Growth Kinetics and Extracellular Enzyme Secretion of Aureobasidium pullulans m11-2 as an Alternative Source of Polysaccharidases for Winemaking
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Media
2.2. Molecular Identification Through 26S rDNA Sequencing
2.2.1. Genomic DNA Extraction
2.2.2. PCR Amplification and Sequence Analysis
2.3. Morphological Characterization
2.4. Preliminary Test—Growth Kinetics and Enzyme Production
2.5. Determination of Enzymatic Activities
2.5.1. Qualitative Detection of Pectinolytic Activity
2.5.2. Quantitative Determination of Enzymatic Activities
2.6. Evaluation of the Culture Medium for Enzyme Production
2.6.1. First Phase
2.6.2. Second Phase
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the A. pullulans m11-2 Strain
3.1.1. Molecular Identification by 26S rRNA Gene Sequencing
3.1.2. Morphological Characterization
3.2. Preliminary Test—Growth Kinetics and Enzyme Production by Aureobasidium pullulans m11-2
3.3. Evaluation of the Culture Medium for Enzyme Production
3.3.1. First Phase
3.3.2. Second Phase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
BLAST | Basic Local Alignment Search Tool |
CA | Cellulase activity |
CFU | Colony-forming units |
DNS | 3,5-Dinitrosalicylic acid |
G | Glucose |
GRAS | Generally Recognized As Safe |
GS | Grape Skins |
LSD | Least Significant Difference |
OD | Optical Density |
OIV | Organization of Vine and Wine |
P | Pectin |
PA | Pectinases activity |
RSM | Response Surface Methodology |
SD | Standard Deviation |
U | One unit of enzymatic activity |
XA | Xylanases activity |
YE | Yeast Extract |
References
- Chen, J.; Liu, W.; Liu, C.M.; Li, T.; Liang, R.H.; Luo, S.J. Pectin Modifications: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1684–1698. [Google Scholar] [CrossRef]
- Dal Magro, L.; Hertz, P.F.; Fernandez-Lafuente, R.; Klein, M.P.; Rodrigues, R.C. Preparation and Characterization of a Combi-CLEAs from Pectinases and Cellulases: A Potential Biocatalyst for Grape Juice Clarification. RSC Adv. 2016, 6, 27242–27251. [Google Scholar] [CrossRef]
- Hüfner, E.; Haßelbeck, G. Application of Microbial Enzymes During Winemaking. In Biology of Microorganisms on Grapes, in Must and in Wine; König, H., Unden, G., Fröhlich, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 365–658. [Google Scholar]
- Singh, B.; Soni, S.K.; Mathur, P.; Garg, N. Microbial Multienzyme Viz., Pectinase, Cellulase and Amylase Production Using Fruit and Vegetable Waste as Substrate—A Review. Appl. Microbiol. 2024, 4, 1232–1246. [Google Scholar] [CrossRef]
- Río Segade, S.; Pace, C.; Torchio, F.; Giacosa, S.; Gerbi, V.; Rolle, L. Impact of Maceration Enzymes on Skin Softening and Relationship with Anthocyanin Extraction in Wine Grapes with Different Anthocyanin Profiles. Food Res. Int. 2015, 71, 50–57. [Google Scholar] [CrossRef]
- Longhi, S.J.; Martín, M.C.; Fontana, A.; de Ambrosini, V.I.M. Different Approaches to Supplement Polysaccharide-Degrading Enzymes in Vinification: Effects on Color Extraction, Phenolic Composition, Antioxidant Activity and Sensory Profiles of Malbec Wines. Food Res. Int. 2022, 157, 111447. [Google Scholar] [CrossRef] [PubMed]
