Metschnikowia pulcherrima as a Tool for Sulphite Reduction and Enhanced Volatile Retention in Noble Rot Wine Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Microvinification and Sampling
2.2. Microbiological Analysis
2.3. Analytical Characteristics, GC-MS Measurements, Sensory Panel
2.4. Statistical Analyses
3. Results
3.1. Yeast Population Dynamics During Fermentation
3.2. Influence of Treatments on Wine Aroma Profiles
3.3. Characterization and Clustering of Aroma Compounds
3.4. Sensory Perception of Wine Treatments
3.5. Correlation Between Chemical Composition and Sensory Perception
3.6. Monitoring of Calcium, Potassium, and Total Polyphenol Content
4. Discussion
4.1. The Population Dynamics of Yeast During the Initial 14 Days of Fermentation
4.2. Treatments Significantly Modulate Wine Aroma and Sensory Profiles
4.3. Interpretation of Chemical Profile Modifications in Context
4.4. Compound Co-Variation: Links Between Chemical, Biological, and Sensory Categories
4.5. Sensory Impacts and Relationship with Chemical Drivers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145–1159. [Google Scholar] [CrossRef]
- Donéche, B. Botrytized wines. In Wine Microbiology and Biotechnology, 1st ed.; Fleet, G.H., Ed.; Harwood Academic Publishers: Reading, UK, 1993; pp. 327–351. [Google Scholar]
- European Commission. eAmbrosia—The EU Geographical Indications Register: Tokaji. 2023. Available online: https://ec.europa.eu/info/food-farming-fisheries/food-safety-and-quality/certification/quality-labels/geographical-indications-register (accessed on 14 April 2025).
- UNESCO World Heritage Centre. Tokaj Wine Region Historic Cultural Landscape. 2002. Available online: https://whc.unesco.org/en/list/1063 (accessed on 14 April 2025).
- Magyar, I. Botrytized wines. Adv. Food Nutr. Res. 2011, 63, 147–206. [Google Scholar] [CrossRef]
- Hajdú, E. Magyar Szőlőfajták-Alany-, Csemege-és Borszőlőfajtáink, 1st ed.; Mezőgazda Kiadó: Budapest, Hungary, 2013; p. 57. [Google Scholar]
- Kállay, M. Borászati kémia. In Borászat (Winemaking), 1st ed.; Eperjesi, I., Kállay, M., Magyar, I., Eds.; Mezőgazda Kiadó: Budapest, Hungary, 1998; pp. 309–312. [Google Scholar]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology, 2nd ed.; John Wiley & Sons: Chichester, UK, 2006; Volume 1, pp. 1–114. [Google Scholar] [CrossRef]
- Dalton, D.R. The Chemistry of Wine, 1st ed.; Oxford University Press: New York, NY, USA, 2017; pp. 231–251. [Google Scholar]
- Gonzales-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gandara, J. Wine Aroma Compounds in Grapes: A Critical Review. Critical Reviews. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Ebeler, S.E.; Thorngate, J.H. Wine Chemistry and Flavor: Looking into the Crystal Glass. J. Agric. Food Chem. 2009, 57, 8098–8108. [Google Scholar] [CrossRef] [PubMed]
- Gunata, Y.Z.; Bayonove, C.L.; Baumes, R.L.; Cordonnire, R.E. The aroma of grapes I. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. J. Chromatogr. A 1985, 331, 83–90. [Google Scholar] [CrossRef]
- Martin, D.; Bohlmann, J. Identification of Vitis vinifera (-)α-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry 2004, 65, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M.; Henschke, P.A. Yeasts and Wine Flavours. In Wine Chemistry and Biochemistry, 1st ed.; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer Science + Business Media, LLC: Berlin, Germany, 2009; pp. 313–392. [Google Scholar] [CrossRef]
- Heymann, H.; Noble, A.C.; Boulton, R.B. Analysis of methoxypyrazines in wines. 1. Development of a quantitative procedure. J.Agric. Food Chem. 1986, 34, 268–271. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Matthews, M.A.; Waterhouse, A.L. Changes in grape seed polyphenols during fruit ripening. Phytochemistry 2000, 55, 77–85. [Google Scholar] [CrossRef]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef]
