Technological Prospects of Saccharomyces eubayanus: Breakthroughs and Brewing Industry Applications
Abstract
1. Introduction
2. From Isolation to Novel Beer Strain Development
2.1. Population Structure and Geographic Distribution of S. eubayanus
2.2. Genetic and Phenotypic Insights into S. eubayanus Brewing Potential
3. Development of Improved Strains Based on S. eubayanus
3.1. Evolved S. eubayanus Strains
3.2. Laboratory-Made Interspecific Hybrids for Novel Lager Brewing
Reference | Strain | Parental Strains and Breeding Technique | Improved Features * | |
---|---|---|---|---|
Helby et al., 2015 [20] | IMS0408 | S.eub CBS 12357 T spores MATa S.cer IMK439 MATα ura3Δ::KanMX ** Mass mating | Ferm | ↑ Fermentation rate in synthetic medium with glucose, maltose, and maltotriose (1.2 g/L·day at 20 °C), 10h faster vs. S.cer |
Mtt | Fast maltotriose consumption with low residual concentration (comparable to S.cer parent) | |||
Temp | Growth from 8 °C to 35 °C in anaerobic sequential batch reactors. ↑ Growth rate vs. best parent strain from 20 °C to 30 °C | |||
Krogerus et al., 2015 [22] | H1-H4 | S.eub CBS 12357 T lys− S.cer VTT- A81062 ura− (strongly flocculent) | Ferm | ↑ Ethanol production (5.6% v/v vs. parents 4.2% S.cer, 4.5% S.eub) in beer wort fermentations (12 °P, 12 °C) |
Mtt | More efficient utilization of maltose and maltotriose compared to the best-performing parent | |||
Floc | Between 82–88% (71% S.cer, 15% S.eub) | |||
Mass mating | Phe | POF positive | ||
Flav | ↓ Higher alcohols compared to the S.eub parent. Distinctive aroma profile: ↑ overall aroma-active esters | |||
Temp | Growth on YPM at 37 °C, like the S.cer parent. No growth at 40 °C, whereas S.eub grew at neither temperature | |||
Mertens et al.,2015 [23] | 31 new lager yeast hybrids | S.eub Y565 and Y567 (high spore viability) S.cer Y134, Y470, Y245 and Y397 (ale beer), Y184 (wine) Y243 (bread) Spore-to-spore mating and genome stabilization in industrial lager beer medium for 70 generations | Ferm | ↑ Ethanol production: 28.8% higher vs. best-performing parent (H15: 6.20% v/v) in lager fermentation (12 °P, 16 °C, 150 mL) |
Mtt | ↑ Maltose (>98.5%) and maltotriose (>59%) uptake in 7–8 days (50 L pilot scale, 12 °C, 12 °P), comparable to S.cer Y397 and Y134. S.past GSY501 only reached complete fermentation by day 16 | |||
Phe | POF positive | |||
Flav | ↑ Isoamyl acetate vs. S.past reference strains. ↑ Aromatic diversity but ↑ fusel alcohols levels | |||
Temp | ↑ Growth range on YPD agar (4 °C to 37 °C) vs parental strains | |||
Krogerus et al., 2016 [57] | A2 (diploid), B3 (triploid), C4 (tetraploid) | S.eub CBS 12357 T ura− or lys− S.cer VTT-A81062 lys− or ura− (strongly flocculent) Spore-to-spore mating for A2 diploid hybrid Rare mating for B3 triploid and C4 tetraploid hybrids | Ferm | ↑ Ethanol production (6.9% v/v on average) vs. parents (6.6% S.cer, 5.7% S.eub) in 15 °P beer wort (15 ºC, 1.5 L). In 25 °P wort only B3 and C4 displayed hybrid vigor |
Mtt | Overall, 70% maltotriose uptake (comparable to S.cer parent) | |||
Floc | B3 (73.1%), C4 (58.6%) vs. S.cer (94%). A2 (6.2%), comparable to S.eub parent (2.6%) | |||
Phe | POF positive | |||
Flav | ↑ Aroma esters but ↑ diacetyl vs. parents | |||
Temp | ↑ Growth range on YPM agar (8 °C to 37 °C) vs. parental strains | |||
Nikulin et al., 2017 [56] | H1 | S.eub CBS 12357 T S.cer VTT-A81062 (strongly flocculent) | Ferm | ↑ Maltose consumption (80% vs. 50% S.cer) and ethanol (6% v/v vs. 3.5% S.eub, 4.5% S.cer) in 12 °P beer wort (12 °C, 1.5 L) |
Mtt | ↑ maltotriose uptake (60% vs. 50% S.cer) | |||
Characterization of H1 hybrid strain developed by Krogerus et al. [22] | Phe | POF positive | ||
Flav | ↑ Aroma-active esters vs. both parent strains and ↓ higher alcohols vs. S.eub parent | |||
Krogerus et al., 2017 [83] | H1: VTT-A1522, H2, H3, T1, T2 | S.cer VTT-A81062 ura−, Mtt+, POF+ and WLP099 rho−, Mtt−, POF− S.eub CBS 12357 T lys−, Mtt−, POF+ Rare Mating. H1: A81062 × C12902 H2: WLP099 × C12902 H3: A81062 × WLP099 T1: H1 × WLP099 T2: T1 POF− meiotic segregant | Ferm | ↑ Ethanol (6–7.3% v/v) produced by T2, H1, H3 and T1 vs. best S.cer parent (5.5%) in 15 °P beer wort (15 °C, 1.5 L) |
Mtt | T2, H1 and H3 consumed maltotriose efficiently (residual concentrations comparable to the Mtt+ parent A81062) | |||
Phe | POF negative phenotype for T2; others (H1, H2, H3 and T1) POF positive | |||
Flav | ↓ Esters and ↑ higher alcohols in beer made with T2 vs. T1 beer | |||
Eizaguirre, 2018 [42] | MC3(100gen), MA6(100gen) | S.cer WLP099 and WY1338 (high spore viability) S.eub CBS 12357 T Spore to spore mating followed by experimental evolution | Ferm | ↑ Fermentation rates for evolved hybrids in beer wort (12.5 °P, 10 °C, 10 mL) vs. original hybrids. Similar fermentation rates to the reference W34/70 strain, but ↓ compared to the S.eub parent |
Mtt | Not maltotriose uptake | |||
Phe | POF positive | |||
Flav | ↑ Ester profile vs. S.eub parent | |||
