Towards Higher Energy Conversion Efficiency by Bio-Hydrogen and Bio-Methane Co-Production: Effect of Enzyme Loading and Initial pH
Abstract
1. Introduction
2. Materials and Methods
2.1. Properties of Substrate, Photosynthetic Bacteria, and Seeding Sludge
2.2. Experimental Setup
2.3. Analysis Methods
2.4. Kinetic Parameter Analysis
2.5. Energy Conversion Efficiency
3. Results and Discussion
3.1. Effect of Different Enzyme Loadings Combined with Initial pH on Bio-Hydrogen–Bio-Methane Co-Production
3.2. Effect of Different Enzyme Loadings Combined with Initial pH on Time-Change Profile of Sugar and pH of Broth During Bio-Hydrogen–Bio-Methane Co-Production Process
3.3. Effect of Different Enzyme Loadings Combined with Initial pH on Soluble Fermentation Metabolites During Bio-Hydrogen–Bio-Methane Co-Production Process
3.4. Effect of Enzyme Loading Combined with pH on Energy Conversion Efficiency During Bio-Hydrogen–Bio-Methane Co-Production Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hosseini, S.E.; Wahid, M.A. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, M.; Mishra, P.K.; Kausar, M.A.; Saeed, M.; Gupta, V.K.; Singh, R.; Ramteke, P.W. Advances in Nanomaterials Induced Biohydrogen Production Using Waste Biomass. Bioresour. Technol. 2020, 307, 123094. [Google Scholar] [CrossRef]
- Xia, A.; Cheng, J.; Ding, L.; Lin, R.; Song, W.; Zhou, J.; Cen, K. Enhancement of Energy Production Efficiency from Mixed Biomass of Chlorella pyrenoidosa and Cassava Starch Through Combined Hydrogen Fermentation and Methanogenesis. Appl. Energy 2014, 120, 23–30. [Google Scholar] [CrossRef]
- Pachaiappan, R.; Cornejo-Ponce, L.; Sagade, A.A.; Mani, M.; Aroulmoji, V.; Femilaa Rajan, V.; Manavalan, K. A Concise Review of Recent Biohydrogen Production Technologies. Sustain. Energy Technol. Assess. 2024, 62, 103606. [Google Scholar] [CrossRef]
- Baek, G.Y.; Saeed, M.; Choi, H.K. Duckweeds: Their Utilization, Metabolites and Cultivation. Appl. Biol. Chem. 2021, 64, 73. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, N.E.; Walsh, É.; Bolger, P.; Burnell, G.; O’Leary, N.; O’Mahoney, M.; Paolacci, S.; Wall, D.; Jansen, M.A.K. Duckweed Bioreactors: Challenges and Opportunities for Large-Scale Indoor Cultivation of Lemnaceae. J. Clean. Prod. 2022, 336, 130285. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, D.; Zhang, H.; Wang, Y.; Zhang, Z.; Lu, C.; Zhang, Q. Enhancement of the Biohydrogen Production Performance from Mixed Substrate by Photo-Fermentation: Effects of Initial PH and Inoculation Volume Ratio. Bioresour. Technol. 2021, 319, 124153. [Google Scholar] [CrossRef]
- Venturin, B.; Frumi Camargo, A.; Scapini, T.; Mulinari, J.; Bonatto, C.; Bazoti, S.; Pereira Siqueira, D.; Maria Colla, L.; Alves, S.L.; Paulo Bender, J.; et al. Effect of Pretreatments on Corn Stalk Chemical Properties for Biogas Production Purposes. Bioresour. Technol. 2018, 266, 116–124. [Google Scholar] [CrossRef]
- Abellanas-Perez, P.; Carballares, D.; Rocha-Martin, J.; Fernandez-Lafuente, R. The Effects of Buffer Nature on Immobilized Lipase Stability Depend on Enzyme Support Loading. Catalysts 2024, 14, 105. [Google Scholar] [CrossRef]
- Nahar, N.; Ripplinger, D.; Pryor, S.W. Process Yield and Economic Trade-Offs for Enzymatic Hydrolysis of Alkaline Pretreated Corn Stover. Biomass Bioenergy 2017, 99, 97–105. [Google Scholar] [CrossRef]
- Dong, L.; Cao, G.; Zhao, L.; Liu, B.; Ren, N. Alkali/Urea Pretreatment of Rice Straw at Low Temperature for Enhanced Biological Hydrogen Production. Bioresour. Technol. 2018, 267, 71–76. [Google Scholar] [CrossRef]