- Pretorius, I.S.; Van der Westhuizen, T.J.; Augustyn, O.P.H. Yeast biodiversity in vineyards and wineries and its importance to the South African wine industry. S. Afr. J. Enol. Vitic. 1999, 20, 61–74. [Google Scholar] [CrossRef]
- Fleet, G.H. Wine yeasts for the future. FEMS Yeast Res. 2008, 8, 979–995. [Google Scholar] [CrossRef]
- Lebleux, M.; Alexandre, H.; Romanet, R.; Ballester, J.; David-Vaizant, V.; Adrian, M.; Tourdot Maréchal, R.; Rouiller-Gall, C. Must protection, sulfites versus bioprotection: A metabolomic study. Food Res. Int. 2023, 173, 113383. [Google Scholar] [CrossRef] [PubMed]
- Vejarano, R.; Gil-Calderón, A. Commercially Available Non-Saccharomyces Yeasts for Winemaking: Current Market, Advantage over Saccharomyces, Biocompatibility and Safety. Fermentation 2021, 7, 171. [Google Scholar] [CrossRef]
- Puyo, P.; Sablayrolles, J.M.; Bely, M. The impact of Metschnikowia pulcherrima on the microbial ecosystem of wine and its role in wine quality improvement. Int. J. Food Sci. Technol. 2023, 58, 2001–2013. [Google Scholar] [CrossRef]
- Oro, L.; Martínez, J.P.; López, C. The role of Metschnikowia pulcherrima in wine production: From fermentation to bioprotection. Food Res. Int. 2016, 89, 808–818. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science Principles and Applications, 3rd ed.; Academic Press: Burlington, VT, USA, 2008; pp. 550–751. [Google Scholar]
- Miklosy, E.; Kalmar, Z.; Kerenyi, Z. Identification of some characteristic aroma compounds in noble rotted grape barriers and Aszu wines from Tokaj by GC–MS. Acta Aliment. 2004, 33, 215–226. [Google Scholar] [CrossRef]
- Ferraro, L.; Fatichenti, F.; Ciani, M. Pilot scale vinification process using immobilized Candida stellata cells and Saccharomyces cerevisiae. Process Biochem. 2000, 35, 1125–1129. [Google Scholar] [CrossRef]
- Magyar, I.; Toth, T. Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 94–100. [Google Scholar] [CrossRef]
- Bene, Z.; Kiss, I. Investigation of using different specified yeasts and early protein stabilization for Tokaji dry wines. BIO Web Conf. 2023, 68, 02010. [Google Scholar] [CrossRef]
- Domizio, P.; Romani, C.; Lencioni, L.; Comitini, F.; Gobbi, M.; Mannazzu, I.; Ciani, M. Outlining a future for non-Saccharomyces yeasts: Selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int. J. Food Microbiol. 2011, 147, 170–180. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Williams, P.; Kwiatkowski, M.; Gawel, R.; Cheynier, W.; Waters, E. The mouth-feel properties of polysaccharides and anthocyanins in a wine like medium. Food Chem. 2004, 85, 519–525. [Google Scholar] [CrossRef]
- Anfang, N.; Brajkovich, M.; Goddard, M.R. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon blanc. Aust. J. Grape Wine Res. 2009, 15, 1–8. [Google Scholar] [CrossRef]
- Zott, K.; Thibon, C.; Bely, M.; Lonvaud-Funel, A.; Dubourdieu, D.; Masneuf-Pomarede, I. The grape must non-Saccharomyces microbial community: Impact on volatile thiol release. Int. J. Food Microbiol. 2011, 151, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Bely, M.; Stoeckle, P.; Masneuf-Pomarede, I.; Dubourdieu, D. Impact of mixed Torulaspora delbrueckii, Saccharomyces cerevisiae culture on high sugar fermentation. Int. J. Food Microbiol. 2008, 122, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Maccarelli, F. Oenological properties of non-Saccharomyces yeasts associated with wine-making. World J. Microbiol. Biotechnol. 1998, 14, 199–203. [Google Scholar] [CrossRef]
- King, A.; Dickson, J.R. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromuces lactis. Yeast 2000, 16, 499–506. [Google Scholar] [CrossRef]