Krogerus et al., 2021 [86] | A225 meiotic seggregants: A226 to A229, A227 meiotic segregants: A232 to A235 | S.eub CBS 12357 T (high spore viability) S.cer VTT-A-81062 (Mtt+, POF+, strongly flocculent) Analysis of meiotic segregants derived from the previously obtained hybrid VTT-A15225 (A225) [83] | Ferm | ↑ Fermentation rate and efficiency for A225 (15 °P beer wort,15 °C, 1.5 L) with ↑ethanol vs. parents (6.7% v/v vs. 5.7% S.cer, 4.9% S.eub). Variable performance for spore clones derived from A225, associated with ploidy (tetraploids > diploids) |
Mtt | Similar maltotriose uptake to that of the S.cer parent for all hybrids, except A226 | |||
Floc | Strong flocculation for A225 and its spore clones A226 and A228 (similar to S.cer parent). Flocculation is not linked to ploidy | |||
Flav | ↑ 3-methylbutyl acetate and ethyl hexanoate for spore clones A232-A235 vs. the best parent strain for both compounds | |||
Temp | Broad growth range, from 4 °C to 37 °C, with variability among strains | |||
Turgeon et al., 2021 [84] | RB-1141, RB1186, RB115, RB2251, RB2403 *** | S.past W34/70 trp− meiotic segregants (domesticated S.eub sub-genome and mitochondria) S.cer RB-253, RB-48 and NCYC-1113 diploid meiotic segregants lys− or ura− Rare mating of mating competent meiotic segregants | Ferm | Maltose consumption >98% for all strains with similar ethanol production than the reference S.past W34/70 (average 7.3% v/v vs. 7.2% S.past) in 15 ºP beer wort (13 °C, 30 IBU, 80 mL) |
Mtt | 86.4–90.2% maltotriose assimilation, comparable to S.past reference strains | |||
Floc | Flocculation by day 14 for most hybrids during 3 L wort fermentation (except RB-1186) | |||
Phe | POF negative | |||
Flav | Acceptable acetic acid and diacetyl and ↓ off-aromas compared to S.past control strains; profiles suitable for lager beer | |||
Temp | ↑ Growth range on YEG medium (7 °C to 37 °C) vs. parental strains | |||
Molinet et al., 2024 [90] | H3-A, H4-A, H6-A, H8-A | S.cer L270 L348 and L3 S.eub from different PB populations: CL710.1, CL216.1; CL450.1 **** | Ferm | ↑ Fermentative capacity for evolved hybrids generated at 12 °C (S.eub mitochondria) in lager beer wort fermentations (12 °P, 12 °C, 50 mL) vs. ancestral lines, and similar to W34/70. ↑ 7.1% v/v ethanol for evolved single cell isolate H4 C1 vs. W34/70 |
Mtt | Similar uptake to S.past reference strain W34/70 in best performing hybrids | |||
Spore to spore mating at 12 ºC or 20 °C followed by experimental evolution | Phe | The single cell isolate analyzed for POF phenotype (H3-4 C1) was POF positive | ||
Flav | H-4 C1 produced a unique fatty acid ethyl esters profile (herbal/spicy notes vs. W34/70 citrusy) | |||
Zavaleta et al., 2024 [88] | 47 de novo hybrids derived from 21 crosses | Seven S.cer strains with high fermentative capacity from different clades (beer, wine, sake and bioethanol) Six S.eub from different lineages Rare mating at 12 °C (to facilitate inheritance of S.eub mitochondria) | Ferm | ↑ CO2 production in beer wort fermentations (12 ºP, 12 ºC, 50 mL) for hybrids derived from S.cer Beer lineage, similar to S.cer Beer parents |
Mtt | ↑ maltotriose uptake (56.5% on average) for hybrids derived from S.cer Beer lineage vs. other hybrids | |||
Phe | POF positive | |||
Flav | Four distinctive aroma clusters were obtained. Hybrids from S.cer Beer lineage: ↑ ethyl acetate and isoamyl alcohol, ↓ off-flavors | |||
Temp | ↑ Growth range (4 °C to 37 °C) with ↑ or similar fitness vs. parents | |||
Murath et al., 2025 [28] | H5 stabilized isolates: H5_HT_L3i and H5_HT_L4i | S.cer BE011 (high sporulation rate and spore viability, desirable aroma compounds) S.eub DR1 and DR3 (Chile) Spore to spore mating followed by different stabilization procedures | Ferm | ↑ Ethanol production for stabilized isolates derived from H5 (4.3% v/v vs. 5.2% S.cer, 4.1% S.eub) in lager type fermentation (12 °P, 14 °C, 150 mL). Similar CO2 production among all stabilized and non-stabilized hybrid strains |
Mtt | ↑ Maltotriose uptake for isolates stabilized at high temperature (H5_HT_L3i and H5_HT_L4i) vs. non-stabilized H5_G0 | |||
Phe | POF positive, with a subtle reduction in the amount produced by H5_HT_L4i | |||
Flav | Aromatic compound profile of isolates closer to S.eub (differences in higher alcohols and acetate esters), but shifts post-stabilization procedures |
4. S. eubayanus in the Brewing Industry
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4-VG | 4-vinylguaiacol |
4-VP | 4-vinylphenol |
CNVs | Copy number variations |
EE | Experimental evolution |
FDC1 | Ferulic acid decarboxylase |
mtDNA | Mitochondrial DNA |
OAV | Odour Activity Value |
PAD1 | Phenylacrylic acid decarboxylase |
POF | Phenolic off-flavor |
SNPs | Single nucleotide polymorphisms |
References
- Michel, R.H.; McGovern, P.E.; Badler, V.R. Chemical evidence for ancient beer. Nature 1992, 360, 24. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Rosenberg, D.; Zhao, H.; Lengyel, G.; Nadel, D. Fermented beverage and food storage in 13,000 y-old stonemortars at Raqefet Cave, Israel: Investigating Natufian ritual feasting. J. Archaeol. Sci. Rep. 2018, 21, 783–793. [Google Scholar] [CrossRef]
- Conway, J. Beer Production Worldwide from 1998 to 2022. Available online: https://es.statista.com/estadisticas/600571/produccion-de-cerveza-a-nivel-mundial-1998/ (accessed on 17 June 2025).
