Impact of Lactic Acid Bacteria on Sour India Pale Ale (IPA) Fermentation: Growth Dynamics, Acidification, and Flavor Modulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Lactic Acid Bacteria Strains and Culture Conditions
2.2. 16S rRNA Gene Sequencing of LAB Species
2.3. Growth Curve of LAB
2.4. Brewing of Sour IPA
2.5. Analysis of Volatile Compounds in Beer Samples
2.6. Data Analysis
3. Results and Discussion
3.1. LAB Morphology and Their Identity
3.2. Growth Characteristics of LAB
3.3. Acidification Effects of LAB Species in MRS Medium and Wort
3.4. Volatile Compounds Analysis in Sour IPA
3.5. Influence of LAB Species on Volatile Compounds Formation
3.6. Terpenoids and Their Impact on Beer Flavor
3.7. Principal Component Analysis (PCA) of Volatile Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pokrivcák, J.; Supeková, S.C.; Lancaric, D.; Savov, R.; Tóth, M.; Vasina, R. Development of beer industry and craft beer expansion. J. Food Nutr. Res. 2019, 58, 63–74. [Google Scholar]
- Baiano, A. Craft beer: An overview. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1829–1856. [Google Scholar] [CrossRef] [PubMed]
- Tirado-Kulieva, V.A.; Hernández-Martínez, E.; Minchán-Velayarce, H.H.; Pasapera-Campos, S.E.; Luque-Vilca, O.M. A comprehensive review of the benefits of drinking craft beer: Role of phenolic content in health and possible potential of the alcoholic fraction. Curr. Res. Food Sci. 2023, 6, 100477. [Google Scholar] [CrossRef]
- Bimbo, F.; De Meo, E.; Baiano, A.; Carlucci, D. The value of craft beer styles: Evidence from the Italian market. Foods 2023, 12, 1328. [Google Scholar] [CrossRef]
- Bossaert, S.; Crauwels, S.; De Rouck, G.; Lievens, B. The power of sour—A review: Old traditions, new opportunities. BrewingScience 2019, 72, 78–88. [Google Scholar] [CrossRef]
- Onishi, K.; Furuno, M.; Mori, A.; Fukusaki, E. New insights into the characteristic flavor components of traditional sour beers such as Lambic and Flanders Red Ale beers. J. Biosci. Bioeng. 2024, 138, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Bongaerts, D.; Bouchez, A.; De Roos, J.; Cnockaert, M.; Wieme, A.D.; Vandamme, P.; Weckx, S.; De Vuyst, L. Refermentation and maturation of lambic beer in bottles: A necessary step for gueuze production. Appl. Environ. Microbiol. 2024, 90, e0186923. [Google Scholar] [CrossRef] [PubMed]
- Bossaert, S.; Winne, V.; Van Opstaele, F.; Buyse, J.; Verreth, C.; Herrera-Malaver, B.; Van Geel, M.; Verstrepen, K.J.; Crauwels, S.; De Rouck, G.; et al. Description of the temporal dynamics in microbial community composition and beer chemistry in sour beer production via barrel ageing of finished beers. Int. J. Food Microbiol. 2021, 339, 109030. [Google Scholar] [CrossRef]
- Dysvik, A.; La Rosa, S.L.; De Rouck, G.; Rukke, E.O.; Westereng, B.; Wicklund, T. Microbial dynamics in traditional and modern sour beer production. Appl. Environ. Microbiol. 2020, 86, e00566-20. [Google Scholar] [CrossRef]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z. Characteristics of Cornelian cherry sour non-alcoholic beers brewed with the special yeast Saccharomycodes ludwigii. Food Chem. 2020, 312, 125968. [Google Scholar] [CrossRef]