- Yoruk, R.; Marshall, M.R. Physicochemical properties and function of plant polyphenol oxidase: A review. J. Food Biochem. 2003, 27, 361–422. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, W.; Xu, Y. Polyphenol oxidase: Properties, biosynthesis, and inhibition. Trends Food Sci. Technol. 2022, 120, 94–107. [Google Scholar] [CrossRef]
- More, S.S.; Renuka, P.S.; Pruthvi, K.; Swetha, M.; Malini, S.; Veena, S.M. Isolation, purification, and characterization of fungal laccase from Pleurotus sp. Enzym. Res. 2011, 2011, 248735. [Google Scholar] [CrossRef]
- Harald, C. Laccases of Botrytis cinerea. In Biology of Microorganisms on Grapes, in Must and in Wine, 1st ed.; König, H., Unden, G., Fröhlich, J., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 1–18. [Google Scholar] [CrossRef]
- Ciani, M.; Capece, A.; Comitini, F.; Canonico, L.; Siesto, G.; Romano, P. Yeast interactions in inoculated wine fermentation. Front. Microbiol. 2016, 7, 555. [Google Scholar] [CrossRef]
- Sadoudi, M.; Tourdot-Maréchal, R.; Rousseaux, S.; Steyer, D.; Gallardo-Chacón, J.J.; Ballester, J.; Vichi, S.; Caixach, J.; Alexandre, H. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces cerevisiae. Food Microbiol. 2012, 32, 243–253. [Google Scholar] [CrossRef]
- Bustamante, M.; Giménez, P.; Just-Borras, A.; Solé-Clua, I.; Gombau, J.; Heras, J.M.; Sieczkowski, N.; Gil, M.; Canals, J.M.; Zamora, F. Inoculation of a selected strain of Metschnikowia pulcherrima as a bioprotective alternative to sulphites for preventing browning of white grape must. OENO One 2024, 58, 1–10. [Google Scholar] [CrossRef]
- Khanbabace, K.; van Ree, T. Tannins: Classification and Definition. R. Soc. Chem. 2001, 18, 641–649. [Google Scholar] [CrossRef]
- Obradovic, D.; Schulz, M.; Oatey, M. Addition of natural tannins to enhance the quality of red wine. Aust. N. Z. Grapegrow. Winemak. 2005, 493, 52–54. [Google Scholar]
- Vignault, A.; Pascual, O.; Jourdes, M.; Moine, V.; Fermaud, M.; Roudet, J.; Miquel, C.; Teissedre, P.L.; Zamora, F. Impact of enological tannins on laccase activity: Special Macrowine. OENO One 2019, 53, 27–38. [Google Scholar] [CrossRef]
- Bene, Z. Investigation on the Oenological Applicability of Bioprotection in Tokaj Wine Region. J. Agric. Life Sci. 2024, 11, 1–14. [Google Scholar] [CrossRef]
- Sipiczki, M. Metschnikowia pulcherrima: A potential bioprotection agent in winemaking. Microorganisms 2006, 58, 307–319. [Google Scholar] [CrossRef]
- Bustamante, M.; Giménez, P.; Just-Borras, A.; Solé-Clua, I.; Gombau, J.; Heras, J.M.; Sieczkowski, N.; Gil, M.; Canals, J.M.; Zamora, F. Bioprotection using a selected strain of Metschnikowia pulcherrima as an alternative to SO2 for preventing the browning of white grape must. IVES Tech. Rev. Vine Wine 2025, 9236. [Google Scholar] [CrossRef]
- Giménez, P.; Just-Borras, A.; Pons, P.; Gombau, J.; Heras, J.M.; Sieczkowski, N.; Canals, J.M.; Zamora, F. Biotechnological tools for reducing the use of sulphur dioxide in white grape must and preventing enzymatic browning: Glutathione; inactivated dry yeasts rich in glutathione; and bioprotection with Metschnikowia pulcherrima. Eur. Food Res. Technol. 2023, 249, 1491–1501. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Analysis of Wines and Musts. 1st Volume. 2023. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis (accessed on 14 April 2025).
- TSF. Thermo Fisher Gallery Methods and Procedures. 2020. Available online: https://eifu.thermofisher.com/TSF (accessed on 23 January 2020).
- Stoppacher, N.; Kluger, B.; Zeilinger, S.; Krska, R.; Schuhmacher, R. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Methods 2010, 81, 187–193. [Google Scholar] [CrossRef] [PubMed]
- R Project; Development Core Team. R, version 4.4.1; R Project for Statistical Computing: Vienna, Austria, 2024.