- Bennis, N.X. Optimizing the Brewing Yeast Saccharomyces pastorianus by Genetic Engineering. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Libkind, D.; Hittinger, C.T.; Valeŕio, E.; Gonçalves, C.; Dover, J.; Johnston, M.; Gonçalves, P.; Sampaio, J.P. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc. Natl. Acad. Sci. USA 2011, 108, 14539–14544. [Google Scholar] [CrossRef]
- van den Broek, M.; Bolat, I.; Nijkamp, J.F.; Ramos, E.; Luttik, M.A.H.; Koopman, F.; Geertman, J.M.; de Ridder, D.; Pronk, J.T.; Daran, J.M. Chromosomal copy number variation in Saccharomyces pastorianus is evidence for extensive genome dynamics in industrial lager brewing strains. Appl. Environ. Microbiol. 2015, 81, 6253–6267. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.; Sherlock, G. Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res. 2008, 18, 1610–1623. [Google Scholar] [CrossRef] [PubMed]
- Hutzler, M.; Morrissey, J.P.; Laus, A.; Meussdoerffer, F.; Zarnkow, M. A New Hypothesis for the origin of the lager yeast Saccharomyces pastorianus. FEMS Yeast Res. 2023, 23, foad023. [Google Scholar] [CrossRef] [PubMed]
- Donalies, U.E.B.; Nguyen, H.T.T.; Stahl, U.; Nevoigt, E. Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. In Food Biotechnology; Stahl, U., Donalies, U.E., Nevoigt, E., Eds.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2008; Volume 111, pp. 67–98. [Google Scholar] [CrossRef]
- Baker, E.; Wang, B.; Bellora, N.; Peris, D.; Hulfachor, A.B.; Koshalek, J.A.; Adams, M.; Libkind, D.; Hittinger, C.T. The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts. Mol. Biol. Evol. 2015, 32, 2818–2831. [Google Scholar] [CrossRef]
- Riese, J.C.; Eßlinger, H.M. Handbook of Brewing; Eßlinger, H.M., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; ISBN 9783527314065. [Google Scholar]
- Gallone, B.; Steensels, J.; Mertens, S.; Dzialo, M.C.; Gordon, J.L.; Wauters, R.; Theßeling, F.A.; Bellinazzo, F.; Saels, V.; Herrera-Malaver, B.; et al. Interspecific hybridization facilitates niche adaptation in beer yeast. Nat. Ecol. Evol. 2019, 3, 1562–1575. [Google Scholar] [CrossRef]
- Bing, J.; Han, P.-J.; Liu, W.-Q.; Wang, Q.-M.; Bai, F.-Y. Evidence for a far east asian origin of lager beer yeast. Curr. Biol. 2014, 24, R380–R381. [Google Scholar] [CrossRef]
- Gayevskiy, V.; Goddard, M.R. Saccharomyces eubayanus and Saccharomyces arboricola reside in north island native new zealand forests. Environ. Microbiol. 2016, 18, 1137–1147. [Google Scholar] [CrossRef]
- Eizaguirre, J.I.; Peris, D.; Rodríguez, M.E.; Lopes, C.A.; De Los Ríos, P.; Hittinger, C.T.; Libkind, D. Phylogeography of the wild lager-brewing ancestor (Saccharomyces eubayanus) in Patagonia. Environ. Microbiol. 2018, 20, 3732–3743. [Google Scholar] [CrossRef]
- Langdon, Q.K.; Peris, D.; Eizaguirre, J.I.; Opulente, D.A.; Buh, K.V.; Sylvester, K.; Jarzyna, M.; Rodríguez, M.E.; Lopes, C.A.; Libkind, D.; et al. Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids. PLoS Genet. 2020, 16, e1008680. [Google Scholar] [CrossRef] [PubMed]
- Nespolo, R.F.; Villarroel, C.A.; Oporto, C.I.; Tapia, S.M.; Vega-Macaya, F.; Urbina, K.; De Chiara, M.; Mozzachiodi, S.; Mikhalev, E.; Thompson, D.; et al. An out-of-Patagonia migration explains the worldwide diversity and distribution of Saccharomyces eubayanus lineages. PLoS Genet. 2020, 16, e1008777. [Google Scholar] [CrossRef]
- Bergin, S.A.; Allen, S.; Hession, C.; Cinnide, E.Ó.; Ryan, A.; Byrne, K.P.; Cróinín, T.Ó.; Wolfe, K.H.; Butler, G. Identification of european isolates of the lager yeast parent Saccharomyces eubayanus. FEMS Yeast Res. 2022, 22, foac053. [Google Scholar] [CrossRef] [PubMed]
- Peris, D.; Sylvester, K.; Libkind, D.; Gonçalves, P.; Sampaio, J.P.; Alexander, W.G.; Hittinger, C.T. Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids. Mol. Ecol. 2014, 23, 2031–2045. [Google Scholar] [CrossRef] [PubMed]
- Hebly, M.; Brickwedde, A.; Bolat, I.; Driessen, M.R.M.; de Hulster, E.A.F.; van den Broek, M.; Pronk, J.T.; Geertman, J.M.; Daran, J.M.; Daran-Lapujade, P.S. cerevisiae × S. eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Res. 2015, 15, fov005. [Google Scholar] [CrossRef]
- Gibson, B.R.; Storgårds, E.; Krogerus, K.; Vidgren, V. comparative physiology and fermentation performance of Saaz and Frohberg lager yeast strains and the parental species Saccharomyces eubayanus. Yeast 2013, 30, 255–266. [Google Scholar] [CrossRef]
- Krogerus, K.; Magalhães, F.; Vidgren, V.; Gibson, B. New Lager yeast strains generated by interspecific hybridization. J. Ind. Microbiol. Biotechnol. 2015, 42, 769–778. [Google Scholar] [CrossRef]
- Mertens, S.; Steensels, J.; Saels, V.; De Rouck, G.; Aerts, G.; Verstrepen, K.J. A Large Set of Newly Created Interspecific Saccharomyces Hybrids increases aromatic diversity in lager beers. Appl. Environ. Microbiol. 2015, 81, 8202–8214. [Google Scholar] [CrossRef]
- Brouwers, N.; Brickwedde, A.; Gorter de Vries, A.R.; van den Broek, M.; Weening, S.M.; van den Eijnden, L.; Diderich, J.A.; Bai, F.Y.; Pronk, J.T.; Daran, J.M.G. Himalayan Saccharomyces eubayanus genome sequences reveal genetic markers explaining heterotic maltotriose consumption by Saccharomyces pastorianus hybrids. Appl. Environ. Microbiol. 2019, 85, e01516-19. [Google Scholar] [CrossRef]
- Vega-Macaya, F.; Villarreal, P.; Peña, T.A.; Abarca, V.; Cofré, A.A.; Oporto, C.I.; Mardones, W.; Nespolo, R.F.; Cubillos, F.A. Experimental evolution and hybridization enhance the fermentative capacity of wild Saccharomyces eubayanus strains. FEMS Yeast Res. 2025, 25, foaf004. [Google Scholar] [CrossRef]