- Merín, M.G.; Morata de Ambrosini, V.I. Kinetic and Metabolic Behaviour of the Pectinolytic Strain Aureobasidium Pullulans GM-R-22 during Pre-Fermentative Cold Maceration and Its Effect on Red Wine Quality. Int. J. Food Microbiol. 2018, 285, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Merín, M.G.; Morata de Ambrosini, V.I. Application of a Grape Surface Majority Pectinolytic Species, Aureobasidium Pullulans, to Low-Temperature Red Winemaking: Development and Stability of Wine Colour. J. Wine Res. 2020, 31, 218–239. [Google Scholar] [CrossRef]
- Fratebianchi, D.; González, M.; Tenorio, C.; Cavalitto, S.F.; Ruiz-Larrea, F. Characterization and Winemaking Application of a Novel Pectin-Degrading Enzyme Complex from Aspergillus Sojae ATCC 20235. Vitis-J. Grapevine Res. 2017, 56, 85–93. [Google Scholar] [CrossRef]
- Claus, H.; Mojsov, K. Enzymes for Wine Fermentation: Current and Perspective Applications. Fermentation 2018, 4, 52. [Google Scholar] [CrossRef]
- Sharma, R.; Oberoi, H.S.; Dhillon, G.S. Fruit and Vegetable Processing Waste: Renewable Feed Stocks for Enzyme Production. In Agro-Industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 23–59. ISBN 9780128026120. [Google Scholar]
- Satapathy, S.; Rout, J.R.; Kerry, R.G.; Thatoi, H.; Sahoo, S.L. Biochemical Prospects of Various Microbial Pectinase and Pectin: An Approachable Concept in Pharmaceutical Bioprocessing. Front. Nutr. 2020, 7, 117. [Google Scholar] [CrossRef]
- Suhaimi, H.; Dailin, D.J.; Malek, R.A.; Hanapi, S.Z.; Ambehabati, K.K.; Keat, H.C.; Prakasham, S.; Elsayed, E.A.; Misson, M.; El Enshasy, H. Fungal Pectinases: Production and Applications in Food Industries. In Fungi in Sustainable Food Production; Springer: Cham, Switzerland, 2021; pp. 85–115. [Google Scholar]
- Escribano, R.; González-Arenzana, L.; Garijo, P.; Berlanas, C.; López-Alfaro, I.; López, R.; Gutiérrez, A.R.; Santamaría, P. Screening of Enzymatic Activities within Different Enological Non-Saccharomyces Yeasts. J. Food Sci. Technol. 2017, 54, 1555–1564. [Google Scholar] [CrossRef]
- Loira, I.; Morata, A.; Comuzzo, P.; Callejo, M.J.; González, C.; Calderón, F.; Suárez-Lepe, J.A. Use of Schizosaccharomyces Pombe and Torulaspora Delbrueckii Strains in Mixed and Sequential Fermentations to Improve Red Wine Sensory Quality. Food Res. Int. 2015, 76, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Merín, M.G.; de Ambrosini, V.I.M. Highly Cold-Active Pectinases under Wine-like Conditions from Non-Saccharomyces Yeasts for Enzymatic Production during Winemaking. Lett. Appl. Microbiol. 2015, 60, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Prasongsuk, S.; Lotrakul, P.; Ali, I.; Bankeeree, W.; Punnapayak, H. The Current Status of Aureobasidium Pullulans in Biotechnology. Folia Microbiol. 2018, 63, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.C.; Prendes, L.P.; Morata, V.I.; Merín, M.G. Biocontrol and Enzymatic Activity of Non-Saccharomyces Wine Yeasts: Improvements in Winemaking. Fermentation 2024, 10, 218. [Google Scholar] [CrossRef]
- Merín, M.G.; Martín, M.C.; Rantsiou, K.; Cocolin, L.; De Ambrosini, V.I.M. Characterization of Pectinase Activity for Enology from Yeasts Occurring in Argentine Bonarda Grape. Braz. J. Microbiol. 2015, 46, 815–823. [Google Scholar] [CrossRef]
