Synthesis of 3,4-Dihydroxybenzoic Acid in E. coli and C. glutamicum Using Dehydroshikimate Dehydratase of Different Types
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids and Growth Conditions
2.2. Fermentation
2.3. Strains Construction
2.4. DNA Manupulations
2.5. Enzyme Activity Assays
2.6. Sequence Alignment
2.7. Statistical Analysis
3. Results
3.1. DHS Dehydratase from P. anserina and Its Expression in T7 System
3.2. Catalytic Properties of DSDPa and Their Comparison with Those of AsbF, Qa-4, QsuB
3.3. 3,4-DHBA Production in E. coli Strains
3.4. 3,4-DHBA Production in C. glutamicum Strains
3.5. 3,4-DHBA Production in C. glutamicumΔqsuB Strains
3.6. Sequence Comparison of qa-4 and dsdPa Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, M.K.; Abergel, R.J.; Raymond, K.N.; Arceneaux, J.E.; Byers, B.R. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 2006, 348, 320–325. [Google Scholar] [CrossRef]
- Fox, D.T.; Hotta, K.; Kim, C.Y.; Koppisch, A.T. The missing link in petrobactin biosynthesis: asbF encodes a (−)-3-dehydroshikimate dehydratase. Biochemistry 2008, 47, 12251–12253. [Google Scholar] [CrossRef] [PubMed]
- Pfleger, B.F.; Kim, Y.; Nusca, T.D.; Maltseva, N.; Lee, J.Y.; Rath, C.M.; Scaglione, J.B.; Janes, B.K.; Anderson, E.C.; Bergman, N.H.; et al. Structural and functional analysis of AsbF: Origin of the stealth 3, 4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proc. Natl. Acad. Sci. USA 2008, 105, 17133–17138. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. Int. Sch. Res. Not. 2014, 2014, 952943. [Google Scholar] [CrossRef] [PubMed]
- Krzysztoforska, K.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr. Neurosci. 2019, 22, 72–82. [Google Scholar] [CrossRef]
- Lin, C.Y.; Huang, C.S.; Huang, C.Y.; Yin, M.C. Anticoagulatory, antiinflammatory, and antioxidative effects of protocatechuic acid in diabetic mice. J. Agric. Food Chem. 2009, 57, 6661–6667. [Google Scholar] [CrossRef]
- Hansen, E.H.; Møller, B.L.; Kock, G.R.; Bünner, C.M.; Kristensen, C.; Jensen, O.R.; Okkels, F.T.; Olsen, C.E.; Motawia, M.S.; Hansen, J. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 2009, 75, 2765–2774. [Google Scholar] [CrossRef]
- Draths, K.M.; Frost, J.W. Environmentally compatible synthesis of catechol from D-glucose. J. Am. Chem. Soc. 1995, 117, 2395–2400. [Google Scholar] [CrossRef]
- Pugh, S.; McKenna, R.; Osman, M.; Thompson, B.; Nielsen, D.R. Rational engineering of a novel pathway for producing the aromatic compounds p-hydroxybenzoate, protocatechuate, and catechol in Escherichia coli. Process Biochem. 2014, 49, 1843–1850. [Google Scholar] [CrossRef]
- Niu, W.; Draths, K.M.; Frost, J.W. Benzene-free synthesis of adipic acid. Biotechnol. Prog. 2002, 18, 201–211. [Google Scholar] [CrossRef]
- Weber, C.; Brückner, C.; Weinreb, S.; Lehr, C.; Essl, C.; Boles, E. Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012, 78, 8421–8430. [Google Scholar] [CrossRef]