- Brouwers, N.; Gorter de Vries, A.R.; van den Broek, M.; Weening, S.M.; Elink Schuurman, T.D.; Kuijpers, N.G.A.; Pronk, J.T.; Daran, J.M.G. In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation. PLoS Genet. 2019, 15, e1007853. [Google Scholar] [CrossRef]
- Baker, E.C.P.; Hittinger, C.T. Evolution of a novel chimeric maltotriose transporter in saccharomyces eubayanus from parent proteins unable to perform this function. PLoS Genet. 2019, 15, e1007786. [Google Scholar] [CrossRef]
- Murath, P.; Hoffmann, S.; Herrera-Malaver, B.; Bustamante, L.; Verstrepen, K.; Steensels, J. Distinct genome stabilization procedures lead to phenotypic variability in newly generated interspecific yeast hybrids. Front. Microbiol. 2025, 16, 1472832. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, J.P.; Gonçalves, P. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl. Environ. Microbiol. 2008, 74, 2144–2152. [Google Scholar] [CrossRef]
- Rodríguez, M.E.; Pérez-Través, L.; Sangorrín, M.P.; Barrio, E.; Lopes, C.A. Saccharomyces eubayanus and Saccharomyces uvarum associated with the fermentation of Araucaria araucana seeds in Patagonia. FEMS Yeast Res. 2014, 14, 948–965. [Google Scholar] [CrossRef] [PubMed]
- Peris, D.; Langdon, Q.K.; Moriarty, R.V.; Sylvester, K.; Bontrager, M.; Charron, G.; Leducq, J.-B.; Landry, C.R.; Libkind, D.; Hittinger, C.T. Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus. PLoS Genet. 2016, 12, e1006155. [Google Scholar] [CrossRef]
- Rainieri, S.; Kodama, Y.; Kaneko, Y.; Mikata, K.; Nakao, Y.; Ashikari, T. Pure and Mixed Genetic Lines of Saccharomyces Bayanus and Saccharomyces Pastorianus and their contribution to the lager brewing strain genome. Appl. Environ. Microbiol. 2006, 72, 3968–3974. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Través, L.; Lopes, C.A.; Querol, A.; Barrio, E. On the complexity of the Saccharomyces bayanus taxon: Hybridization and potential hybrid speciation. PLoS ONE 2014, 9, e93729. [Google Scholar] [CrossRef]
- Gardner, C.; Chen, J.; Hadfield, C.; Lu, Z.; Debruin, D.; Zhan, Y.; Donlin, M.J.; Ahn, T.-H.; Lin, Z. Chromosome-level subgenome-aware de novo assembly provides insight into Saccharomyces bayanus genome divergence after hybridization. Genome Res. 2024, 34, 2133–2146. [Google Scholar] [CrossRef]
- Molinet, J.; Eizaguirre, J.I.; Quintrel, P.; Bellora, N.; Villarroel, C.A.; Villarreal, P.; Benavides-Parra, J.; Nespolo, R.F.; Libkind, D.; Cubillos, F.A. Natural variation in diauxic shift between patagonian Saccharomyces eubayanus strains. mSystems 2022, 7, e00640-22. [Google Scholar] [CrossRef]
- Burini, J.A.; Eizaguirre, J.I.; Loviso, C.; Libkind, D. Selection of Saccharomyces eubayanus strains from Patagonia (Argentina) with brewing potential and performance in the craft beer industry. Eur. Food Res. Technol. 2022, 248, 519–531. [Google Scholar] [CrossRef]
- Brickwedde, A.; Brouwers, N.; Broek, M.; van den Broek, M.; Gallego Murillo, J.S.; Fraiture, J.L.; Pronk, J.T.; Daran, J.M.G. Structural, physiological and regulatory analysis of maltose transporter genes in Saccharomyces eubayanus CBS 12357 T. Front. Microbiol. 2018, 9, 1786. [Google Scholar] [CrossRef]
- Horák, J. Regulations of sugar transporters: Insights from yeast. Curr. Genet. 2013, 59, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Trichez, D.; Knychala, M.M.; Figueiredo, C.M.; Alves, S.L.; da Silva, M.A.; Miletti, L.C.; de Araujo, P.S.; Stambuk, B.U. Key amino acid residues of the AGT1 permease required for maltotriose consumption and fermentation by Saccharomyces cerevisiae. J. Appl. Microbiol. 2019, 126, 580–594. [Google Scholar] [CrossRef]
- Langdon, Q.K.; Peris, D.; Baker, E.C.P.; Opulente, D.A.; Nguyen, H.V.; Bond, U.; Gonçalves, P.; Sampaio, J.P.; Libkind, D.; Hittinger, C.T. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat. Ecol. Evol. 2019, 3, 1576–1586. [Google Scholar] [CrossRef]
- Salazar, A.N.; Gorter De Vries, A.R.; Van Den Broek, M.; Brouwers, N.; De La Torre Cortès, P.; Kuijpers, N.G.A.; Daran, J.M.G.; Abeel, T. Chromosome level assembly and comparative genome analysis confirm lager-brewing yeasts originated from a single hybridization. BMC Genom. 2019, 20, 916. [Google Scholar] [CrossRef] [PubMed]
- Eizaguirre, J.I. Caracterización y Domesticación de Cepas Naturales de Saccharomyces eubayanus Para su Aplicación en la Industria Cervecera. Ph.D Thesis, Universidad Nacional del Comahue, Bariloche, Argentina, 2019. [Google Scholar]
- Gallone, B.; Mertens, S.; Gordon, J.L.; Maere, S.; Verstrepen, K.J.; Steensels, J. Origins, evolution, domestication and diversity of Saccharomyces beer yeasts. Curr. Opin. Biotechnol. 2018, 49, 148–155. [Google Scholar] [CrossRef]
- Vidgren, V.; Londesborough, J. 125th Anniversary Review: Yeast flocculation and sedimentation in brewing. J. Inst. Brew. 2011, 117, 475–487. [Google Scholar] [CrossRef]
- Zhou, X.; Suo, J.; Liu, C.; Niu, C.; Zheng, F.; Li, Q.; Wang, J. Genome comparison of three lager yeasts reveals key genes affecting yeast flocculation during beer fermentation. FEMS Yeast Res. 2021, 21, foab031. [Google Scholar] [CrossRef]
- Ogata, T.; Izumikawa, M.; Kohno, K.; Shibata, K. Chromosomal location of Lg-FLO1 in bottom-fermenting yeast and the FLO5 locus of industrial yeast. J. Appl. Microbiol. 2008, 105, 1186–1198. [Google Scholar] [CrossRef] [PubMed]
