef]
- Yobo, K.S.; Laing, M.D.; Hunter, C.H. Application of selected biological control agents in conjunction with tolclofos-methyl for the control of damping-off caused by Rhizoctonia solani. Afr. J. Biotechnol. 2010, 9. [Google Scholar] [CrossRef]
- Lucas, J.A.; Solano, B.R.; Montes, F.; Ojeda, J.; Megias, M.; Mañero, F.G. Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crop. Res. 2009, 114, 404–410. [Google Scholar] [CrossRef]
Biological control yeasts | |||||
---|---|---|---|---|---|
Candida pyralidae Y1117 | Pichia kluyveri Y1125 | P. kluyveri Y1164 | Grape Pomace extract | ||
Spoilage yeasts | Dekkera anomala C96V37 | - | + | + | - |
D. anomala C96V38 | + | + | + | - | |
D. bruxellensis C96V33 | + | + | + | - | |
D. bruxellensis C96V30 | - | + | + | - | |
Brettanomyces lambicus Y0106 | - | - | - | - | |
B. lambicus Y0175 | + | + | - | - | |
B. lambicus Y0191 | + | + | - | - | |
B. lambicus Y0167 | + | + | - | - | |
C. magnoliae Y1061 | - | - | - | - | |
C. guilliermondii Y0848 | + | - | - | - | |
Zygosaccharomyces bailii Y0070 | + | - | - | - | |
Z. bailii Y0891 | + | - | - | - | |
Z. bailii Y0186 | + | - | - | - | |
Z. rouxii Y0115 | - | - | - | - | |
Z. rouxii Y0111 | - | - | - | - | |
Z. microellipsoides Y0159 | - | - | - | - | |
Z. cidri Y0169 | - | + | + | - | |
Z. florentinus Y0277 | - | - | - | - | |
Z. fermentati Y0182 | - | - | - | - | |
Z. bisporus Y0288 | - | - | - | - | |
Z. bisporus Y0113 | - | - | - | - | |
Biological control yeasts | C. pyralidae Y1117 | - | - | - | - |
P. kluyveri Y1125 | - | - | - | - | |
P. kluyveri Y1164 | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mewa-Ngongang, M.; du Plessis, H.W.; Hlangwani, E.; Ntwampe, S.K.O.; Chidi, B.S.; Hutchinson, U.F.; Jolly, N.P. Activity Interactions of Crude Biopreservatives against Spoilage Yeast Consortia. Fermentation 2019, 5, 53. https://doi.org/10.3390/fermentation5030053
Mewa-Ngongang M, du Plessis HW, Hlangwani E, Ntwampe SKO, Chidi BS, Hutchinson UF, Jolly NP. Activity Interactions of Crude Biopreservatives against Spoilage Yeast Consortia. Fermentation. 2019; 5(3):53. https://doi.org/10.3390/fermentation5030053
Chicago/Turabian StyleMewa-Ngongang, Maxwell, Heinrich W. du Plessis, Edwin Hlangwani, Seteno K. O. Ntwampe, Boredi S. Chidi, Ucrecia F. Hutchinson, and Neil P. Jolly. 2019. "Activity Interactions of Crude Biopreservatives against Spoilage Yeast Consortia" Fermentation 5, no. 3: 53. https://doi.org/10.3390/fermentation5030053
APA StyleMewa-Ngongang, M., du Plessis, H. W., Hlangwani, E., Ntwampe, S. K. O., Chidi, B. S., Hutchinson, U. F., & Jolly, N. P. (2019). Activity Interactions of Crude Biopreservatives against Spoilage Yeast Consortia. Fermentation, 5(3), 53. https://doi.org/10.3390/fermentation5030053