- Lazaro, C.Z.; Varesche, M.B.A.; Silva, E.L. Effect of Inoculum Concentration, PH, Light Intensity and Lighting Regime on Hydrogen Production by Phototrophic Microbial Consortium. Renew. Energy 2015, 75, 1–7. [Google Scholar] [CrossRef]
- Qyyum, M.A.; Ismail, S.; Ni, S.Q.; Ihsanullah, I.; Ahmad, R.; Khan, A.; Tawfik, A.; Nizami, A.S.; Lee, M. Harvesting Biohydrogen from Industrial Wastewater: Production Potential, Pilot-Scale Bioreactors, Commercialization Status, Techno-Economics, and Policy Analysis. J. Clean. Prod. 2022, 340, 130809. [Google Scholar] [CrossRef]
- Liu, X.; Li, R.; Ji, M.; Wu, N.; Yang, F. Effects of Initial PH on Two-Stage Biogas Production and Hydrolysis in a Co-Digestion Process of Food Waste and Waste Activated Sludge. Environ. Eng. Sci. 2021, 38, 266–276. [Google Scholar] [CrossRef]
- Jiang, D.; Ge, X.; Zhang, T.; Liu, H.; Zhang, Q. Photo-Fermentative Hydrogen Production from Enzymatic Hydrolysate of Corn Stalk Pith with a Photosynthetic Consortium. Int. J. Hydrogen Energy 2016, 41, 16778–16785. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, L.; Pei, W.; Song, Z.; Zhang, T.; Jing, Y.; Chen, Z.; Li, W.; Zhang, Q.; Lu, C. Correlation Between Ethanol Addition and Photo-Fermentative Biohydrogen Production of Arundo donax L. with a Consortium. Renew. Energy 2025, 248, 123077. [Google Scholar] [CrossRef]
- Li, Y.; Fan, X.; Zhang, H.; Ai, F.; Jiao, Y.; Zhang, Q.; Zhang, Z. Pretreatment of Corn Stover by Torrefaction for Improving Reducing Sugar and Biohydrogen Production. Bioresour. Technol. 2022, 351, 126905. [Google Scholar] [CrossRef]
- Xia, C.; Jiang, D.; Zhang, X.; Xie, N.; Lu, C.; Zhang, Q. A Performance Comparison of Three Amino Acid Additives in the Process of Photo-Fermentative Biohydrogen Production with Corn Straw. Fermentation 2025, 11, 108. [Google Scholar] [CrossRef]
- Ananthi, V.; Ramesh, U.; Balaji, P.; Kumar, P.; Govarthanan, M.; Arun, A. A Review on the Impact of Various Factors on Biohydrogen Production. Int. J. Hydrogen Energy 2024, 52, 33–45. [Google Scholar] [CrossRef]
- Santos, G.A.; Bortoli, L.D.; Santos, D.A.; Lobato, F.S.; Cardoso, V.L.; Xavier Batista, F.R. Insights of Light Spectra on Biohydrogen Production by Photo-Fermentation. Int. J. Hydrogen Energy 2025, 149, 150088. [Google Scholar] [CrossRef]
- Anzola-Rojas, M.D.P.; Fuess, L.T.; Zaiat, M. Specific Organic Loading Rate Control for Improving Fermentative Hydrogen Production. Fermentation 2024, 10, 213. [Google Scholar] [CrossRef]
- Sivagurunathan, P.; Kumar, G.; Mudhoo, A.; Rene, E.R.; Saratale, G.D.; Kobayashi, T.; Xu, K.; Kim, S.H.; Kim, D.H. Fermentative Hydrogen Production Using Lignocellulose Biomass: An Overview of Pre-Treatment Methods, Inhibitor Effects and Detoxification Experiences. Renew. Sustain. Energy Rev. 2017, 77, 28–42. [Google Scholar] [CrossRef]
- Amulya, K.; Venkateswar Reddy, M.; Venkata Mohan, S. Acidogenic Spent Wash Valorization through Polyhydroxyalkanoate (PHA) Synthesis Coupled with Fermentative Biohydrogen Production. Bioresour. Technol. 2014, 158, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Venkateswar Reddy, M.; Venkata Mohan, S. Influence of Aerobic and Anoxic Microenvironments on Polyhydroxyalkanoates (PHA) Production from Food Waste and Acidogenic Effluents Using Aerobic Consortia. Bioresour. Technol. 2012, 103, 313–321. [Google Scholar] [CrossRef]