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M.A.S.S. The vegan package. Community Ecol. Package 2007, 10, 719. [Google Scholar]
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.A. MixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef]
- Kolde, R. Package ‘pheatmap’. R Package 2015, 1, 790. [Google Scholar]
- Nakazawa, M.; Nakazawa, M.M. Package ‘fmsb’. 2019. Available online: https://cran.r-project.org/web/packages/fmsb/fmsb.pdf (accessed on 14 April 2025).
- Morata, A.; González, M.C.; Suárez-Lepe, J.A. Metschnikowia pulcherrima and other non-Saccharomyces yeasts in winemaking: A review of their contributions to wine quality and stability. Int. J. Food Microbiol. 2019, 298, 15–24. [Google Scholar] [CrossRef]
- Marais, J. Terpenes in the aroma of grapes and wines: A review. S. Afr. J. Enol. Vitic. 1983, 4, 49–58. [Google Scholar] [CrossRef]
- Mateo, J.J.; Di Stefano, R. Description of the β-glucosidase activity of wine yeasts. Food Microbiol. 1997, 14, 583–591. [Google Scholar] [CrossRef]
- Binati, R.; Sisti, C.; Tosti, T.; Trevisan, M. Bioprotection of Garganega grape variety during wilting: Effects on wine aroma and protection against Botrytis cinerea. Food Control 2023, 128, 108234. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Escott, C.; del Fresno, J.M.; Bañuelos, M.A.; Suárez-Lepe, J.A. Applications of Metschnikowia pulcherrima in Wine Biotechnology. Fermentation 2019, 5, 63. [Google Scholar] [CrossRef]
- Morales, P.; Rojas, V.; Quirós, M.; Gonzales, R. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl. Microbiol. Biotechnol. 2015, 99, 3993–4003. [Google Scholar] [CrossRef] [PubMed]
- Swiegers, J.H.; Bartowsky, E.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Coetzee, C.; du Toit, W.J. Sauvignon blanc wine: Contribution of Ageing and Oxygen on Aromatic and Non-aromatic Compounds and Sensory Composition: A Review. S. Afr. J. Enol. Vitic. 2015, 36, 347–365. [Google Scholar] [CrossRef]
- Loscos, N.; Hernández-Orte, P.; Cacho, J.; Ferreira, V. Evolution of the aroma composition of wines supplemented with grape precursors from different varietals during accelerated wine ageing. Food Chem. 2010, 120, 205–216. [Google Scholar] [CrossRef]
- Fleet, G.H. Yeast interactions and wine flavour (review article). Int. J. Food Microbiol. 2003, 86, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Viana, F.; Gil, J.V.; Genovés, S.; Vallés, S.; Manzanares, P. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. J. Food Microbiol. 2008, 25, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Belda, I.; Navascués, E.; Marquina, D.; Santos, A.; Calderon, F.; Benito, S. Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Appl. Microbiol. Biotechnol. 2015, 99, 1911–1922. [Google Scholar] [CrossRef]
- Simonin, S.; Roullier-Gall, C.; Ballester, J.; Schmitt-Kopplin, P.; Quintanilla-Casas, B.; Vichi, S.; Peyron, D.; Alexandre, H.; Tourdot-Maréchal, R. Bio-Protection as an alternative to sulphites: Impact on chemical and microbial characteristics of red wines. Front. Microbiol. 2020, 11, 1308. [Google Scholar] [CrossRef]
- Renault, P.; Coulon, J.; de Revel, G.; Barbe, J.C.; Bely, M. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Int. J. Food Microbiol. 2015, 207, 40–48. [Google Scholar] [CrossRef]
- Bock, G.; Benda, I.; Schreier, P. Microbial transformation of geraniol and nerol by Botrytis cinerea. Appl. Microbiol. Biotechnol. 1988, 27, 351–357. [Google Scholar] [CrossRef]