- Pinto, C.; Pinho, D.; Cardoso, R.; Custódio, V.; Fernandes, J.; Sousa, S.; Pinheiro, M.; Egas, C.; Gomes, A.C. Wine Fermentation Microbiome: A Landscape from Different Portuguese Wine Appellations. Front. Microbiol. 2015, 6, 905. [Google Scholar] [CrossRef]
- Pertot, I.; Giovannini, O.; Benanchi, M.; Caffi, T.; Rossi, V.; Mugnai, L. Combining Biocontrol Agents with Different Mechanisms of Action in a Strategy to Control Botrytis Cinerea on Grapevine. Crop Prot. 2017, 97, 85–93. [Google Scholar] [CrossRef]
- Sternes, P.R.; Lee, D.; Kutyna, D.R.; Borneman, A.R. A Combined Meta-Barcoding and Shotgun Metagenomic Analysis of Spontaneous Wine Fermentation. Gigascience 2017, 6, gix040. [Google Scholar] [CrossRef]
- Bozoudi, D.; Tsaltas, D. The Multiple and Versatile Roles of Aureobasidium Pullulans in the Vitivinicultural Sector. Fermentation 2018, 4, 85. [Google Scholar] [CrossRef]
- Longhi, S.J.; Martín, M.C.; Merín, M.G.; Morata de Ambrosini, V.I. Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine. Food Technol. Biotechnol. 2022, 60, 556–570. [Google Scholar] [CrossRef]
- Oskay, M. Production, Partial Purification, and Characterization of Polygalacturonase from Aureobasidium Pullulans P56 under Submerged Fermentation Using Agro-Industrial Wastes. Curr. Microbiol. 2022, 79, 296. [Google Scholar] [CrossRef]
- Merín, M.G.; Martín, M.C.; Carrión, R.O.; Morata, V.I. Co-Inoculation of a Pectinolytic Aureobasidium Pullulans Strain and Saccharomyces Cerevisiae for Low-Temperature Red Fermentation: A Strategy to Enhance the Colour and Sensory Properties of Malbec Wines. OENO One 2025, 59, 1. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Antoniolli, A.; Fontana, A.R.; Piccoli, P.; Bottini, R. Characterization of Polyphenols and Evaluation of Antioxidant Capacity in Grape Pomace of the Cv. Malbec. Food Chem. 2015, 178, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Querol, A.; Barrio, E.; Ramón, D. A Comparative Study of Different Methods of Yeast Strain Characterization. Syst. Appl. Microbiol. 1992, 15, 439–446. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett, C.J. Identification of Clinically Important Ascomycetous Yeasts Based on Nucleotide Divergence in the 5 End of the Large-Subunit (26S) Ribosomal DNA Gene. J. Clin. Microbiol. 1998, 73, 331–371. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. ACS Publ. Most. Trusted. Most. Cited. Most. Read. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zalar, P.; Gostinčar, C.; de Hoog, G.S.; Uršič, V.; Sudhadham, M.; Gunde-Cimerman, N. Redefinition of Aureobasidium Pullulans and Its Varieties. Stud. Mycol. 2008, 61, 21–38. [Google Scholar] [CrossRef]
- Chi, Z.; Wang, F.; Chi, Z.; Yue, L.; Liu, G.; Zhang, T. Bioproducts from Aureobasidium Pullulans, a Biotechnologically Important Yeast. Appl. Microbiol. Biotechnol. 2009, 82, 793–804. [Google Scholar] [CrossRef]