- Hieronymus, S. Brewing with Wheat: The “Wit” and “Weizen” of Wheat Beer Styles; Brewers Publications: Boulder, CO, USA, 2010. [Google Scholar]
- Okuno, M.; Kajitani, R.; Ryusui, R.; Morimoto, H.; Kodama, Y.; Itoh, T. Next-generation sequencing analysis of lager brewing yeast strains reveals the evolutionary history of interspecies hybridization. DNA Res. 2016, 23, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Peris, D.; Hittinger, C.T.; Sia, E.A.; Fay, J.C. Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast. Sci. Adv. 2019, 5, eaav1848. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.P.; Peris, D.; Moriarty, R.V.; Li, X.C.; Fay, J.C.; Hittinger, C.T. Mitochondrial DNA and temperature tolerance in lager yeasts. Sci. Adv. 2019, 5, eaav1869. [Google Scholar] [CrossRef]
- Hewitt, S.K.; Duangrattanalert, K.; Burgis, T.; Zeef, L.A.H.; Naseeb, S.; Delneri, D. Plasticity of mitochondrial DNA inheritance and its impact on nuclear gene transcription in yeast hybrids. Microorganisms 2020, 8, 494. [Google Scholar] [CrossRef]
- Pinto, J.; Balarezo-Cisneros, L.N.; Delneri, D. Exploring adaptation routes to low temperatures in the Saccharomyces genus. PLoS Genet. 2025, 21, e1011199. [Google Scholar] [CrossRef]
- Stewart, G.G. The production of secondary metabolites with flavour potential during brewing and distilling wort fermentations. Fermentation 2017, 3, 63. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef]
- Mardones, W.; Villarroel, C.A.; Krogerus, K.; Tapia, S.M.; Urbina, K.; Oporto, C.I.; O’Donnell, S.; Minebois, R.; Nespolo, R.; Fischer, G.; et al. Molecular profiling of beer wort fermentation diversity across natural Saccharomyces eubayanus isolates. Microb. Biotechnol. 2020, 13, 1012–1025. [Google Scholar] [CrossRef]
- Nikulin, J.; Krogerus, K.; Gibson, B. Alternative Saccharomyces interspecies hybrid combinations and their potential for low-temperature wort fermentation. Yeast 2017, 35, 113–127. [Google Scholar] [CrossRef]
- Krogerus, K.; Arvas, M.; De Chiara, M.; Magalhães, F.; Mattinen, L.; Oja, M.; Vidgren, V.; Yue, J.X.; Liti, G.; Gibson, B. Ploidy influences the functional attributes of de novo lager yeast hybrids. Appl. Microbiol. Biotechnol. 2016, 100, 7203–7222. [Google Scholar] [CrossRef]
- Gyurchev, N.Y.; Coral-Medina, A.; Weening, S.M.; Almayouf, S.; Kuijpers, N.G.A.; Nevoigt, E.; Louis, E.J. Beyond Saccharomyces pastorianus for modern lager brews: Exploring non-cerevisiae Saccharomyces hybrids with heterotic maltotriose consumption and novel aroma profile. Front. Microbiol. 2022, 13, 1025132. [Google Scholar] [CrossRef]
- Vanbeneden, N.; Gils, F.; Delvaux, F.; Delvaux, F.R. Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: Occurrence of volatile phenolic flavour compounds in beer and distribution of Pad1-activity among brewing yeasts. Food Chem. 2008, 107, 221–230. [Google Scholar] [CrossRef]
- Mukai, N.; Masaki, K.; Fujii, T.; Kawamukai, M.; Iefuji, H. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2010, 109, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Urbina, K.; Villarreal, P.; Nespolo, R.F.; Salazar, R.; Santander, R.; Cubillos, F.A. Volatile compound screening using HS-SPME-GC/MS on Saccharomyces eubayanus strains under low-temperature pilsner wort fermentation. Microorganisms 2020, 8, 755. [Google Scholar] [CrossRef]
- Murath, P.; Hoffmann, S.; Herrera-Malaver, B.; Gallone, B.; Steensels, J.; Verstrepen, K. Characterization of wild yeasts isolated from Chile and their potential applications in the brewing industry. J. Am. Soc. Brew. Chem. 2025, 83, 307–316. [Google Scholar] [CrossRef]
- Gibson, B.; Geertman, J.M.A.; Hittinger, C.T.; Krogerus, K.; Libkind, D.; Louis, E.J.; Magalhães, F.; Sampaio, J.P. New yeasts-new brews: Modern approaches to brewing yeast design and development. FEMS Yeast Res. 2017, 17, fox038. [Google Scholar] [CrossRef]
- Blieck, L.; Toye, G.; Dumortier, F.; Verstrepen, K.J.; Delvaux, F.R.; Thevelein, J.M.; Van Dijck, P. Isolation and characterization of brewer’s yeast variants with improved fermentation performance under high-gravity conditions. Appl. Environ. Microbiol. 2007, 73, 815–824. [Google Scholar] [CrossRef]
- Huuskonen, A.; Markkula, T.; Vidgren, V.; Lima, L.; Mulder, L.; Geurts, W.; Walsh, M.; Londesborough, J. Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts. Appl. Environ. Microbiol. 2010, 76, 1563–1573. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Zhang, S.; Wang, X.; Guo, C.; Guo, X.; Xiao, D. Development of Saccharomyces cerevisiae producing higher levels of sulfur dioxide and glutathione to improve beer flavor stability. Appl. Biochem. Biotechnol. 2012, 166, 402–413. [Google Scholar] [CrossRef]
- Ekberg, J.; Rautio, J.; Mattinen, L.; Vidgren, V.; Londesborough, J.; Gibson, B.R. Adaptive Evolution of the lager brewing yeast Saccharomyces pastorianus for improved growth under hyperosmotic conditions and its influence on fermentation performance. FEMS Yeast Res. 2013, 13, 335–349. [Google Scholar] [CrossRef]
- Wang, J.; Shen, N.; Yin, H.; Liu, C.; Li, Y.; Li, Q. Development of industrial brewing yeast with low acetaldehyde production and improved flavor stability. Appl. Biochem. Biotechnol. 2013, 169, 1016–1025. [Google Scholar] [CrossRef]
- Hope, E.A.; Amorosi, C.J.; Miller, A.W.; Dang, K.; Heil, C.S.; Dunham, M.J. Experimental evolution reveals favored adaptive routes to cell aggregation in yeast. Genetics 2017, 206, 1153–1167. [Google Scholar] [CrossRef]