- Shao, Y.; Song, J.; Sun, Y. Advances in Biochar’s Effect on Anaerobic Fermentation Systems. Pol. J. Environ. Stud. 2024, 33, 3009–3018. [Google Scholar] [CrossRef]
- Wang, Q.; Peng, L.; Su, H. The Effect of a Buffer Function on the Semi-Continuous Anaerobic Digestion. Bioresour. Technol. 2013, 139, 43–49. [Google Scholar] [CrossRef]
- Komolwanich, T.; Tatijarern, P.; Prasertwasu, S.; Khumsupan, D.; Chaisuwan, T.; Luengnaruemitchai, A.; Wongkasemjit, S. Comparative Potentiality of Kans Grass (Saccharum spontaneum) and Giant Reed (Arundo donax) as Lignocellulosic Feedstocks for the Release of Monomeric Sugars by Microwave/Chemical Pretreatment. Cellulose 2014, 21, 1327–1340. [Google Scholar] [CrossRef]
- De Amorim, E.L.C.; Sader, L.T.; Silva, E.L. Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor. Appl. Biochem. Biotechnol. 2012, 166, 1248–1263. [Google Scholar] [CrossRef]
Conditions (Enzyme Loading Rate-Initial pH) | Maximum Potential of Bio-H2 Yield (mL/g TS) | Maximum Bio-H2 Production Rate (mL/g TS/h) | Lag Time (h) | Coefficient of Determination (R2) |
---|---|---|---|---|
20-6 | 45.17 | 2.42 | 23.13 | 0.9959 |
20-7 | 74.26 | 3.58 | 15.82 | 0.9998 |
20-8 | 97.06 | 4.67 | 9.17 | 0.9995 |
20-9 | 49.57 | 5.59 | 17.09 | 1.0000 |
30-6 | 58.32 | 2.34 | 23.10 | 0.9921 |
30-7 | 87.35 | 4.95 | 14.13 | 0.9992 |
30-8 | 114.56 | 7.03 | 13.06 | 0.9982 |
30-9 | 82.93 | 3.94 | 14.74 | 0.9991 |
40-6 | 75.14 | 3.27 | 19.58 | 0.9966 |
40-7 | 100.04 | 5.09 | 16.15 | 0.9995 |
40-8 | 119.27 | 6.39 | 12.88 | 0.9998 |
40-9 | 115.17 | 4.99 | 14.64 | 0.9991 |
Conditions (Enzyme Loading Rate-Initial pH) | Maximum Potential of Bio-CH4 Yield (mL/g TS) | Maximum Bio-CH4 Production Rate (mL/g TS/h) | Lag Time (h) | Coefficient of Determination (R2) |
---|---|---|---|---|
20-6 | 148.65 | 32.74 | 3.27 | 0.9913 |
20-7 | 149.93 | 27.94 | 3.71 | 0.9989 |
20-8 | 195.85 | 33.12 | 3.74 | 0.9984 |
20-9 | 168.00 | 28.99 | 3.77 | 0.9980 |
30-6 | 172.76 | 36.90 | 3.20 | 0.9968 |
30-7 | 157.42 | 31.50 | 4.43 | 0.9993 |
30-8 | 260.32 | 37.30 | 3.37 | 0.9998 |
30-9 | 196.54 | 39.73 | 4.22 | 0.9983 |
40-6 | 248.67 | 52.60 | 3.51 | 0.9958 |
40-7 | 254.30 | 43.05 | 4.05 | 0.9980 |
40-8 | 236.23 | 35.49 | 3.69 | 0.9992 |
40-9 | 202.90 | 34.28 | 4.02 | 0.9975 |
CG | 52.31 | 12.53 | 3.33 | 0.9940 |
Buffer | 78.09 | 27.21 | 3.49 | 0.9949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Song, Z.; Jiang, D.; Xia, C.; Li, Z.; Li, W.; Zhang, Q. Towards Higher Energy Conversion Efficiency by Bio-Hydrogen and Bio-Methane Co-Production: Effect of Enzyme Loading and Initial pH. Fermentation 2025, 11, 503. https://doi.org/10.3390/fermentation11090503
Zhang X, Song Z, Jiang D, Xia C, Li Z, Li W, Zhang Q. Towards Higher Energy Conversion Efficiency by Bio-Hydrogen and Bio-Methane Co-Production: Effect of Enzyme Loading and Initial pH. Fermentation. 2025; 11(9):503. https://doi.org/10.3390/fermentation11090503
Chicago/Turabian StyleZhang, Xueting, Zhipeng Song, Danping Jiang, Chenxi Xia, Zejie Li, Wenzhe Li, and Quanguo Zhang. 2025. "Towards Higher Energy Conversion Efficiency by Bio-Hydrogen and Bio-Methane Co-Production: Effect of Enzyme Loading and Initial pH" Fermentation 11, no. 9: 503. https://doi.org/10.3390/fermentation11090503
APA StyleZhang, X., Song, Z., Jiang, D., Xia, C., Li, Z., Li, W., & Zhang, Q. (2025). Towards Higher Energy Conversion Efficiency by Bio-Hydrogen and Bio-Methane Co-Production: Effect of Enzyme Loading and Initial pH. Fermentation, 11(9), 503. https://doi.org/10.3390/fermentation11090503