Kinetics of Bioethanol Production from Waste Sorghum Leaves Using Saccharomyces cerevisiae BY4743
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Preparation and Pre-Treatment
2.2. Enzymatic Hydrolysis
2.3. Fermentation Medium Formulation
2.4. Microorganism and Inoculum Preparation
2.5. Fermentation Process and Analytical Methods
2.6. Calculations of Kinetic Model Constants
3. Results and Discussion
3.1. Monod Kinetic Model of S. cerevisiae on Waste Sorghum Leaves
3.2. Bioethanol Production
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- DoE. Biofuels Pricing and Manufacturing Economics. Department of Energy: South Africa, 2012. Available online: http://www.energy.gov.za/files/esources/renewables/BiofuelsPricingAndManufacturingEconomics.pdf (accessed on 10 November 2016).
- Ariyajaroenwong, P.; Laopaiboon, P.; Salakkam, A.; Srinophakun, P.; Laopaiboon, L. Kinetic models for batch and continuous ethanol fermentation from sweet sorghum juice by yeast immobilized on sweet sorghum stalks. J. Taiwan Inst. Chem. Eng. 2016, 66, 210–216. [Google Scholar] [CrossRef]
- Diaz, A.B.; de Souza Moretti, M.M.; Bezerra-Bussoli, C.; da Costa Carreira Nunes, C.; Blandino, A.; da Silva, R.; Gomes, E. Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour. Technol. 2015, 185, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Mai, N.L.; Ha, S.H.; Koo, Y. Efficient pretreatment of lignocellulose in ionic liquids/co-solvent for enzymatic hydrolysis enhancement into fermentable sugars. Process Biochem. 2014, 49, 1144–1151. [Google Scholar] [CrossRef]
- Vani, S.; Sukumaran, R.K.; Savithri, S. Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling. Bioresour. Technol. 2015, 188, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Reynosa, A.; Romaní, A.; Rodríguez-Jasso, R.M.; Aguilar, C.N.; Garrote, G.; Ruiz, H.A. Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview. Energy Convers. Manag. 2017, 136, 50–65. [Google Scholar] [CrossRef]
- Gabhane, J.; Prince William, S.P.M.; Gadhe, A.; Rath, R.; Vaidya, A.N.; Wate, S. Pretreatment of banana agricultural waste for bio-ethanol production: Individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag. 2014, 34, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Putra, M.D.; Abasaeed, A.E.; Atiyeh, H.K.; Al-Zahrani, S.M.; Gaily, M.H.; Sulieman, A.K.; Zeinelabdeen, M.A. Kinetic Modeling and Enhanced Production of Fructose and Ethanol from Date Fruit Extract. Chem. Eng. Commun. 2015, 202, 1618–1627. [Google Scholar] [CrossRef]
- Ahmad, F.; Jameel, A.T.; Kamarudin, M.H.; Mel, M. Study of growth kinetic modeling of ethanol production by Saccharomyces cerevisiae. Afr. J. Biotechnol. 2011, 16, 18842–18846. [Google Scholar]
- Massoud, M.I.; El-Razek, A.M.A. Suitability of Sorghum bicolor L. stalks and grains for bioproduction of ethanol. Ann. Agric. Sci. 2011, 56, 83–87. [Google Scholar] [CrossRef]
- Suryaningsih, R. Bioenergy Plants in Indonesia: Sorghum for Producing Bioethanol as an Alternative Energy Substitute of Fossil Fuels. Energy Procedia 2014, 47, 211–216. [Google Scholar] [CrossRef]
- Shen, F.; Zeng, Y.; Deng, S.; Liu, R. Bioethanol production from sweet sorghum stalk juice with immobilized yeast. Procedia Environ. Sci. 2011, 11, 782–789. [Google Scholar] [CrossRef]
- Martins, F.; Gay, J.C. Biofuels: From Boom to Bust? Bain Brief, Bain and Company, 17 September 2014. Available online: http://www.bain.com/publications/articles/biofuels-from-boom-to-bust.aspx# (accessed on 23 October 2016).