- Burke, M.K.; Liti, G.; Long, A.D. standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Mol. Biol. Evol. 2014, 31, 3228–3239. [Google Scholar] [CrossRef]
- Krogerus, K.; Holmström, S.; Gibson, B. Enhanced wort fermentation with de novo lager hybrids adapted to high-ethanol environments. Appl. Environ. Microbiol. 2018, 84, e02302-17. [Google Scholar] [CrossRef]
- Brickwedde, A.; van den Broek, M.; Geertman, J.M.A.; Magalhães, F.; Kuijpers, N.G.A.; Gibson, B.; Pronk, J.T.; Daran, J.M.G. Evolutionary engineering in chemostat cultures for improved maltotriose fermentation kinetics in Saccharomyces pastorianus lager brewing yeast. Front. Microbiol. 2017, 8, 1690. [Google Scholar] [CrossRef] [PubMed]
- Gorter De Vries, A.R.; Voskamp, M.A.; Van Aalst, A.C.A.; Kristensen, L.H.; Jansen, L.; Van Den Broek, M.; Salazar, A.N.; Brouwers, N.; Abeel, T.; Pronk, J.T.; et al. Laboratory evolution of a Saccharomyces cerevisiae × S. eubayanus hybrid under simulated lager-brewing conditions. Front. Genet. 2019, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Niu, C.; Liu, C.; Wang, J.; Zheng, F.; Li, Q. Screening lager yeast with higher ethyl-acetate production by adaptive laboratory evolution in high concentration of acetic acid. World J. Microbiol. Biotechnol. 2021, 37, 125. [Google Scholar] [CrossRef]
- Jacobus, A.P.; Cavassana, S.D.; Oliveira, I.I.; Barreto, J.A.; Rohwedder, E.; Frazzon, J.; Basso, T.P.; Basso, L.C.; Gross, J. Optimal trade-off between boosted tolerance and growth fitness during adaptive evolution of yeast to ethanol shocks. Biotechnol. Biofuels Bioprod. 2024, 17, 63. [Google Scholar] [CrossRef]
- Walker, M.E.; Watson, T.L.; Large, C.R.L.; Berkovich, Y.; Lang, T.A.; Dunham, M.J.; Formby, S.; Jiranek, V. Directed Evolution as an Approach to Increase Fructose Utilization in Synthetic Grape Juice by Wine Yeast AWRI 796. FEMS Yeast Res. 2022, 22, foac022. [Google Scholar] [CrossRef]
- Gibson, B.; Dahabieh, M.; Krogerus, K.; Jouhten, P.; Magalhães, F.; Pereira, R.; Siewers, V.; Vidgren, V. Adaptive laboratory evolution of ale and lager yeasts for improved brewing efficiency and beer quality. Annu. Rev. Food Sci. Technol. 2020, 11, 23–44. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, P.; Cao, M.; Yu, T.; Lane, S.T.; Zhao, H. Directed evolution: Methodologies and applications. Chem. Rev. 2021, 121, 12384–12444. [Google Scholar] [CrossRef]
- Crandall, J.G.; Zhou, X.; Rokas, A.; Hittinger, C.T. Specialization restricts the evolutionary paths available to yeast sugar transporters. Mol. Biol. Evol. 2024, 41, msae228. [Google Scholar] [CrossRef] [PubMed]
- Mardones, W.; Villarroel, C.A.; Abarca, V.; Urbina, K.; Peña, T.A.; Molinet, J.; Nespolo, R.F.; Cubillos, F.A. Rapid selection response to ethanol in Saccharomyces eubayanus emulates the domestication process under brewing conditions. Microb. Biotechnol. 2022, 15, 967–984. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.J. Microbial experimental evolution—A proving ground for evolutionary theory and a tool for discovery. EMBO Rep. 2019, 20, e46992. [Google Scholar] [CrossRef]
- Krogerus, K.; Magalhães, F.; Vidgren, V.; Gibson, B. Novel brewing yeast hybrids: Creation and application. Appl. Microbiol. Biotechnol. 2017, 101, 65–78. [Google Scholar] [CrossRef]
- Krogerus, K.; Seppänen-Laakso, T.; Castillo, S.; Gibson, B. Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids. Microb. Cell Fact. 2017, 16, 66. [Google Scholar] [CrossRef]
- Turgeon, Z.; Sierocinski, T.; Brimacombe, C.A.; Jin, Y.; Goldhawke, B.; Swanson, J.M.; Husnik, J.I.; Dahabieh, M.S. Industrially applicable de novo lager yeast hybrids with a unique genomic architecture: Creation and characterization. Appl. Environ. Microbiol. 2021, 87, e02434-20. [Google Scholar] [CrossRef]
- Winans, M.J. Yeast Hybrids in Brewing. Fermentation 2022, 8, 87. [Google Scholar] [CrossRef]
- Krogerus, K.; Magalhães, F.; Castillo, S.; Peddinti, G.; Vidgren, V.; De Chiara, M.; Yue, J.X.; Liti, G.; Gibson, B. Lager yeast design through meiotic segregation of a Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid. Front. Fungal Biol. 2021, 2, 733655. [Google Scholar] [CrossRef]
- Mozzachiodi, S.; Krogerus, K.; Gibson, B.; Nicolas, A.; Liti, G. Unlocking the functional potential of polyploid yeasts. Nat. Commun. 2022, 13, 2580. [Google Scholar] [CrossRef] [PubMed]
- Zavaleta, V.; Pérez-Través, L.; Saona, L.A.; Villarroel, C.A.; Querol, A.; Cubillos, F.A. Understanding brewing trait inheritance in de novo lager yeast hybrids. mSystems 2024, 9, e00762-24. [Google Scholar] [CrossRef] [PubMed]
- Rinta-Harri, K. Effect of Ploidy and Genetic Background on Heterosis in Hybrids of the Yeast Saccharomyces Cerevisiae. Master’s thesis, University of Helsinki, Helsinki, Finland, 2025. [Google Scholar]
- Molinet, J.; Navarrete, J.P.; Villarroel, C.A.; Villarreal, P.; Sandoval, F.I.; Nespolo, R.F.; Stelkens, R.; Cubillos, F.A. Wild Patagonian yeast improve the evolutionary potential of novel interspecific hybrid strains for lager brewing. PLoS Genet. 2024, 20, e1011154. [Google Scholar] [CrossRef] [PubMed]
- González-Ramos, D.; van den Broek, M.; van Maris, A.J.; Pronk, J.T.; Daran, J.-M.G. Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol. Biofuels 2013, 6, 48. [Google Scholar] [CrossRef]
- Martinez, C.; Gac, S.; Lavin, A.; Ganga, M. genomic characterization of Saccharomyces cerevisiae strains isolated from wine-producing areas in South America. J. Appl. Microbiol. 2004, 96, 1161–1168. [Google Scholar] [CrossRef]
