The Effect of Saliva with Different Nitrogen Compositions on Ruminal Fermentation in a Rumen Simulator Technique (Rusitec®) System Fed a Lactating Dairy Cow Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
- (1)
- Control: 100% of the artificial saliva composition by McDougall [10] (0.300 g of N/L).
- (2)
- −15% N: Saliva with a 15% decrease in N content (0.255 g of N/L).
- (3)
- −30% N: Saliva with a 30% decrease in N content (0.210 g of N/L).
2.2. Experimental Apparatuses and Incubations
2.3. Measurements
2.3.1. In Vitro DM and Nutrients Digestibility
2.3.2. Fermentation Parameter
2.3.3. Microbial Protein Synthesis
- The first centrifugation was performed at 1000× g for 10 min at 5 °C to discard residual feed particles.
- The supernatant from the first centrifugation was subjected to a second centrifugation step at 11,250× g for 20 mi at 5 °C. Afterward, the supernatant was carefully removed using plastic pipettes, and the resulting pellets were resuspended in 200 mL of McDougall’s solution and thoroughly mixed using a lab spoon.
- The material obtained from the second centrifugation was further processed in a third centrifugation step at 16,250× g for 20 mi at 5 °C. The final supernatant was discarded using a plastic pipette.
2.3.4. Methane Analysis
2.3.5. Chemical Analysis
2.3.6. Calculations
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
N | Nitrogen |
NH3-N | Ammonia Nitrogen |
CP | Crude Protein |
TMR | Total Mixed Ratio |
DM | Dry Matter |
NDF | Neutral Detergent Fiber |
VFA | Volatile Fatty Acids |
CH4 | Methane |
OM | Organic Matter |
NFC | Non-Fibrous Carbohydrate |
EMPS | Efficiency of Microbial Protein Synthesis |
RUP | Rumen Undegradable Protein |
RDP | Rumen Degradable Protein |
NAN | Non-Ammonia Nitrogen |
NANMN | Non-Ammonia Non-Microbial Nitrogen |
DMD | Dry Matter Disappearance |
GC | Gas Chromatograph |
FID | Flame Ionization Detector |
WS | Wind Speed |
AOAC | Association of Official Analytical Chemists |
SEM | Standard Error of the Mean |
L | Linear Effect |
Q | Quadratic Effect |
WSU/IACUC | Washington State University Institutional Animal Care and Use Committee |
ID | Inner Diameter |
OD | Outer Diameter |
N2 | Nitrogen Gas |
O2 | Oxygen |
H2SO4 | Sulfuric Acid |
15N | Nitrogen-15 (isotope) |
NH4 | Ammonium |
SO4 | Sulfate |
NaCl | Sodium Chloride |
H | Hydrogen |
Ar | Argon |
CO2 | Carbon Dioxide |
ppm | Parts per Million |
mg/m3 | Milligrams per Cubic Meter |
kPa | Kilopascal |
mL/min | Milliliters per Minute |
L/d | Liters per Day |
g/d | Grams per Day |
mmol/L | Millimoles per Liter |
mmol/d | Millimoles per Day |
AU | Area Unit |
R | Gas Constant |
°K | Kelvin |
References
- Akintan, O.; Gebremedhin, K.G.; Uyeh, D.D. Animal Feed Formulation—Connecting Technologies to Build a Resilient and Sustainable System. Animals 2024, 14, 1497. [Google Scholar] [CrossRef] [PubMed]
- Arai, T. The Development of Animal Nutrition and Metabolism and the Challenges of Our Time. Front. Vet. Sci. 2014, 1, 23. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Cherdthong, A.; Phesatcha, K.; Kang, S. Dietary Sources and Their Effects on Animal Production and Environmental Sustainability. Anim. Nutr. 2015, 1, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Deitmers, J.H.; Gresner, N.; Südekum, K.H. Opportunities and Limitations of a Standardisation of the Rumen Simulation Technique (RUSITEC) for Analyses of Ruminal Nutrient Degradation and Fermentation and on Microbial Community Characteristics. Anim. Feed. Sci. Technol. 2022, 289, 115325. [Google Scholar] [CrossRef]