- Puyo, M.; Simonin, S.; Klein, G.; David-Vaizant, V.; Quijada-Morín, N.; Alexandre, H.; Tourdot-Maréchal, R. Use of oenological tannins to protect the colour of rosé wine in a bioprotection strategy with Metschnikowia pulcherrima. Foods 2023, 12, 735. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wine flavor. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar] [CrossRef]
- Pretorius, I.S.; Bauer, F.F. Meeting the consumer challenge through genetically customised wine yeast strains. Trends. Biotechnology 2002, 20, 426–432. [Google Scholar] [CrossRef]
- Agarbati, A.; Canonico, L.; Ciani, M.; Comitini, F. Metschnikowia pulcherrima in Cold Clarification: Biocontrol Activity and Aroma Enhancement in Verdicchio Wine. Fermentation 2023, 9, 302. [Google Scholar] [CrossRef]
- Canonico, L.; Agarbati, A.; Galli, E.; Comitini, F.; Ciani, M. Metschnikowia pulcherrima as Biocontrol Agent and Wine Aroma Enhancer in Combination with a Native Saccharomyces cerevisiae. LWT 2023, 181, 114758. [Google Scholar] [CrossRef]
- Sarrazin, E.; Dubourdieu, D.; Darriet, P. Characterization of key-aroma compounds of botrytized wines, influence of grape botrytization. Food Chem. 2007, 103, 536–545. [Google Scholar] [CrossRef]
- Cooke, R.C.; Capone, D.L.; van Leeuwen, K.A.; Elsey, G.M.; Sefton, M.A. Quantification of several 4-alkyl substituted γ-lactones in Australian wines. J. Agric. Food Chem. 2009, 57, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Miklosy, E.; Kerenyi, Z. Comparison of the volatile aroma components in noble rotted grape berries from two different locations of the Tokaj wine district in Hungary. Anal. Chim. Acta 2004, 513, 177–181. [Google Scholar] [CrossRef]
- Bailly, S.; Jerkovic, V.; Marchand-Brynaert, J.; Collin, S. Aroma extraction dilution analysis of Sauternes wines. Key role of polyfunctional thiols. J. Agric. Food Chem. 2006, 54, 7227–7234. [Google Scholar] [CrossRef]
- Blanco-Ulate, B.; Amrine, K.C.H.; Collins, T.S.; Rivero, R.M.; Vicente, A.R.; Morales-Cruz, A.; Doyle, C.I.; Ye, Z.; Allen, G.; Heymann, H.; et al. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea During Noble Rot. J. Plant Physiol. 2015, 169, 2422–2443. [Google Scholar] [CrossRef] [PubMed]
- Magyar, I.; Soos, J. Botrytized wines—Current perspectives. Int. J. Wine Res. 2016, 8, 29–39. [Google Scholar] [CrossRef]
- Carrau, F.; Boido, E.; Ramey, D. Yeasts for low input winemaking: Microbial terroir and flavor differentiation. Adv. Appl. Microbiol. 2020, 111, 89–121. [Google Scholar] [CrossRef] [PubMed]
- Martin, V.; Boido, E.; Giorello, F.; Mas, A.; Dellacassa, E.; Carrau, F. Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by Hanseniaspora vineae strains. Yeast 2016, 33, 323–328. [Google Scholar] [CrossRef]
- Fleet, G.H. The microorganisms of winemaking-isolation, enumeration and identification. In Wine Microbiology and Biotechnology, 1st ed.; Fleet, G.H., Ed.; Harwood Academic Publishers: Reading, UK, 1993; pp. 1–25. [Google Scholar]
- Romano, P. Function of yeast species and strains in wine flavour. J. Food Microbiol. 2003, 86, 169–180. [Google Scholar] [CrossRef]
- Rojas, V.; Gil, J.V.; Pińaga, F.; Manzanares, P. Acetate ester formation in wine by mixed cultures in laboratory fermentations. J. Food Microbiol. 2003, 86, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Delfini, C.; Gaia, P.; Bardi, L.; Mariscalco, G.; Contiero, M.; Pagliara, A. Production of benzaldehyde, benzyl alcohol and benzoic acid by yeasts and Botrytis cinerea isolated from grape musts and wines. Vitis 1991, 30, 253–263. [Google Scholar]