- Fang, X.; Guo, X.; Tang, W.; Gu, Q.; Wu, Y.; Sun, H.; Gao, J. Efficient toughening of DGEBA with a bio-based protocatechuic acid derivative. ACS Omega 2023, 8, 9962–9968. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Wei, M.C.; Huang, T.C.; Lee, S.Z. Extraction of protocatechuic acid from Scutellaria barbata D. Don using supercritical carbon dioxide. J. Supercrit. Fluid. 2013, 81, 55–66. [Google Scholar] [CrossRef]
- Antony, F.M.; Wasewar, K. Reactive extraction: A promising approach to separate protocatechuic acid, Environ. Sci. Pollut. R. 2019, 27, 27345–27357. [Google Scholar] [CrossRef] [PubMed]
- Pearl, I.A. Reactions of vanillin and its derived compounds. I. The reaction of vanillin with silver oxide1. J. Am. Chem. Soc. 1946, 68, 429–432. [Google Scholar] [CrossRef]
- Okai, N.; Miyoshi, T.; Takeshima, Y.; Kuwahara, H.; Ogino, C.; Kondo, A. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli. Appl. Microbiol. Biotechnol. 2016, 100, 135–145. [Google Scholar] [CrossRef]
- Shmonova, E.A.; Savrasova, E.A.; Fedorova, E.N.; Doroshenko, V.G. Comparative Analysis of Catabolic and Anabolic Dehydroshikimate Dehydratases for 3,4-DHBA Production in Escherichia coli. Microorganisms 2022, 10, 1357. [Google Scholar] [CrossRef]
- Rao, Y.; Wang, J.; Zhao, R.; Zhan, Y.; Ma, X.; He, P.; Cai, D.; Chen, S. Efficient sustainable production of protocatechuic acid from glucose by engineered Bacillus licheniformis. Chem. Eng. J. 2025, 505, 159320. [Google Scholar] [CrossRef]
- Li, J.; Fu, J.; Yue, C.; Shang, Y.; Ye, B.C. Highly efficient biosynthesis of protocatechuic acid via recombinant Pseudomonas putida KT2440. J. Agric. Food Chem. 2023, 71, 10375–10382. [Google Scholar] [CrossRef]
- Örn, O.E.; Sacchetto, S.; van Niel, E.W.; Hatti-Kaul, R. Enhanced protocatechuic acid production from glucose using Pseudomonas putida 3-dehydroshikimate dehydratase expressed in a phenylalanine-overproducing mutant of Escherichia coli. Front. Bioeng. Biotechnol. 2021, 9, 695704. [Google Scholar] [CrossRef]
- Labib, M.; Görtz, J.; Brüsseler, C.; Kallscheuer, N.; Gätgens, J.; Jupke, A.; Marienhagen, J.; Noack, S. Metabolic and process engineering for microbial production of protocatechuate with Corynebacterium glutamicum. Biotechnol. Bioeng. 2021, 118, 4414–4427. [Google Scholar] [CrossRef]
- Kogure, T.; Suda, M.; Hiraga, K.; Inui, M. Protocatechuate overproduction by Corynebacterium glutamicum via simultaneous engineering of native and heterologous biosynthetic pathways. Metab. Eng. 2021, 65, 232–242. [Google Scholar] [CrossRef]
- Peek, J.; Roman, J.; Moran, G.R.; Christendat, D. Structurally diverse dehydroshikimate dehydratase variants participate in microbial quinate catabolism. Mol. Microbiol. 2017, 103, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Xue, K.; Prezioso, S.M.; Christendat, D. QuiC2 represents a functionally distinct class of dehydroshikimate dehydratases identified in Listeria species including Listeria monocytogenes. Environ. Microbiol. 2020, 22, 2680–2692. [Google Scholar] [CrossRef] [PubMed]