- Vinyard, J.R.; Faciola, A.P. Unraveling the Pros and Cons of Various in Vitro Methodologies for Ruminant Nutrition: A Review. Transl. Anim. Sci. 2022, 6, txac130. [Google Scholar] [CrossRef]
- Firkins, J.L. Advances in Rumen Efficiency. Appl. Anim. Sci. 2021, 37, 388–403. [Google Scholar] [CrossRef]
- Shaw, C.A.; Park, Y.; Gonzalez, M.; Duong, R.A.; Pandey, P.K.; Brooke, C.G.; Hess, M. A Comparison of Three Artificial Rumen Systems for Rumen Microbiome Modeling. Fermentation 2023, 9, 953. [Google Scholar] [CrossRef]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The Rumen Microbiome: A Crucial Consideration When Optimising Milk and Meat Production and Nitrogen Utilisation Efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef]
- Hristov, A.N.; Bannink, A.; Crompton, L.A.; Huhtanen, P.; Kreuzer, M.; McGee, M.; Nozière, P.; Reynolds, C.K.; Bayat, A.R.; Yáñez-Ruiz, D.R.; et al. Invited Review: Nitrogen in Ruminant Nutrition: A Review of Measurement Techniques. J. Dairy Sci. 2019, 102, 5811–5852. [Google Scholar] [CrossRef]
- McDougall, E.I. Studies on Ruminant Saliva. Biochem. J. 1947, 43, 99–109. [Google Scholar] [CrossRef]
- Oss, D.B.; Ribeiro, G.O.; Marcondes, M.I.; Yang, W.Z.; Beauchemin, K.A.; Forster, R.J.; McAllister, T.A. Synergism of Cattle and Bison Inoculum on Ruminal Fermentation and Select Bacterial Communities in an Artificial Rumen (Rusitec) Fed a Barley Straw Based Diet. Front. Microbiol. 2016, 7, 2032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, N.; Shen, W.; Zhao, S.; Wang, J. Synchrony Degree of Dietary Energy and Nitrogen Release Influences Microbial Community, Fermentation, and Protein Synthesis in a Rumen Simulation System. Microorganisms 2020, 8, 231. [Google Scholar] [CrossRef] [PubMed]
- Brandao, V.L.N.; Faciola, A.P. Unveiling the Relationships between Diet Composition and Fermentation Parameters Response in Dual-Flow Continuous Culture System: A Meta-Analytical Approach. Transl. Anim. Sci. 2019, 3, 1064–1075. [Google Scholar] [CrossRef]
- Brooks, M.A.; Porter, J.H.; Kerley, M.S. Assessment of Amino Acid Supplementation on Rumen Microbial Efficiency and Nitrogen Metabolism Using a Continuous-Culture System. Prof. Anim. Sci. 2011, 27, 152–159. [Google Scholar] [CrossRef]
- Brandao, V.L.N.; Marcondes, M.I.; Faciola, A.P. Comparison of Microbial Fermentation Data from Dual-Flow Continuous Culture System and Omasal Sampling Technique: A Meta-Analytical Approach. J. Dairy Sci. 2020, 103, 2347–2362. [Google Scholar] [CrossRef]
- Czerkawski, J.W.; Breckenridge, G. Design and Development of a Long-Term Rumen Simulation Technique (Rusitec). Br. J. Nutr. 1977, 38, 371–384. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001; ISBN 0309069971. [Google Scholar]
- Rahman, S.; Borhan, M.S.; Swanson, K. Greenhouse Gas Emissions from Beef Cattle Pen Surfaces in North Dakota. Environ. Technol. 2013, 34, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, G.O.; Gonçalves, L.C.; Pereira, L.G.R.; Chaves, A.V.; Wang, Y.; Beauchemin, K.A.; McAllister, T.A. Effect of Fibrolytic Enzymes Added to a Andropogon gayanus Grass Silage-Concentrate Diet on Rumen Fermentation in Batch Cultures and the Artificial Rumen (Rusitec). Animal 2015, 9, 1153–1162. [Google Scholar] [CrossRef]