- Benito, S.; Palomero, F.; Morata, A.; Calderón, F.; Suárez-Lepe, J.A. New applications for Schizosaccharomyces pombe in the alcoholic fermentation of red wines. Int. J. Food Sci. Technol. 2012, 47, 2101–2108. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.J.; Maestre, O.; Mauricio, J.C. Removing gluconic acid by using different treatments with a Schizosaccharomyces pombe mutant: Effect on fermentation byproducts. Food Chem. 2007, 104, 457–465. [Google Scholar] [CrossRef]
- Negri, S.; Lovato, A.; Boscaini, F.; Salvetti, E.; Torriani, S.; Commisso, M.; Danzi, R.; Ugliano, M.; Polverari, A.; Tornielli, G.B.; et al. The Induction of Noble Rot (Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega). Front. Plant Sci. 2017, 8, 1002. [Google Scholar] [CrossRef]
- Martin, V.; Giorello, F.; Farin, L.; Minteguiaga, M.; Salzman, V.; Boido, E.; Aguilar, P.S.; Gaggero, C.; Dellacassa, E.; Mas, A.; et al. De Novo Synthesis of Benzenoid Compounds by the Yeast Hanseniaspora vineae Increases the Flavor Diversity of Wines. J. Agric. Food Chem. 2016, 64, 4574–4583. [Google Scholar] [CrossRef]
- Michlmayr, H.; Nauer, S.; Brandes, W.; Schümann, C.; Kulbe, K.D.; del Hierro, A.M.; Eder, R. Release of wine monoterpenes from natural precursors by glycosidases from Oenococcus oeni. Food Chem. 2012, 135, 80–87. [Google Scholar] [CrossRef]
- Englezos, V.; Torchio, F.; Cravero, F.; Marengo, F.; Giacosa, S.; Gerbi, V.; Rantsiou, K.; Rolle, L.; Cocolin, L. Aroma profile and composition of Barbera wines obtained by mixed fermentations of Starmerella bacillaris (synonym Candida zemplinina) and Saccharomyces cerevisiae. LWT Food Sci. Technol. 2016, 73, 567–575. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Shen, J.Y.; Duan, C.Q.; Yan, G.L. Use of indigenous Hanseniaspora vineae and Metschnikowia pulcherrima co-fermentation with Saccharomyces cerevisiae to improve the aroma diversity of Vidal Blanc Icewine. Front. Microbiol. 2018, 9, 2303. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.; Lage, P.; Esteves, M.; Chambel, L.; Mendes-Faia, A.; Mendes-Ferreira, A. Molecular and phenotypic characterization of Metschnikowia pulcherrima strains from Douro wine region. Fermentation 2018, 4, 8. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Mendes-Ferreira, A.; Climaco, M.C.; Mendes-Faia, A. The role of non-Saccharomyces species in releasing glycosidic bound fraction of grape aroma components—A preliminary study. J. Appl. Microbiol. 2001, 91, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Maicas, S.; Mateo, J.J. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices. A review. Appl. Microbiol. Biotechnol. 2005, 67, 322–335. [Google Scholar] [CrossRef]
- Gunata, Z.; Vallier, M.J.; Sapis, J.C.; Baumes, R.; Bayonove, C. Enzymatic synthesis of monoterpenyl β-dglucosides by various β-glucosidases. Enzym. Microb. Technol. 1994, 16, 1055–1058. [Google Scholar] [CrossRef]
- Prior, K.J.; Bauer, F.F.; Divol, B. The utilisation of nitrogenous compounds by commercial non-Saccharomyces yeasts associated with wine. Food Microbiol. 2019, 79, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Jeromel, A.; Korenika, A.-M.J.; Tomaz, I. An Influence of Different Yeast Species on Wine Aroma Composition. In Fermented Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 171–285. [Google Scholar] [CrossRef]