- Daenen, L.; Sterckx, F.; Delvaux, F.R.; Verachtert, H.; Derdelinckx, G. Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers. FEMS Yeast Res. 2008, 8, 1103–1114. [Google Scholar] [CrossRef]
- Hodgkin, M.; Purseglove, S.M.; Chan, L.L.; Perry, J.; Bolton, J. A novel image cytometry-based Lactobacillus bacterial enumeration method for the production of kettle sour beer. J. Microbiol. Methods 2020, 177, 106031. [Google Scholar] [CrossRef] [PubMed]
- De Roos, J.; Van der Veken, D.; De Vuyst, L. The interior surfaces of wooden barrels are an additional microbial inoculation source for Lambic beer production. Appl. Environ. Microbiol. 2019, 85, e02226-18. [Google Scholar] [CrossRef]
- Osburn, K.; Amaral, J.; Metcalf, S.R.; Nickens, D.M.; Rogers, C.M.; Sausen, C.; Caputo, R.; Miller, J.; Li, H.; Tennessen, J.M.; et al. Primary souring: A novel bacteria-free method for sour beer production. Food Microbiol. 2018, 70, 76–84. [Google Scholar] [CrossRef]
- George, F.; Daniel, C.; Thomas, M.; Singer, E.; Guilbaud, A.; Tessier, F.J.; Revol-Junelles, A.M.; Borges, F.; Foligne, B. Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: A multifaceted functional health perspective. Front. Microbiol. 2018, 9, 2899. [Google Scholar] [CrossRef]
- Hugenholtz, J. Traditional biotechnology for new foods and beverages. Curr. Opin. Biotechnol. 2013, 24, 155–159. [Google Scholar] [CrossRef]
- Mokoena, M.P. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules 2017, 22, 1255. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Dysvik, A.; Liland, K.H.; Myhrer, K.S.; Westereng, B.; Rukke, E.-O.; de Rouck, G.; Wicklund, T. Pre-fermentation with lactic acid bacteria in sour beer production. J. Inst. Brew. 2019, 125, 342–356. [Google Scholar] [CrossRef]
- Garcia-Garcia, J.H.; Galán-Wong, L.J.; Pereyra-Alférez, B.; Damas-Buenrostro, L.C.; Pérez, E.; Cabada, J.C. Distribution of Lactobacillus and Pediococcus in a brewery environment. J. Am. Soc. Brew. Chem. 2017, 75, 312–317. [Google Scholar] [CrossRef]
- Xu, Z.; Luo, Y.; Mao, Y.; Peng, R.; Chen, J.; Soteyome, T.; Bai, C.; Chen, L.; Liang, Y.; Su, J.; et al. Spoilage lactic acid bacteria in the brewing industry. J. Microbiol. Biotechnol. 2020, 30, 955–961. [Google Scholar] [CrossRef]
- Piraine, R.E.A.; Leite, F.P.L.; Bochman, M.L. Mixed-culture metagenomics of the microbes making sour beer. Ferment 2021, 7, 174. [Google Scholar] [CrossRef]
- Bartowsky, E.J. WINES|Malolactic Fermentation. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 800–804. [Google Scholar]
- Duar, R.M.; Lin, X.B.; Zheng, J.; Martino, M.E.; Grenier, T.; Pérez-Muñoz, M.E.; Leulier, F.; Gänzle, M.; Walter, J. Lifestyles in transition: Evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 2017, 41, S27–S48. [Google Scholar] [CrossRef]