- Shmonova, E.A.; Voloshina, O.V.; Ovsienko, M.V.; Smirnov, S.V.; Nolde, D.E.; Doroshenko, V.G. Characterization of the Corynebacterium glutamicum dehydroshikimate dehydratase QsuB and its potential for microbial production of protocatechuic acid. PLoS ONE 2020, 15, e0231560. [Google Scholar] [CrossRef] [PubMed]
- Michel, G.; Roszak, A.W.; Sauvé, V.; Maclean, J.; Matte, A.; Coggins, J.R.; Cygler, M.; Lapthorn, A.J. Structures of shikimate dehydrogenase AroE and its paralog YdiB: A common structural framework for different activities. J. Biol. Chem. 2003, 278, 19463–19472. [Google Scholar] [CrossRef]
- Kubota, T.; Tanaka, Y.; Takemoto, N.; Watanabe, A.; Hiraga, K.; Inui, M.; Yukawa, H. Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR in Corynebacterium glutamicum: Carbon flow control at metabolic branch point. Mol. Microbiol. 2014, 92, 356–368. [Google Scholar] [CrossRef]
- Nishio, Y.; Koseki, C.; Tonouchi, N.; Matsui, K.; Sugimoto, S.; Usuda, Y. Analysis of strain-specific genes in glutamic acid-producing Corynebacterium glutamicum ssp. lactofermentum AJ 1511. J. Gen. Appl. Microbiol. 2017, 63, 157–164. [Google Scholar] [CrossRef]
- Minaeva, N.I.; Gak, E.R.; Zimenkov, D.V.; Skorokhodova, A.Y.; Biryukova, I.V.; Mashko, S.V. Dual-In/Out strategy for genes integration into bacterial chromosome: A novel approach to step-by-step construction of plasmid-less marker-less recombinant E. coli strains with predesigned genome structure. BMC Biotechnol. 2008, 8, 63. [Google Scholar] [CrossRef]
- Katashkina, Z.; Skorokhodova, A.; Zimenkov, D.V.; Gulevich, A.; Minaeva, N.I.; Doroshenko, V.G.; Biriukova, I.V.; Mashko, S.V. Tuning of expression level of the genes of interest located in the bacterial chromosome. Mol. Biol. 2005, 39, 823–831. [Google Scholar] [CrossRef]
- Lobanova, J.S.; Gorshkova, N.V.; Krylov, A.A.; Stoynova, N.V.; Mashko, S.V. Genome engineering of the Corynebacterium glutamicum chromosome by the Extended Dual-In/Out strategy. J. Microbiol. Methods 2022, 200, 106555. [Google Scholar] [CrossRef]
- Gorshkova, N.V.; Lobanova, J.S.; Tokmakova, I.L.; Smirnov, S.V.; Akhverdyan, V.Z.; Krylov, A.A.; Mashko, S.V. Mu-driven transposition of recombinant mini-Mu unit DNA in the Corynebacterium glutamicum chromosome. Appl. Microbiol. Biotechnol. 2018, 102, 2867–2884. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, J.S.; Hirano, S.; Ito, H. L-glutamic Acid Producing Microorganism and a Method for Producing L-glutamic Acid. U.S. Patent 7,794,989, 14 September 2010. [Google Scholar]
- Nishio, Y.; Yamamoto, Y.; Yamada, K.; Yokota, K. Method for Producing Target Substance by Fermentation. U.S. Patent 9,045,789, 2 June 2015. [Google Scholar]
- Quan, J.; Tian, J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 2009, 4, e6441. [Google Scholar] [CrossRef] [PubMed]