- Schreier, P.; Jennings, W.G. Flavor composition of wines: A review. Food Sci. Nutr. 1979, 12, 59–111. [Google Scholar] [CrossRef]
- Montaño, A.; Cortés-Delgado, A.; Sánchez, A.H.; Ruiz-Barba, J.L. Production of volatile compounds by wild-type yeasts in a natural olive-derived culture medium. Food Microbiol. 2021, 98, 103788. [Google Scholar] [CrossRef]
- Karabegović, I.; Malićanin, M.; Popović, N.; Stojanović, S.S.; Lazić, M.; Stanojević, J.; Danilović, B. Native Non-Saccharomyces Yeasts as a Tool to Produce Distinctive and Diverse Tamjanika Grape Wines. Foods 2022, 11, 1935. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Corral, M.F.; Otero, P.; Nogueira, R.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2020, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Xiong, L.; Zhao, S.; Lin, Y.; Guo, P.; Zhang, W. Impact of co-fermentation of Saccharomyces cerevisiae and Pichia kluyveri on the metabolic characteristics of the flavor compounds in mulberry wine. Front. Nutr. 2025, 1559599. [Google Scholar] [CrossRef] [PubMed]
- Saerens, S.M.G.; Delvaux, F.; Verstrepen, K.J.; van Dijck, P.; Thevelein, J.M.; Delvaux, F.R. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation. Appl. Environ. Microbiol. 2008, 74, 454–461. [Google Scholar] [CrossRef]
- Knoll, C.; Fritsch, S.; Schnell, S.; Grossmann, M.; Rauhut, D.; Du Toit, M. Influence of pH and ethanol on malolactic fermentation and volatile aroma compound composition in white wines. LWT Food Sci. Technol. 2011, 44, 2077–2086. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Liu, J.; Niu, J.; Zhu, X.; Zhu, H.; Li, W.; Li, X.; Sun, B. Regulating fermentation based on dominant genus: Effects of phenethyl alcohol-producing Saccharomyces cerevisiae on microbial succession and flavor compounds in fermented grains. Food Biosci. 2025, 65, 106079. [Google Scholar] [CrossRef]
- Ren, J.Y.; Liu, G.; Chen, Y.F.; Jiang, S.; Ma, Y.R.; Zheng, P.; Guo, Y.W.; Xiao, D.G. Enhanced Production of Ethyl Lactate in Saccharomyces cerevisiae by Genetic Modification. J. Agric. Food Chem. 2020, 68, 13863–13870. [Google Scholar] [CrossRef]
- Lleixà, J.; Martín, V.; del Carmen Portillo, M.; Carrau, F.; Beltran, G.; Mas, A. Comparison of Fermentation and Wines Produced by Inoculation of Hanseniaspora vineae and Saccharomyces cerevisiae. Front. Microbiol. 2016, 7, 338. [Google Scholar] [CrossRef] [PubMed]
- Henritzi, S.; Fischer, M.; Grininger, M.; Oreb, M.; Boles, E. An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae. Biotechnol. Biofuels 2018, 11, 150. [Google Scholar] [CrossRef]
- Tsakiris, A.; Koutinas, A.A.; Psarianos, C.; Kourkoutas, Y.; Bekatorou, A. A new process for wine production by penetration of yeast in uncrushed frozen grapes. Appl. Biochem. Biotechnol. 2010, 162, 1109–1121. [Google Scholar] [CrossRef]
- Karabegović, I.; Malićanin, M.; Danilović, B.; Stanojević, J.; Stojanović, S.S.; Nikolić, N.; Lazić, M. Potential of non-Saccharomyces yeast for improving the aroma and sensory profile of Prokupac red wine. OENO One 2021, 2, 181–195. [Google Scholar] [CrossRef]
- Pronk, J.T.; Steensma, H.Y.; van Dijken, J. Pyruvate Metabolism in Saccharomyces cerevisiae. Yeast 1996, 12, 1607–1633. [Google Scholar] [CrossRef]