- Gostinčar, C.; Ohm, R.A.; Kogej, T.; Sonjak, S.; Turk, M.; Zajc, J.; Zalar, P.; Grube, M.; Sun, H.; Han, J.; et al. Genome Sequencing of Four Aureobasidium Pullulans Varieties: Biotechnological Potential, Stress Tolerance, and Description of New Species. BMC Genom. 2014, 15, 549. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lu, Y.; Liu, L.; Bai, R.; Zhang, S.; Hao, Y.; Xu, F.; Wei, B.; Zhao, H. Characteristic Analysis and Fermentation Optimization of a Novel Aureobasidium Pullulans RM1603 with High Pullulan Yield. J. Biosci. Bioeng. 2024, 137, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Onetto, C.A.; Borneman, A.R.; Schmidt, S.A. Investigating the Effects of Aureobasidium Pullulans on Grape Juice Composition and Fermentation. Food Microbiol. 2020, 90, 103451. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Driller, M.; Stein, K.; Blank, L.M.; Tiso, T. Genome Mining the Black-Yeast Aureobasidium Pullulans NRRL 62031 for Biotechnological Traits. BMC Genom. 2025, 26, 244. [Google Scholar] [CrossRef]
- Merín, M.G.; Mendoza, L.M.; Morata de Ambrosini, V.I. Pectinolytic Yeasts from Viticultural and Enological Environments: Novel Finding of Filobasidium Capsuligenum Producing Pectinases. J. Basic Microbiol. 2014, 54, 835–842. [Google Scholar] [CrossRef]
- Martins, L.C.; Monteiro, C.C.; Semedo, P.M.; Sá-Correia, I. Valorisation of Pectin-Rich Agro-Industrial Residues by Yeasts: Potential and Challenges. Appl. Microbiol. Biotechnol. 2020, 104, 6527–6547. [Google Scholar] [CrossRef]
- Rueda-Mejia, M.P.; Nägeli, L.; Lutz, S.; Hayes, R.D.; Varadarajan, A.R.; Grigoriev, I.V.; Ahrens, C.H.; Freimoser, F.M. Genome, Transcriptome and Secretome Analyses of the Antagonistic, Yeast-like Fungus Aureobasidium Pullulansto Identify Potential Biocontrol Genes. Microb. Cell 2021, 8, 184–202. [Google Scholar] [CrossRef]
- Biely, P.; Heinrichová, K.; Kruz, M. Induction and Inducers of the Pectolytic System in Aureobasidium Pullulans; Springer Inc.: New York, NY, USA, 1996; Volume 33. [Google Scholar]
- Fontana, R.C.; Salvador, S.; Da Silveira, M.M. Influence of Pectin and Glucose on Growth and Polygalacturonase Production by Aspergillus Niger in Solid-State Cultivation. J. Ind. Microbiol. Biotechnol. 2005, 32, 371–377. [Google Scholar] [CrossRef]
- Ahmed, I.; Zia, M.A.; Hussain, M.A.; Akram, Z.; Naveed, M.T.; Nowrouzi, A. Bioprocessing of Citrus Waste Peel for Induced Pectinase Production by Aspergillus Niger; Its Purification and Characterization. J. Radiat. Res. Appl. Sci. 2016, 9, 148–154. [Google Scholar] [CrossRef]
- Reginatto, C.; Rossi, C.; Miglioranza, B.G.; Santos, M.d.; Meneghel, L.; Silveira, M.M.d.; Malvessi, E. Pectinase Production by Aspergillus Niger LB-02-SF Is Influenced by the Culture Medium Composition and the Addition of the Enzyme Inducer after Biomass Growth. Process Biochem. 2017, 58, 1–8. [Google Scholar] [CrossRef]
- Vieira, M.M.; Kadoguchi, E.; Segato, F.; da Silva, S.S.; Chandel, A.K. Production of Cellulases by Aureobasidium Pullulans LB83: Optimization, Characterization, and Hydrolytic Potential for the Production of Cellulosic Sugars. Prep. Biochem. Biotechnol. 2021, 51, 153–163. [Google Scholar] [CrossRef]
- Ahmed, T.; Rana, M.R.; Zzaman, W.; Ara, R.; Aziz, M.G. Optimization of Substrate Composition for Pectinase Production from Satkara (Citrus Macroptera) Peel Using Aspergillus Niger-ATCC 1640 in Solid-State Fermentation. Heliyon 2021, 7, e08133. [Google Scholar] [CrossRef]