- Kiousi, D.E.; Efstathiou, C.; Tegopoulos, K.; Mantzourani, I.; Alexopoulos, A.; Plessas, S.; Kolovos, P.; Koffa, M.; Galanis, A. Genomic insight into Lacticaseibacillus paracasei SP5, reveals genes and gene clusters of probiotic interest and botechnological potential. Front. Microbiol. 2022, 13, 922689. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Kumai, S.; Ogawa, M.; Benno, Y.; Nakase, T. Characterization and identification of Pediococcus species isolated from forage crops and their application for silage preparation. Appl. Environ. Microbiol. 1999, 65, 2901–2906. [Google Scholar] [CrossRef]
- Holley, R.A.; Millard, G.E. Use of MRSD medium and the hydrophobic grid membrane filter technique to differentiate between pediococci and lactobacilli in fermented meat and starter cultures. Int. J. Food Microbiol. 1988, 7, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Laitila, A.; Sweins, H.; Vilpola, A.; Kotaviita, E.; Olkku, J.; Home, S.; Haikara, A. Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and for enhancement of malt processability. J. Agric. Food Chem. 2006, 54, 3840–3851. [Google Scholar] [CrossRef]
- Starrenburg, M.J.; Hugenholtz, J. Citrate fermentation by Lactococcus and Leuconostoc spp. Appl. Environ. Microbiol. 1991, 57, 3535–3540. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ocariz, J.; Hammersand, J.; MacDonald, E.; Bartczak, A.; Kero, F.; Young, V.Y.; Williams, K.R. Determination of cinnamaldehyde in cinnamon by SPME–GC–MS. An instrumental analysis experiment. J. Chem. Educ. 2008, 85, 957. [Google Scholar] [CrossRef]
- Śliżewska, K.; Chlebicz-Wójcik, A. Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology 2020, 9, 423. [Google Scholar] [CrossRef]
- Śliżewska, K.; Chlebicz-Wójcik, A. The in vitro analysis of prebiotics to be used as a component of a synbiotic preparation. Nutrients 2020, 12, 1272. [Google Scholar] [CrossRef]
- McDonald, L.C.; Fleming, H.P.; Hassan, H.M. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 1990, 56, 2120–2124. [Google Scholar] [CrossRef]
- Kim, J.E.; Eom, H.-J.; Kim, Y.; Ahn, J.E.; Kim, J.H.; Han, N.S. Enhancing acid tolerance of Leuconostoc mesenteroides with glutathione. Biotechnol. Lett. 2012, 34, 683–687. [Google Scholar] [CrossRef]
- Cordente, A.G.; Solomon, M.; Schulkin, A.; Leigh Francis, I.; Barker, A.; Borneman, A.R.; Curtin, C.D. Novel wine yeast with ARO4 and TYR1 mutations that overproduce ‘floral’ aroma compounds 2-phenylethanol and 2-phenylethyl acetate. Appl. Microbiol. Biotechnol. 2018, 102, 5977–5988. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Brugger, W.E.; Jurs, P.C.; Orndorff, M.A.; Snyder, P.J.; Lowry, L.D. Intranasal trigeminal stimulation from odorous volatiles: Psychometric responses from anosmic and normal humans. Physiol. Behav. 1978, 20, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Wang, J.; Capone, D.L.; Wilkinson, K.L.; Jeffery, D.W. Chemical and sensory profiles of rose wines from Australia. Food Chem. 2016, 196, 682–693. [Google Scholar] [CrossRef]
- Chen, E.C.H.; Ho, C.-T. Identification of 9-Decenoic Acid in Beer and Yeast. J. Am. Soc. Brew. Chem. 1981, 39, 70–71. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Saerens, S.M.G.; Delvaux, F.; Verstrepen, K.J.; Dijck, P.V.; Thevelein, J.M.; Delvaux, F.R. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl. Environ. Microb. 2008, 74, 454–461. [Google Scholar] [CrossRef]