- Doroshenko, V.G.; Tsyrenzhapova, I.S.; Krylov, A.A.; Kiseleva, E.M.; Ermishev, V.Y.; Kazakova, S.M.; Biryukova, I.V.; Mashko, S.V. Pho regulon promoter-mediated transcription of the key pathway gene aroG Fbr improves the performance of an l-phenylalanine-producing Escherichia coli strain. Appl. Microbiol. Biotechnol. 2010, 88, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.W.; Yang, J.S.; Kim, I.; Yang, J.; Min, B.E.; Kim, S.; Jung, G.Y. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng. 2013, 15, 67–74. [Google Scholar] [CrossRef]
- Strøman, P.; Reinert, W.R.; Giles, N.H. Purification and characterization of 3-dehydroshikimate dehydratase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa. J. Biol. Chem. 1978, 253, 4593–4598. [Google Scholar] [CrossRef]
- Ritchie, R.J.; Prvan, T. Current statistical methods for estimating the Km and Vmax of Michaelis-Menten kinetics. Biochem. Educ. 1996, 24, 196–206. [Google Scholar] [CrossRef]
- Yoshino, M.; Murakami, K. A graphical method for determining inhibition constants. J. Enzym. Inhib. Med. Chem. 2009, 24, 1288–1290. [Google Scholar] [CrossRef]
- Kim, S.J.; Yoon, J.S.; Shishido, H.; Yang, Z.; Rooney, L.A.; Barral, J.M.; Skach, W.R. Translational tuning optimizes nascent protein folding in cells. Science 2015, 348, 444–448. [Google Scholar] [CrossRef]
- Teramoto, H.; Inui, M.; Yukawa, H. Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 2009, 75, 3461–3468. [Google Scholar] [CrossRef]
- Moore, L.R.; Caspi, R.; Boyd, D.; Berkmen, M.; Mackie, A.; Paley, S.; Karp, P.D. Revisiting the y-ome of Escherichia coli. Nucleic Acids Res. 2024, 52, 12201–12207. [Google Scholar] [CrossRef]
Strain or Plasmid | Relevant Characteristics | Source |
---|---|---|
E. coli strains | ||
BL21(DE3) | F–ompT gal dcm lon hsdSB(rB–mB–) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K−12(λS) | Novagen (Merck Millipore, Darmstadt, Germany) |
MG1655∆aroE | F− λ− ilvG− rfb-50 rph-1ΔaroE | [25] |
MG1655∆aroE PlacUV5-qsuBattφ80 | 3,4-DHBA producing strains | [17] |
MG1655∆aroE PlacUV5-asbFattφ80 | ||
MG1655∆aroE PlacUV5-qa-4attφ80 | ||
MG1655∆aroE PlacUV5-dsdPaattφ80 | This work | |
C. glutamicum strains | ||
AJ1511 | ATCC13869 lacking cryptic plasmid pAM330 | [28] |
K118 | AJ1511ΔaroEΔpcaHG | This work |
K118ΔqsuB | − | This work |
Plasmids | ||
pAH162-λattL-TcR-λattR- PlacUV5-qsuB | TcR, oriRγ, phi80attP; used for the creation of integrative vector with the dsdPa gene | [17] |
pAH162-λattL-TcR-λattR-PlacUV5-dsdPa | TcR, oriRγ, phi80attP; used for PlacUV5-dsdPa integration into E. coli chromosome | This work |
pAH123 | ApR, the helper for the PlacUV5-dsdPa integration | [29] |
pMW-int-xis | ApR, oriR101, repA101ts, λcIts857, λPR → λxis-int; the helper for marker removal in E. coli. | [30] |