- Capelari, M.; Johnson, K.A.; Latack, B.; Roth, J.; Powers, W. The Effect of Encapsulated Nitrate and Monensin on Ruminal Fermentation Using a Semi-Continuous Culture System. J. Anim. Sci. 2018, 96, 3446–3459. [Google Scholar] [CrossRef]
- Giraldo, L.A.; Tejido, M.L.; Ranilla, M.J.; Carro, M.D. Effects of Exogenous Cellulase Supplementation on Microbial Growth and Ruminal Fermentation of a High-Forage Diet in Rusitec Fermenters. J. Anim. Sci. 2007, 85, 1962–1970. [Google Scholar] [CrossRef]
- Berthelot, M.P.E. Viotet d’aniline. Rep. Chim. Appl. 1859, 1, 284. [Google Scholar]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Stern, M.D.; Firkins, J.L. Comparison of Nitrogen-15 and Purines as Microbial Markers in Continuous Culture. J. Anim. Sci. 1996, 74, 1375–1381. [Google Scholar] [CrossRef]
- Brandao, V.L.N.; Silva, L.G.; Paula, E.M.; Monteiro, H.F.; Dai, X.; Lelis, A.L.J.; Faccenda, A.; Poulson, S.R.; Faciola, A.P. Effects of Replacing Canola Meal with Solvent-Extracted Camelina Meal on Microbial Fermentation in a Dual-Flow Continuous Culture System. J. Dairy Sci. 2018, 101, 9028–9040. [Google Scholar] [CrossRef]
- Krizsan, S.J.; Ahvenjärvi, S.; Volden, H.; Broderick, G.A. Estimation of Rumen Outflow in Dairy Cows Fed Grass Silage-Based Diets by Use of Reticular Sampling as an Alternative to Sampling from the Omasal Canal. J. Dairy Sci. 2010, 93, 1138–1147. [Google Scholar] [CrossRef]
- Boguski, T.K. Environmental Science and Technology Briefs for Citizens; Center for Hazardous Substance Research: Manhattan, KS, USA, 2006; pp. 1–2. [Google Scholar]
- AOAC International. Official Methods of Analysis, 18th ed.; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2006; ISBN 0935584870. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; McAllister, T.A.; Rode, L.M.; Beauchemin, K.A.; Morgavi, D.P.; Nsereko, V.L.; Iwaasa, A.D.; Yang, W. Effects of an Exogenous Enzyme Preparation on Microbial Protein Synthesis, Enzyme Activity and Attachment to Feed in the Rumen Simulation Technique (Rusitec). Br. J. Nutr. 2001, 85, 325–332. [Google Scholar] [CrossRef]
- Carro, M.D.; Lebzien, P.; Rohr, K. Influence of Yeast Culture on the in Vitro Fermentation (Rusitec) of Diets Containing Variable Portions of Concentrates. Anim. Feed. Sci. Technol. 1992, 37, 209–220. [Google Scholar] [CrossRef]
- Carro, M.D.; Ranilla, M.J.; Martín-Garca, A.I.; Molina-Alcaide, E. Comparison of Microbial Fermentation of High- and Low-Forage Diets in Rusitec, Single-Flow Continuous-Culture Fermenters and Sheep Rumen. Animal 2009, 3, 527–534. [Google Scholar] [CrossRef]
- Mcallisterl, R.A.; Moustafa, S.M.S.; Cheng, K.-J.; Newbold, C.J.; McKJain, N.; Wallace, R.J. Effect of Salinomycin on Fermentation and Nitrogen Metabolism in the Artificial Rumen. Can. J. Anim. Sci. 1994, 74, 575–578. [Google Scholar] [CrossRef]
- Avila-Stagno, J.; Chaves, A.V.; Ribeiro, G.O.; Ungerfeld, E.M.; McAllister, T.A. Inclusion of Glycerol in Forage Diets Increases Methane Production in a Rumen Simulation Technique System. Br. J. Nutr. 2014, 111, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Romero-Pérez, A.; Okine, E.K.; Guan, L.L.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. Effects of 3-Nitrooxypropanol and Monensin on Methane Production Using a Forage-Based Diet in Rusitec Fermenters. Anim. Feed. Sci. Technol. 2016, 220, 67–72. [Google Scholar] [CrossRef]