- Lee, S.Y. Kinetic Modeling and Simulation. Encycl. Syst. Biol. 2013. [Google Scholar] [CrossRef]
- Almquist, J.; Cvijovic, M.; Hatzimanikatis, V.; Nielsen, J.; Jirstrand, M. Kinetic models in industrial biotechnology—Improving cell factory performance. Metab. Eng. 2014, 24, 38–60. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez, M.C.; Raftery, J.P.; Jaladi, T.; Chen, X.; Kao, K.; Karim, M.N. Modelling of batch kinetics of aerobic carotenoid production using Saccharomyces cerevisiae. Biochem. Eng. J. 2016, 114, 226–236. [Google Scholar] [CrossRef]
- Linville, J.L.; Rodriguez, M., Jr.; Mielenz, J.R.; Cox, C.D. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum. Bioresour. Technol. 2013, 147, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Imamoglu, E.; Sukan, F.V. Scale-up and kinetic modeling for bioethanol production. Bioresour. Technol. 2013, 144, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Dodić, J.M.; Vučurović, D.G.; Dodić, S.N.; Grahovac, J.A.; Popov, S.D.; Nedeljković, N.M. Kinetic modelling of batch ethanol production from sugar beet raw juice. Appl. Energy 2012, 99, 192–197. [Google Scholar] [CrossRef]
- Jukić, D.; Kralik, G.; Scitovski, R. Least-squares fitting Gompertz curve. J. Comput. Appl. Math. 2004, 169, 359–375. [Google Scholar] [CrossRef]
- Mu, Y.; Wang, G.; Yu, H.Q. Kinetic modelling of batch hydrogen production process by mixed anaerobic cultures. Bioresour. Technol. 2006, 97, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Shafaghat, H.; Najafpour, G.D.; Rezaei, P.S.; Sharifzadeh, M. Growth Kinetics and Ethanol Productivity of Saccharomyces cerevisiae PTCC 24860 on Various Carbon Sources. World Appl. Sci. J. 2009, 7, 140–144. [Google Scholar]
- Rorke, D.C.S.; Suinyuy, T.N.; Gueguim Kana, E.B. Microwave-assisted chemical pre-treatment of waste sorghum leaves: Process optimization and development of an intelligent model for determination of volatile compound fractions. Bioresour. Technol. 2017, 224, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Burk, D. Enzyme kinetic constants: The double reciprocal plot. Trends Biochem. Sci. 1984, 9, 202–204. [Google Scholar] [CrossRef]
- Srimachai, T.; Nuithitikul, K.; O-thong, S.; Kongjan, P.; Panpong, K. Optimization and Kinetic Modeling of Ethanol Production from Oil Palm Frond Juice in Batch Fermentation. Energy Procedia 2015, 79, 111–118. [Google Scholar] [CrossRef]
- Echegaray, O.F.; Carvalho, J.C.M.; Fernandes, A.N.R.; Satos, S.; Aquarone, E.; Vitolo, M. Fed-batch culture of Saccharomyces cerevisiae in sugar-cane blackstrap molasses: Invertase activity of intact cells in ethanol fermentation. Biomass Bioenergy 2000, 19, 39–50. [Google Scholar] [CrossRef]
- Laopaiboon, L.; Nuanpeng, S.; Srinophakun, P.; Klanrit, P.; Laopaiboon, P. Selection of Saccharomyces cerevisiae and Investigation of its Performance for Very High Gravity Ethanol Fermentation. Biotechnology 2008, 7, 493–498. [Google Scholar] [CrossRef]
- Okpokwasili, G.C.; Nweke, C.O. Microbial growth and substrate utilization kinetics. Afr. J. Biotechnol. 2005, 5, 305–317. [Google Scholar]
- Raposo, S.; Pardão, J.M.; Díaz, I.; Lima-Costa, M.E. Kinetic modelling of bioethanol production using agro-industrial by-products. Int. J. Energy Environ. 2009, 1, 1–8. [Google Scholar]
- Singh, J.; Sharma, R. Growth kinetic and modeling of ethanol production by wilds and mutant Saccharomyces cerevisiae MTCC 170. Eur. J. Exp. Biol. 2015, 5, 1–6. [Google Scholar]