pMW119-lox66-cat-lox71 | CmR; contained excisable Cm-marker. lox71/lox66—mutant lox sites that exclude chromosomal deletions occurring after further introduction of identical markers. | A. Krylov (JSC “AGRI”) |
pVC-AprR-lacI-Ptrc-id2-recE564T | AprR, ori pMB1, ori pAM330; the helper for RecET-mediated recombination in C. glutamicum | [31] |
p06-PdapA-cre | GmR, ori pMB1, ori pCG1; the helper for Cre-mediated marker removal in C. glutamicum | [32] |
pET22b-dsdPa-His6 | ApR; production of DSDPa protein with and without His-tag | This work |
pET22b-dsdPa | ||
pVK9 | KmR; ori pCG1, ori ColE1 | [33] |
pVK9-lacI-Ptrc-id2-gfp | KmR; oripCG1, oriColE1, lacI, IPTG inducible Ptrc-id2 | A. Krylov (JSC “AGRI”) |
pVK9-lacI-Ptrc-id2-asbF | KmR; plasmids containing dsd genes | This work |
pVK9-lacI-Ptrc-id2-qa-4 | ||
pVK9-lacI-Ptrc-id2-qsuB | ||
pVK9-lacI-Ptrc-id2-dsdPa | ||
pVS7 | SpeR; ori pMB1, repBI1 | [34] |
pVS7-aroG4 | SpeR; ori pMB1, repBI1, aroG4 | This work |
Enzyme | Km, μM | kcat, s−1 | Keff, 10−3/μM/s | Source |
---|---|---|---|---|
DSDPa | 236 ± 29 | 125 ± 7 | 527 ± 167 | This work |
QsuB | 960 ± 80 | 61 ± 1 | 60 ± 12 | [25] |
Qa-4 | 600 ± 20 | 219 ± 1 | 370 ± 70 | [17] |
AsbF | 36 ± 7 | 1.1 ± 0.1 | 29 ± 7 |
Enzyme | Ki, mM | K’i, mM | Source |
---|---|---|---|
DSDPa | 0.33 ± 0.04 | 0.61 ± 0.07 | This work |
QsuB | ~0.38 | ~0.96 | [17] |
N | DSD | pVS7-aroG4 | 1 mM IPTG | OD540 | DHS | 3,4-DHBA | Res. Glc * |
---|---|---|---|---|---|---|---|
g/L | |||||||
1 | − | − | − | 38 ± 1 | 1.5 ± 0.1 | <0.1 | 3.0 ± 0.1 |
2 | AsbF | 33 ± 1 | <0.1 | <0.1 | 4.0 ± 0.1 | ||
3 | Qa-4 | 32 ± 1 | <0.1 | 1.1 ± 0.1 | |||
4 | QsuB | 33 ± 1 | 0.4 ± 0.1 | 0.7 ± 0.1 | |||
5 | DSDPa | 33 ± 1 | <0.1 | 0.9 ± 0.1 | |||
6 | − | − | + | 33 ± 1 | 1.3 ± 0.1 | <0.1 | 2.5 ± 0.1 |
7 | AsbF | 33 ± 1 | <0.1 | 0.2 ± 0.1 | 5.5 ± 0.1 | ||
8 | Qa-4 | 32 ± 1 | <0.1 | 1.1 ± 0.1 | |||
9 | QsuB | 31 ± 1 | <0.1 | 1.2 ± 0.1 | |||
10 | DSDPa | 32 ± 1 | <0.1 | 1.2 ± 0.1 | |||
11 | − | + | + | 37 ± 1 | 7.2 ± 0.1 | <0.1 | |
12 | AsbF | 43 ± 1 | 7.3 ± 0.7 | 0.5 ± 0.1 | |||
13 | Qa-4 | 37 ± 1 | <0.1 | 4.9 ± 0.1 | |||
14 | QsuB | 38 ± 1 | <0.1 | 4.8 ± 0.1 | |||
15 | DSDPa | 38 ± 2 | <0.1 | 5.0 ± 0.5 |
N | DSD * | pVS7-aroG4 | 1 mM IPTG | OD540 | DHS | 3,4-DHBA | CT **, h |
---|---|---|---|---|---|---|---|
g/L | |||||||
1 | − | − | − | 85 ± 1 | 0.6 ± 0.1 | 0.7 ± 0.1 | 24 |
2 | AsbF | 84 ± 1 | 0.6 ± 0.1 | 0.7 ± 0.1 | |||
3 | Qa-4 | 81 ± 1 | 0.5 ± 0.1 | 0.6 ± 0.1 | |||
4 | QsuB | 90 ± 1 | <0.1 | 2.7 ± 0.1 | |||
5 | DSDPa | 88 ± 1 | <0.1 | 2.4 ± 0.1 | |||
6 | − | − | + | 85 ± 1 | 0.5 ± 0.1 | 0.7 ± 0.1 | 24 |
7 | AsbF | 84 ± 2 | 0.2 ± 0.1 | 1.5 ± 0.3 | |||
8 | Qa-4 | 83 ± 3 | 0.2 ± 0.1 | 1.2 ± 0.1 | |||
9 | QsuB | 62 ± 2 | <0.1 | 2.2 ± 0.2 | 29 | ||
10 | DSDPa | 72 ± 1 | <0.1 | 2.1 ± 0.1 | |||
11 | − | + | + | 87 ± 1 | 0.8 ± 0.1 | 0.7 ± 0.1 | 24 |
12 | AsbF | 83 ± 2 | 0.3 ± 0.1 | 1.3 ± 0.1 | |||
13 | Qa-4 | 86 ± 1 | 0.3 ± 0.1 | 1.4 ± 0.2 | |||
14 | QsuB | 82 ± 6 | <0.1 | 2.7 ± 0.1 | 27 | ||