- Sharpe, F.R.; Laws, D.R.J. The essential of hops a review. J. Inst. Brew. 1981, 87, 96–107. [Google Scholar] [CrossRef]
- King, A.J.; Dickinson, J.R. Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Res. 2003, 3, 53–62. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Mayr, C.M.; Geue, J.P.; Holt, H.E.; Pearson, W.P.; Jeffery, D.W.; Francis, I.L. Characterization of the key aroma compounds in Shiraz wine by quantitation, aroma reconstitution, and omission studies. J. Agric. Food Chem. 2014, 62, 4528–4536. [Google Scholar] [CrossRef] [PubMed]
- Zabat, M.A.; Sano, W.H.; Wurster, J.I.; Cabral, D.J.; Belenky, P. Microbial community analysis of sauerkraut fermentation reveals a stable and rapidly established community. Foods 2018, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
Characters | L. paracasei Beer | P. pentosaceus Beer | L. mesenteroides Beer | Control Beer | |
---|---|---|---|---|---|
pH | Water | 7.22 a | 7.18 a | 7.16 a | 7.26 a |
Wort | 5.67 a | 5.63 a | 5.64 a | 5.64 a | |
Kettle soured | 3.26 a | 3.41 ab | 3.50 b | NA | |
End of boiling | 3.35 a | 3.51 ab | 3.58 b | 5.41 c | |
Primary fermentation | 3.33 a | 3.43 ab | 3.52 b | 4.19 c | |
Matured | 3.43 a | 3.48 a | 3.65 a | 4.21 b | |
Original gravity | 1.059 a | 1.059 a | 1.054 a | 1.057 a | |
Final gravity | 1.017 a | 1.017 a | 1.018 a | 1.013 a | |
Alcohol by volume (%) | 5. 60 a | 5.57 a | 4.77 b | 5.79 a | |
Pitching rate log (CFU/mL) | 7.45 a | 6.99 a | 7.07 a | NA |
Volatile Compounds | Odor | L. paracasei | P. pentosaceus | L. mesenteroides | Control Beer |
---|---|---|---|---|---|
Esters | |||||
ethyl acetate | fruity, nail polish | 0.174 ± 0.077 a | 0.206 ± 0.070 a | 0.180 ± 0.034 a | 0.238 ± 0.067 a |
isobutyl acetate | banana | 0.033 ± 0.014 a | 0.044 ± 0.007 a | 0.050 ± 0.022 a | 0.039 ± 0.002 a |
ethyl butanoate | strawberry, lactic | 0.047 ± 0.011 a | 0.068 ± 0.025 a | 0.053 ± 0.013 a | 0.043 ± 0.012 a |
isoamyl acetate | banana | 0.715 ± 0.321 a | 0.760 ± 0.387 a | 0.563 ± 0.085 a | 1.008 ± 0.287 a |
2-methylbutyl acetate | fruity, banana | 0.081 ± 0.014 a | 0.034 ± 0.059 a | 0.049 ± 0.044 a | 0.105 ± 0.018 a |
isobutyl isobutyrate | Pineapple | 0.208 ± 0.034 a | 0.179 ± 0.160 a | 0.163 ± 0.151 a | 0.178 ± 0.012 a |
2-pentanol propanoate | apple | 0.020 ± 0.034 b | 0.082 ± 0.015 a | 0.090 ± 0.015 a | 0.019 ± 0.032 b |
ethyl hexanoate | apple peel, overripe fruit | 0.440 ± 0.148 a | 0.565 ± 0.163 a | 0.337 ± 0.052 a | 0.548 ± 0.069 a |
isoamyl isobutyrate | banana | 0.121 ± 0.026 a | 0.131 ± 0.054 a | 0.144 ± 0.054 a | 0.107 ± 0.014 a |
2-methylbutyl isobutyrate | earthy | 0.571 ± 0.114 a | 0.549 ± 0.362 a | 0.568 ± 0.358 a | 0.489 ± 0.050 a |
ethyl heptanoate | fruity, pineapple | 0.055 ± 0.007 a | 0.050 ± 0.047 a | 0.033 ± 0.057 a | 0.018 ± 0.031 a |
ethyl octanoate | pear, apricot | 2.847 ± 0.663 a | 3.586 ± 0.640 a | 2.347 ± 0.295 a | 3.133 ± 0.276 a |
phenylethyl acetate | fruity, honey, rose | 0.249 ± 0.025 b | 0.466 ± 0.050 a | 0.374 ± 0.067 ab | 0.377 ± 0.072 ab |