- Duan, L.L.; Shi, Y.; Jiang, R.; Yang, Q.; Wang, Y.; Liu, P.T.; Duan, C.Q.; Yan, G. Effects of adding unsaturated fatty acids composition of Saccharomyces cerevisiae and compounds in wine on fatty acid major volatile. S. Afr. J. Enol. Vitic. 2015, 36, 285–295. [Google Scholar] [CrossRef]
- Otsuka, S.I.; Ishii, R.; Katsuy, N. Utilization of hydocarbons as carbon sources in production of yeast cells. J. Gen. Appl. Microbiol. 1996, 12, 1–11. [Google Scholar] [CrossRef]
Multivariate Model: | Nested | Sulphur | Tannin | M. pulcherrima | Harvest |
---|---|---|---|---|---|
All metabolites | 0.6540 *** | 0.1113 ** | 0.0509 | 0.2250 *** | 0.4747 *** |
Alcohols | 0.7146 *** | 0.1866 *** | 0.0691 | 0.3180 *** | 0.4456 *** |
Esthers | 0.6117 *** | 0.1124 ** | 0.0575 | 0.2429 *** | 0.4393 *** |
Terpenes | 0.7143 *** | 0.0273 | 0.0362 | 0.0528 | 0.6499 *** |
Vegetal | 0.7649 *** | 0.1022 * | 0.0242 | 0.1663 ** | 0.6327 *** |
Fruity | 0.6552 *** | 0.1245 ** | 0.0638 | 0.2630 *** | 0.4568 *** |
Tertiary/ageing-related | 0.5025 *** | 0.0530 | 0.0468 | 0.0907 * | 0.4118 *** |
Off odour | 0.4590 *** | 0.0328 | 0.0162 | 0.0839 * | 0.3607 *** |
Yeast (Saccharomyces spp.) | 0.6850 *** | 0.1111 ** | 0.0589 | 0.2327 *** | 0.4762 *** |
Botrytis | 0.5106 *** | 0.1035 * | 0.0514 | 0.1672 ** | 0.4224 *** |
Compound Category | Correlation | p-Value |
---|---|---|
All | 0.2623 | 0.0080 ** |
Alcohol | 0.3348 | 0.0020 ** |
Esther | 0.2606 | 0.0040 ** |
Terpene | 0.0484 | 0.3220 |
Vegetal | 0.2924 | 0.0070 ** |
Fruity | 0.3190 | 0.0020 ** |
Off Odour | 0.0782 | 0.2460 |
Tertiary/Ageing-Related | 0.0184 | 0.4220 |
Yeast (Saccharomyces spp.) | 0.2856 | 0.0050 ** |
Botrytis | 0.1098 | 0.1740 |
ID | Ca [mg/L] | K [mg/L] | TP [g/L] |
---|---|---|---|
E_S_a | 73.3 | 901.9 | 0.20 |
E_M_a | 66.7 | 739.1 | 0.43 |
E_M_S_a | 67.2 | 741.4 | 0.54 |
E_M_T_a | 66.2 | 734.9 | 0.6 |
E_M_S_T_a | 66.8 | 796.1 | 0.66 |
E_S_b | 72.8 | 959.3 | 0.44 |
E_M_b | 65.6 | 751.6 | 0.48 |
E_M_S_b | 65.8 | 767.3 | 0.58 |
E_M_T_b | 64.8 | 795.9 | 0.61 |
E_M_S_T_b | 65.3 | 824.8 | 0.64 |
L_S_a | 88.0 | 1209.8 | 0.52 |
L_M_a | 89.0 | 1201.4 | 0.62 |
L_M_S_a | 77.0 | 1099.2 | 0.61 |
L_M_T_a | 77.0 | 1069.6 | 0.66 |
L_M_S_T_a | 78.0 | 1066.3 | 0.69 |
L_S_b | 76.0 | 1093.9 | 0.69 |
L_M_b | 77.0 | 1040.9 | 0.81 |
L_M_S_b | 77.0 | 1076.8 | 0.86 |
L_M_T_b | 77.0 | 1086.6 | 0.94 |
L_M_S_T_b | 78.0 | 1067.3 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bene, Z.; Hegyi, Á.I.; Weninger, H.; Váczy, K.Z. Metschnikowia pulcherrima as a Tool for Sulphite Reduction and Enhanced Volatile Retention in Noble Rot Wine Fermentation. Fermentation 2025, 11, 491. https://doi.org/10.3390/fermentation11090491
Bene Z, Hegyi ÁI, Weninger H, Váczy KZ. Metschnikowia pulcherrima as a Tool for Sulphite Reduction and Enhanced Volatile Retention in Noble Rot Wine Fermentation. Fermentation. 2025; 11(9):491. https://doi.org/10.3390/fermentation11090491
Chicago/Turabian StyleBene, Zsuzsanna, Ádám István Hegyi, Hannes Weninger, and Kálmán Zoltán Váczy. 2025. "Metschnikowia pulcherrima as a Tool for Sulphite Reduction and Enhanced Volatile Retention in Noble Rot Wine Fermentation" Fermentation 11, no. 9: 491. https://doi.org/10.3390/fermentation11090491
APA StyleBene, Z., Hegyi, Á. I., Weninger, H., & Váczy, K. Z. (2025). Metschnikowia pulcherrima as a Tool for Sulphite Reduction and Enhanced Volatile Retention in Noble Rot Wine Fermentation. Fermentation, 11(9), 491. https://doi.org/10.3390/fermentation11090491