15 | DSDPa | 86 ± 1 | <0.1 | 3.4 ± 0.1 | 24 |
N | DSD * | pVS7-aroG4 | 1 mM IPTG | OD540 | DHS | 3,4-DHBA | Res. Glc ** |
---|---|---|---|---|---|---|---|
g/L | |||||||
1 | − | − | − | 70 ± 7 | 1.0 ± 0.1 | <0.1 | 0 |
2 | AsbF | 75 ± 1 | 0.9 ± 0.1 | 0.1 ± 0.1 | |||
3 | Qa-4 | 69 ± 1 | 0.9 ± 0.1 | 0.1 ± 0.1 | |||
4 | QsuB | 71 ± 1 | <0.1 | 0.6 ± 0.1 | |||
5 | DSDPa | 65 ± 1 | 0.8 ± 0.1 | 0.3 ± 0.1 | |||
6 | − | − | + | 68 ± 1 | 0.9 ± 0.1 | 0.1 ± 0.1 | 0 |
7 | AsbF | 71 ± 4 | 0.3 ± 0.1 | 0.4 ± 0.1 | |||
8 | Qa-4 | 70 ± 2 | 0.4 ± 0.1 | 0.6 ± 0.1 | |||
9 | QsuB | 38 ± 1 | <0.1 | 0.7 ± 0.1 | 1.8 ± 0.1 | ||
10 | DSDPa | 40 ± 3 | <0.1 | 0.6 ± 0.1 | 1.6 ± 0.2 | ||
11 | − | + | + | 67 ± 1 | 0.9 ± 0.1 | 0.1 ± 0.1 | 0 |
12 | AsbF | 71 ± 3 | 0.4 ± 0.1 | 0.6 ± 0.1 | |||
13 | Qa-4 | 72 ± 1 | 0.5 ± 0.1 | 0.6 ± 0.1 | |||
14 | QsuB | 33 ± 1 | <0.1 | 0.6 ± 0.1 | 1.6 ± 0.1 | ||
15 | DSDPa | 43 ± 1 | <0.1 | 0.8 ± 0.1 | 1.5 ± 0.1 |
AA | Codon | C. glutamicum Frequency | E. coli Frequency | Number of Codons in qa-4 | Number of Codons in dsdPa |
---|---|---|---|---|---|
Arg (R) | CGA | 6.6 | 4.3 | 3 | - |
CGG | 4.9 | 4.1 | 13 | 19 | |
AGA | 2.2 | 1.4 | 2 | 5 | |
AGG | 3.2 | 1.6 | 0 | 0 | |
Cys (C) | UGU | 2.3 | 5.9 | 5 | 5 |
UGC | 4.1 | 8.0 | 2 | 2 | |
Gly (G) | GGG | 6.7 | 8.6 | 3 | 2 |
His (H) | CAU | 6.7 | 15.8 | 5 | 4 |
Ile (I) | AUA | 1.8 | 3.7 | 3 | 1 |
Leu (L) | UUA | 5.1 | 15.2 | 27 | 17 |
CUA | 5.8 | 5.3 | 5 | 2 | |
Pro (P) | CCC | 9.7 | 6.4 | 3 | 0 |
Val (V) | GUA | 8.1 | 11.5 | 0 | 1 |
Ser | AGU | 4.9 | 7.2 | 0 | 0 |
UCA | 8.2 | 7.8 | 0 | 0 | |
UCG | 7.6 | 8.0 | 7 | 1 | |
Tyr | UAU | 7.4 | 16.8 | 6 | 4 |
Thr | ACA | 7.6 | 6.4 | 1 | 0 |
ACG | 8.8 | 1.5 | 0 | 0 | |
∑ codons rare for C. glutamicum relatively E. coli | 48 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shmonova, E.; Kruglova, A.; Nikandrov, N.; Stoynova, N.; Doroshenko, V. Synthesis of 3,4-Dihydroxybenzoic Acid in E. coli and C. glutamicum Using Dehydroshikimate Dehydratase of Different Types. Fermentation 2025, 11, 464. https://doi.org/10.3390/fermentation11080464
Shmonova E, Kruglova A, Nikandrov N, Stoynova N, Doroshenko V. Synthesis of 3,4-Dihydroxybenzoic Acid in E. coli and C. glutamicum Using Dehydroshikimate Dehydratase of Different Types. Fermentation. 2025; 11(8):464. https://doi.org/10.3390/fermentation11080464
Chicago/Turabian StyleShmonova, Ekaterina, Arina Kruglova, Nikita Nikandrov, Nataliya Stoynova, and Vera Doroshenko. 2025. "Synthesis of 3,4-Dihydroxybenzoic Acid in E. coli and C. glutamicum Using Dehydroshikimate Dehydratase of Different Types" Fermentation 11, no. 8: 464. https://doi.org/10.3390/fermentation11080464
APA StyleShmonova, E., Kruglova, A., Nikandrov, N., Stoynova, N., & Doroshenko, V. (2025). Synthesis of 3,4-Dihydroxybenzoic Acid in E. coli and C. glutamicum Using Dehydroshikimate Dehydratase of Different Types. Fermentation, 11(8), 464. https://doi.org/10.3390/fermentation11080464