- Fasoli, M.; Dell’Anna, R.; Dal Santo, S.; Balestrini, R.; Sanson, A.; Pezzotti, M.; Monti, F.; Zenoni, S. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin during Ripening. Plant Cell Physiol. 2016, 57, 1332–1349. [Google Scholar] [CrossRef]
- Govindaraji, P.K.; Vuppu, S. Characterisation of Pectin and Optimization of Pectinase Enzyme from Novel Streptomyces Fumigatiscleroticus VIT-SP4 for Drug Delivery and Concrete Crack-Healing Applications: An Eco-Friendly Approach. Saudi J. Biol. Sci. 2020, 27, 3529–3540. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Hu, Z.; Ma, L.; Li, H.; Ai, M.; Han, J.; Zeng, B. Transcriptome Analysis of Different Growth Stages of Aspergillus Oryzae Reveals Dynamic Changes of Distinct Classes of Genes during Growth. BMC Microbiol. 2018, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Driller, M.; Dielentheis-Frenken, M.; Haala, F.; Kohl, P.; Stein, K.; Blank, L.M.; Tiso, T. Advances in Aureobasidium Research: Paving the Path to Industrial Utilization. Microb. Biotechnol. 2024, 17, e14535. [Google Scholar] [CrossRef] [PubMed]
Nutrients (g L−1) | G-P | G-P-YE | G-P-GS-YE | G-GS-YE | P-GS-YE | GS-YE |
---|---|---|---|---|---|---|
Glucose, G | 1 | 1 | 1 | 1 | 0 | 0 |
Pectin, P | 10 | 10 | 10 | 0 | 10 | 0 |
Grape skins, GS | 0 | 0 | 15 | 15 | 15 | 15 |
Yeast extract, YE | 0 | 1 | 1 | 1 | 1 | 1 |
Glucose and Pectin Concentrations (g L−1) | OD (600 nm) | Pectinases Activity (U mL−1) | Cellulase Activity (U mL−1) | Xylanases Activity (U mL−1) |
---|---|---|---|---|
1:1 | 661 ± 72 | 0.065 ± 0.014 | 0.018 ± 0.006 | 0.029 ± 0.004 |
10:1 | 1069 ± 67 | 0.062 ± 0.007 | 0.042 ± 0.004 | 0.055 ± 0.010 |
20:1 | 1042 ± 6 | 0.087 ± 0.023 | 0.084 ± 0.011 | 0.088 ± 0.012 |
1:5 | 908 ± 77 | 0.064 ± 0.018 | 0.082 ± 0.016 | 0.071 ± 0.009 |
10:5 | 901 ± 96 | 0.046 ± 0.020 | 0.046 ± 0.016 | 0.061 ± 0.005 |
20:5 | 835 ± 84 | 0.065 ± 0.009 | 0.043 ± 0.020 | 0.063 ± 0.006 |
1:10 | 643 ± 23 | 0.140 ± 0.021 | 0.194 ± 0.003 | 0.104 ± 0.013 |
10:10 | 716 ± 45 | 0.094 ± 0.018 | 0.064 ± 0.013 | 0.069 ± 0.002 |
20:10 | 564 ± 30 | 0.091 ± 0.018 | 0.079 ± 0.008 | 0.045 ± 0.0046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sevillano, M.E.; Morata, V.I.; Martín, M.C. Growth Kinetics and Extracellular Enzyme Secretion of Aureobasidium pullulans m11-2 as an Alternative Source of Polysaccharidases for Winemaking. Fermentation 2025, 11, 520. https://doi.org/10.3390/fermentation11090520
Sevillano ME, Morata VI, Martín MC. Growth Kinetics and Extracellular Enzyme Secretion of Aureobasidium pullulans m11-2 as an Alternative Source of Polysaccharidases for Winemaking. Fermentation. 2025; 11(9):520. https://doi.org/10.3390/fermentation11090520
Chicago/Turabian StyleSevillano, María Eugenia, Vilma Inés Morata, and María Carolina Martín. 2025. "Growth Kinetics and Extracellular Enzyme Secretion of Aureobasidium pullulans m11-2 as an Alternative Source of Polysaccharidases for Winemaking" Fermentation 11, no. 9: 520. https://doi.org/10.3390/fermentation11090520
APA StyleSevillano, M. E., Morata, V. I., & Martín, M. C. (2025). Growth Kinetics and Extracellular Enzyme Secretion of Aureobasidium pullulans m11-2 as an Alternative Source of Polysaccharidases for Winemaking. Fermentation, 11(9), 520. https://doi.org/10.3390/fermentation11090520