- Govindaswamy, S.; Vane, L.M. Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Bioresour. Technol. 2007, 98, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, K.; Saravanan, V.; Viruthagiri, T. Kinetics studies on ethanol production from banana peel waste using mutant strain of Saccharomyces cerevisiae. Indian J. Biotechnol. 2008, 7, 83–88. [Google Scholar]
- Ardestani, F.; Shafiei, S. Non-Structured Kinetic Model for the Cell Growth of Saccharomyces cerevisiae in a Batch Culture. Iran. J. Energy Environ. 2014, 5, 8–12. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, W.; Li, C.; Sakakibara, K.; Tanaka, S.; Kong, H. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 2012, 47, 395–401. [Google Scholar] [CrossRef]
- Abdullah, S.S.S.; Shirai, Y.; Bahrin, E.K.; Hassan, M.A. Fresh oil palm frond juice as a renewable, non-food, non-cellulosic and complete medium for direct bioethanol production. Ind. Crops Prod. 2015, 63, 357–361. [Google Scholar] [CrossRef]
- Ramos, C.L.; Duarte, W.F.; Freire, A.L.; Dias, D.R.; Eleutherio, E.C.; Schwan, R.F. Evaluation of stress tolerance and fermentative behaviour of indigenous Saccharomyces cerevisiae. Braz. J. Microbiol. 2013, 44, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Staggenborg, S.; Propheter, J.L.; Rooney, W.L.; Yu, J.; Wang, D. Features of sweet sorghum juice and their performance in ethanol fermentation. Ind. Crops Prod. 2010, 31, 164–170. [Google Scholar] [CrossRef]
- Pavlečič, M.; Vrana, I.; Vibovec, K.; Šantek, M.I.; Horvat, P.; Šantek, B. Ethanol Production from Different Intermediates of Sugar Beet Processing. Food Technol. Biotechnol. 2010, 48, 362–367. [Google Scholar]
- Dinh, T.N.; Nagahisa, K.; Hirasawa, T.; Furusawa, C.; Shimizu, H. Adaptation of Saccharomyces cerevisiae Cells to High Ethanol Concentration and Changes in Fatty Acid Composition of Membrane and Cell Size. PLoS ONE 2008, 3, e2623. [Google Scholar] [CrossRef] [PubMed]
Substrate | μmax (h−1) | KS (g/L) | Reference |
---|---|---|---|
Sorghum leaves | 0.176 | 10.110 | This study |
Oil palm frond juice (10–20 years) | 0.150 | 10.210 | Srimachai et al. [25] |
Sugar beet raw juice | 0.169 | ND | Dodić et al. [19] |
Sweet sorghum juice | 0.313 | 47.510 | Ariyajaroenwong et al. [2] |
Glucose | 0.291 | ND | Govindaswamy et al. [31] |
Banana peels | 1.500 | 25.000 | Manikandan et al. [32] |
Glucose | 0.084 | 213.60 | Ahmad et al. [9] |
Glucose | 0.650 | 11.390 | Shafaghat et al. [22] |
Citrus waste pulp | 0.350 | 10.690 | Raposo et al. [29] |
Glucose | 0.133 | 3.700 | Singh and Sharma [30] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rorke, D.C.S.; Gueguim Kana, E.B. Kinetics of Bioethanol Production from Waste Sorghum Leaves Using Saccharomyces cerevisiae BY4743. Fermentation 2017, 3, 19. https://doi.org/10.3390/fermentation3020019
Rorke DCS, Gueguim Kana EB. Kinetics of Bioethanol Production from Waste Sorghum Leaves Using Saccharomyces cerevisiae BY4743. Fermentation. 2017; 3(2):19. https://doi.org/10.3390/fermentation3020019
Chicago/Turabian StyleRorke, Daneal C. S., and Evariste Bosco Gueguim Kana. 2017. "Kinetics of Bioethanol Production from Waste Sorghum Leaves Using Saccharomyces cerevisiae BY4743" Fermentation 3, no. 2: 19. https://doi.org/10.3390/fermentation3020019
APA StyleRorke, D. C. S., & Gueguim Kana, E. B. (2017). Kinetics of Bioethanol Production from Waste Sorghum Leaves Using Saccharomyces cerevisiae BY4743. Fermentation, 3(2), 19. https://doi.org/10.3390/fermentation3020019