- Cubillos, F.A.; Gibson, B.; Grijalva-Vallejos, N.; Krogerus, K.; Nikulin, J. Bioprospecting for brewers: Exploiting natural diversity for naturally diverse beers. Yeast 2019, 36, 383–398. [Google Scholar] [CrossRef]
- Gallone, B.; Steensels, J.; Prahl, T.; Soriaga, L.; Saels, V.; Herrera-Malaver, B.; Merlevede, A.; Roncoroni, M.; Voordeckers, K.; Miraglia, L.; et al. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell 2016, 166, 1397–1410.e16. [Google Scholar] [CrossRef]
- Diderich, J.A.; Weening, S.M.; Van Den Broek, M.; Pronk, J.T.; Daran, J.M.G. Selection of Pof- Saccharomyces eubayanus variants for the construction of S. cerevisiae × S. eubayanus hybrids with reduced 4-vinyl guaiacol formation. Front. Microbiol. 2018, 9, 1640. [Google Scholar] [CrossRef]
- Sipiczki, M. Interspecies hybridisation and genome chimerisation in Saccharomyces: Combining of gene pools of species and its biotechnological perspectives. Front. Microbiol. 2018, 9, 3071. [Google Scholar] [CrossRef]
- Gibson, B.; Vidgren, V.; Peddinti, G.; Krogerus, K. Diacetyl control during brewery fermentation via adaptive laboratory engineering of the lager yeast Saccharomyces pastorianus. J. Ind. Microbiol. Biotechnol. 2018, 45, 1103–1112. [Google Scholar] [CrossRef]
- Strong, G.; England, K. 2021 BJCP Beer Style Guidelines; Beer Judge Certification Program (BJCP), Inc.: Boulder, CO, USA, 2021. [Google Scholar]
- Gerginova, D.; Staleva, P.; Petkova, Z.; Priboyska, K.; Chorbadzhiev, P.; Chimshirova, R.; Simova, S. Integrated Spectroscopic Analysis of Wild Beers: Molecular Composition and Antioxidant Properties. Int. J. Mol. Sci. 2025, 26, 6993. [Google Scholar] [CrossRef]
- Lin, R.; Chen, X.; Peng, Z.; Li, W.; Chu, J.; Lu, J.; Xie, G.; Wu, D. Evaluation of Polyphenols Content and Antioxidant Ability of Commercial Herbal Beer. Syst. Microbiol. Biomanufacturing 2024, 4, 77–85. [Google Scholar] [CrossRef]
- Burini, J.A.; Trochine, A.; Libkind Frati, D. Biomass production optimization and quality assessment of Saccharomyces eubayanus starter cultures for their application in the craft brewing industry. J. Food Sci. Technol. 2025. [Google Scholar] [CrossRef]
- González Flores, M.; Rodríguez, M.E.; Oteiza, J.M.; Barbagelata, R.J.; Lopes, C.A. Physiological characterization of Saccharomyces uvarum and Saccharomyces eubayanus from patagonia and their potential for cidermaking. Int. J. Food Microbiol. 2017, 249, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, F.; Calton, A.; Heiniö, R.L.; Gibson, B. Frozen-dough baking potential of psychrotolerant Saccharomyces species and derived hybrids. Food Microbiol. 2021, 94, 103640. [Google Scholar] [CrossRef]
- Magalhães, F.; Krogerus, K.; Castillo, S.; Ortiz-Julien, A.; Dequin, S.; Gibson, B. Exploring the potential of Saccharomyces eubayanus as a parent for new interspecies hybrid strains in winemaking. FEMS Yeast Res. 2017, 17, fox049. [Google Scholar] [CrossRef]
- Villalba, M.L.; Mazzucco, M.B.; Lopes, C.A.; Ganga, M.A.; Sangorrín, M.P. Purification and characterization of Saccharomyces eubayanus killer toxin: Biocontrol effectiveness against wine spoilage yeasts. Int. J. Food Microbiol. 2020, 331, 108714. [Google Scholar] [CrossRef]
- Moccia, T.; Antuña, C.; Bruzone, C.; Burini, J.A.; Libkind, D.; Alvarez, L.P. First characterization of kombucha beverages brewed in argentina: Flavors, off-flavors, and chemical profiles. Int. J. Food Sci. 2024, 2024, 8677090. [Google Scholar] [CrossRef]
- Parpinello, G.P.; Ricci, A.; Folegatti, B.; Patrignani, F.; Lanciotti, R.; Versari, A. Unraveling the potential of cryotolerant Saccharomyces eubayanus in chardonnay white wine production. LWT 2020, 134, 110183. [Google Scholar] [CrossRef]
- Venegas, C.A.; Saona, L.A.; Urbina, K.; Quintrel, P.; Peña, T.A.; Mardones, W.; Cubillos, F.A. Addition of Saccharomyces eubayanus to SCOBY fermentations modulates the chemical and volatile compound profiles in kombucha. Food Microbiol. 2023, 116, 104357. [Google Scholar] [CrossRef]
Publication | Original Strain | Developed Strain | Strategy | Improved Features |
---|---|---|---|---|
Eizaguirre et al., 2019 [42] | S. eubayanus CBS 12357 T | A62 | EE on congress wort through 430 generations (62 passages) | Improved beer wort fermentation: threefold increase in fermentation rate with respect to the original strain (10 °C, 12 °P, 1.2 × 107 cell/mL) Improved sugar utilization: A62 consumed twice the amount of maltose as the original strain in the first 90 h of fermentation Sexual reproduction: loss of sporulation capacity Aroma profile: distinctive flavor and enhanced mouthfeel for the beer produced by A62, in comparison to CBS 12357 T |
Brouwers et al., 2019 [26] | S. eubayanus CBS 12357 T | IMS0750 | UV-mutagenesis and EE in chemostat culture on modified brewer’s wort for 125 generations (120 days) | Emergence of a functional maltotriose transporter named “SeMalt413” by recombination Maltotriose assimilation: 75% maltotriose utilization under fermentation conditions (16.6 °P, 15 °C, 5.106 cells/mL, 7 L). CBS 12357 T did not utilize any maltotriose. Improved maltose utilization: complete consumption within 200 h (330 h for CBS 12357 T) Aroma profile: 240% higher isoamylacetate concentration in beer brewed with IM0750 in comparison to CBS 12357 T. Similar final amounts of higher alcohols and other esters |