methyl geranate | sweet, candy | 0.022 ± 0.039 a | 0.117 ± 0.041 a | 0.128 ± 0.068 a | 0.073 ± 0.016 a |
ethyl 9-decenoate | fruity | 0.053 ± 0.017 b | 0.185 ± 0.176 ab | 0.127 ± 0.072 ab | 0.357 ± 0.100 a |
ethyl decanoate | floral, soap | 0.731 ± 0.172 a | 0.837 ± 0.355 a | 0.385 ± 0.071 a | 0.369 ± 0.177 a |
ethyl dodecanoate | floral, fruity, buttery, pear | 0.096 ± 0.031 a | 0.124 ± 0.039 a | 0.065 ± 0.014 a | ND b |
Alcohols | |||||
isobutanol | fusel, alcohol | 0.098 ± 0.009 a | 0.144 ± 0.042 a | 0.114 ± 0.013 a | 0.152 ± 0.017 a |
isoamyl alcohol | mild, choking alcohol | 0.902 ± 0.118 a | 1.009 ± 0.218 a | 0.856 ± 0.116 a | 1.070 ± 0.127 a |
2-methylbutanol | wine, onion | 0.307 ± 0.029 a | 0.311 ± 0.070 a | 0.242 ± 0.044 a | 0.409 ± 0.040 a |
phenylethyl alcohol | rose | 0.672 ± 0.159 b | 1.410 ± 0.436 a | 1.048 ± 0.160 ab | 0.835 ± 0.067 ab |
Terpenoids | |||||
linalool | floral, citrus | 0.469 ± 0.101 a | 0.568 ± 0.120 a | 0.589 ± 0.056 a | 0.421 ± 0.071 a |
α-terpineol | lilac, spicy | 0.146 ± 0.034 a | 0.157 ± 0.043 a | 0.142 ± 0.005 a | 0.045 ± 0.016 b |
citronellol | citrus | 0.119 ± 0.013 c | 0.177 ± 0.053 bc | 0.223 ± 0.018 b | 0.245 ± 0.023 a |
geraniol | floral, sweet rose, citrus | 0.238 ± 0.050 a | 0.257 ± 0.056 a | 0.242 ± 0.011 a | 0.219 ± 0.065 b |
Acids | |||||
octanoic acid | pungent, mild | 0.392 ± 0.028 a | 0.410 ± 0.060 a | 0.297 ± 0.044 a | 0.299 ± 0.105 a |
decanoic acid | rancid, unpleasant | 0.087 ± 0.013 a | 0.104 ± 0.034 a | 0.055 ± 0.049 a | ND b |
Alkenes (including cyclic alkenes) | |||||
myrcene | woody | 0.756 ± 0.064 a | 1.230 ± 0.955 a | 0.867 ± 0.146 a | 0.667 ± 0.080 a |
styrene | solvently, rubbery | 0.070 ± 0.061 a | 0.023 ± 0.040 a | 0.078 ± 0.071 a | 0.041 ± 0.072 a |
trans-β-farnesene | woody, citrus, herbal | 0.055 ± 0.009 a | 0.047 ± 0.044 a | 0.066 ± 0.010 a | 0.052 ± 0.017 a |
humulene | spicy, woody | 0.075 ± 0.006 a | 0.192 ± 0.157 a | 0.197 ± 0.127 a | 0.129 ± 0.035 a |
Phenolics | |||||
butylhydroxytoluene | musty | 0.307 ± 0.249 a | 0.275 ± 0.239 a | 0.479 ± 0.141 a | 0.113 ± 0.184 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chih, Y.; Chiang, S.-S.; Tsai, C.-H. Impact of Lactic Acid Bacteria on Sour India Pale Ale (IPA) Fermentation: Growth Dynamics, Acidification, and Flavor Modulation. Fermentation 2025, 11, 517. https://doi.org/10.3390/fermentation11090517
Chih Y, Chiang S-S, Tsai C-H. Impact of Lactic Acid Bacteria on Sour India Pale Ale (IPA) Fermentation: Growth Dynamics, Acidification, and Flavor Modulation. Fermentation. 2025; 11(9):517. https://doi.org/10.3390/fermentation11090517
Chicago/Turabian StyleChih, Yue, Shen-Shih Chiang, and Ching-Hsiu Tsai. 2025. "Impact of Lactic Acid Bacteria on Sour India Pale Ale (IPA) Fermentation: Growth Dynamics, Acidification, and Flavor Modulation" Fermentation 11, no. 9: 517. https://doi.org/10.3390/fermentation11090517
APA StyleChih, Y., Chiang, S.-S., & Tsai, C.-H. (2025). Impact of Lactic Acid Bacteria on Sour India Pale Ale (IPA) Fermentation: Growth Dynamics, Acidification, and Flavor Modulation. Fermentation, 11(9), 517. https://doi.org/10.3390/fermentation11090517