Baker & Hittinger, 2019 [27] | S. eubayanus yHKS210 (admixed strain from Wisconsin, USA) | yHEB1505 and yHEB1506 | EE on maltotriose synthetic medium through 2100 generations (100 passages) Selection of two single colony isolates | Evolution of a functional maltotriose transporter encoded by the chimeric “MALT434” gene Maltotriose assimilation: maltotriose utilization as a sole carbon source in growth assays performed in 96 well plates with synthetic medium + 2% maltotriose |
Mardones et al., 2022 [80] | 30 S. eubayanus strains from lineages PB-2 and PB-3 | CL248.1 (evolved strain) | EE in YNB media with 2% glucose and 9% ethanol through 260 generations (~180 days) | Improved beer wort fermentation: 22.6% increase in CO2 loss for CLEt5.1 in beer wort fermentation compared to the original strain (12 °C, 12 °P, 1.8 × 107 cell/mL, 50 mL) |
CLEt5.1 (single colony isolate from CL248.1) | Maltotriose assimilation: 19.1% assimilation for CLEt5.1 in YNB + 2% maltotriose, although was unable to utilize it in beer wort. CL248.1 could not metabolize maltotriose at all | |||
Vega-Macaya et al., 2025 [25] | 9 S. eubayanus strains from Chilean Patagonia | CLAET815.1 (best evolved individual derived from CL815 evolved strain) ACS15, ACS19 and ACS25 (intra-specific hybrids) | EE in YNB media with 2% glucose and 9% ethanol through 250 generations Hybridization between CLAET815.1 and CLEtOH5.1 (a reported high fermentative strain [80]) through spore-to-spore mating | Improved beer wort fermentation: significant fitness improvement for CL815.1 evolved strain under lager conditions (12 °C, 12 °P, 1.8 × 107 cell/mL, 50 mL) versus original strain |
S. eubayanus intra-specific hybrids: hybrid vigor in lager type fermentations only after a single round of sexual reproduction. Significantly higher levels of CO2 produced by interspecies segregants compared to parental strains No maltotriose assimilation detected |
Fantasy Name | Brewery | Country, Locality | Base Style | Strain | Total Volume Produced (L) | Date |
---|---|---|---|---|---|---|
H41—Wild Lager | Heineken | Netherlands | Wild Lager | S. eubayanus CBS 12357 T | n.a. | 2017–2018 |
H71—Forêts de Patagonie | Heineken | Netherlands | Wild Lager | S. eubayanus CBS 12357 T | n.a. | 2018 |
H35—Blue Ridge Mountains | Heineken | Netherlands | Wild Lager | S. eubayanus yHRVM108 | n.a. | 2018 |
H32—Massif de L’Himalaya | Heineken | Netherlands | Wild Lager | S. eubayanus CDFM21L.1 | n.a. | 2018 |
Sauvage | Manush | Argentina, Bariloche | Summer Ale | Euby® | 1550 | 2017 |
Madre Salvaje (Wild Mother) | Blest | Argentina, Bariloche | Pilsen | Euby® | 1000 | 2018 |
Nativa (Native) | Diuka | Argentina, Bariloche | Pilsen | Euby® | 1200 | 2018 |
Pan del Indio (Indian bread) | Berlina | Argentina, Bariloche | Amber | Euby® | 1500 | 2018 |
Dorada Salvaje (Golden Wild) | Duham | Argentina, Bariloche | Dorada Pampeana | Euby® | 7000 | 2018–2020–2021 |
IPA Salvaje (Wild IPA) | Duham | Argentina, Bariloche | IPA | Euby® | 5000 | 2020–2021 |
Patagonia Belgian Lager Ale | Duham | Argentina, Bariloche | Belgian | Euby® and S. cerevisiae WLP500 | 1000 | 2022 |
Lager Salvaje/Amber Euby/Kölsch Euby/APA Euby | Bachmann | Argentina, Bariloche | Pilsen/Amber/Kölsch/APA | Euby® | 15 | 2018 |
Eubakonna | Konna | Argentina, Bariloche | Pilsen | Euby® | 500 | 2018 |
Wild Wild Yeast | Wesley | Argentina, Bariloche | Scotish | Euby® | 5000 | 2018–2019 |
Wild Euby | Wesley/BrewSisters | Argentina, Bariloche | Amber | Euby® | 300 | 2022 |
Paralelo 42—100% Patagónica (Parallel 42) | Awka | Argentina, El Bolson | Pilsen | Euby® | 4750 | 2018–2019–2023–2024–2025 |
Paralelo 42 (Parallel 42) | Awka | Argentina, El Bolson | Pilsen | S. eubayanus A62 (evolved strain) | 550 | 2023 |
Amber Salvaje (Wild Amber) | Antares | Argentina, Mar del Plata | Amber | Euby® | 300 | 2021 |
Doppelbock Salvaje (Wild Doppelbock) | BrewSisters—Tibet | Argentina, Bariloche | Doppelbock | S. eubayanus A62 (evolved strain) | 60 | 2021 |
Pilsen Eubayanus | Kuntsmann and Sayka | Chile, Los Ríos | Pilsen | S. eubayanus Et5.1 | 1000 | 2022 |
Lenga | Nothus | Chile, Valdivia | Saison | S. eubayanus Et5.1 and S. cerevisiae | 500 | 2022 |
Salvaje Sur (Wild South) | Chaura | Argentina, El Hoyo | Blonde | Euby® | 150 | 2023 |
Maibock | Esquel | Argentina, Esquel | Maibock | Euby® | 300 | 2023 |
Maibock | Esquel | Argentina, Esquel | Maibock | Euby® | 1200 | 2024 |
Euby | Biergarten Klein | Chile, Temuco | Hybrid strain ACS24 | 500 | 2024 | |
Home sweet home | IPATEC | Argentina, Bariloche | Dubbel | S. eubayanus CBS 12357 T | 25 | 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giorgetti, S.I.; Burini, J.A.; Eizaguirre, J.I.; Libkind, D. Technological Prospects of Saccharomyces eubayanus: Breakthroughs and Brewing Industry Applications. Fermentation 2025, 11, 499. https://doi.org/10.3390/fermentation11090499
Giorgetti SI, Burini JA, Eizaguirre JI, Libkind D. Technological Prospects of Saccharomyces eubayanus: Breakthroughs and Brewing Industry Applications. Fermentation. 2025; 11(9):499. https://doi.org/10.3390/fermentation11090499
Chicago/Turabian StyleGiorgetti, Sofía Inés, Julieta Amalia Burini, Juan Ignacio Eizaguirre, and Diego Libkind. 2025. "Technological Prospects of Saccharomyces eubayanus: Breakthroughs and Brewing Industry Applications" Fermentation 11, no. 9: 499. https://doi.org/10.3390/fermentation11090499
APA StyleGiorgetti, S. I., Burini, J. A., Eizaguirre, J. I., & Libkind, D. (2025). Technological Prospects of Saccharomyces eubayanus: Breakthroughs and Brewing Industry Applications. Fermentation, 11(9), 499. https://doi.org/10.3390/fermentation11090499