- Lindsay, D.B.; Reynolds, C.K. Metabolism of the Portal-Drained Viscera and Liver. In Quantitative Aspects of Ruminant Digestion and Metabolism; Dykstra, J., Forbes, J., France, J., Eds.; CAB International: Wallingford, UK, 2005; pp. 311–343. [Google Scholar]
- Russell, J.B.; O’Connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: I. Ruminal Fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef]
- Coe, M.L.; Nagaraja, T.G.; Sun, Y.D.; Wallace, N.; Towne, E.G.; Kemp, K.E.; Hutcheson, J.P. Effect of Virginiamycin on Ruminal Fermentation in Cattle During Adaptation to a High Concentrate Diet and During an Induced Acidosis. J. Anim. Sci. 1999, 77, 2259–2268. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy Contributions of Volatile Fatty Acids from the Gastrointestinal Tract in Various Species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [PubMed]
- Marounek, M.; Fliegrova, K.; Bartos, S. Metabolism and Some Characteristics of Ruminal Strains of Megasphaera elsdenii. Appl. Environ. Microbiol. 1989, 55, 1570–1573. [Google Scholar] [CrossRef]
- He, B.; Fan, Y.; Wang, H. Lactate Uptake in the Rumen and Its Contributions to Subacute Rumen Acidosis of Goats Induced by High-Grain Diets. Front. Vet. Sci. 2022, 9, 964027. [Google Scholar] [CrossRef] [PubMed]
- Salter, L.D.; Esdale, W.J. In Vitro Lactate Metabolism by Ruminal Ingesta. Appl. Microbiol. 1968, 16, 680–688. [Google Scholar] [CrossRef]
- Li, M.M.; Ghimire, S.; Wenner, B.A.; Kohn, R.A.; Firkins, J.L.; Gill, B.; Hanigan, M.D. Effects of Acetate, Propionate, and PH on Volatile Fatty Acid Thermodynamics in Continuous Cultures of Ruminal Contents. J. Dairy Sci. 2022, 105, 8879–8897. [Google Scholar] [CrossRef]
- Esdale, W.J.; Broderick, G.A.; Satter, L.D. Measurement of Ruminal Volatile Fatty Acid Production from Alfalfa Hay or Corn Silage Rations Using a Continuous Infusion Isotope Dilution Technique. J. Dairy Sci. 1968, 51, 1823–1830. [Google Scholar] [CrossRef]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.R.; Rowntree, J.E. INVITED REVIEW: Methane Sources, Quantification, and Mitigation in Grazing Beef Systems. Appl. Anim. Sci. 2020, 36, 556–573. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.-P.; Newbold, J. Methane Production by Ruminants: Its Contribution to Global Warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Effects of Diet Fermentability on Efficiency of Microbial Nitrogen Production in Lactating Dairy Cows. J. Dairy Sci. 2003, 86, 195–207. [Google Scholar] [CrossRef]
- Schwab, E.C.; Schwab, C.G.; Shaver, R.D.; Girard, C.L.; Putnam, D.E.; Whitehouse, N.L. Dietary Forage and Nonfiber Carbohydrate Contents Influence B-Vitamin Intake, Duodenal Flow, and Apparent Ruminal Synthesis in Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 174–187. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen Metabolism in the Rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef]
Ingredient Composition | % DM |
---|---|
Corn silage | 24.20 |
Alfalfa hay | 12.52 |
Triticale silage | 12.27 |
Corn ground fine | 18.78 |
Soybean meal, 48% | 7.19 |
Urea | 1.06 |
Barley | 8.35 |
Rice hulls | 14.49 |
Mineral mixture 1 | 1.15 |
Chemical composition | |
Dry matter (DM, % of as fed) | 91.87 |
Crude protein (CP) | 13.37 |
Non-fibrous carbohydrate (NFC) 2 | 39.57 |
Neutral detergent fiber (NDF) | 36.14 |
Ether-extract (EE) | 2.90 * |
Ash | 8.02 |
Starch | 37.02 |
Metabolizable energy (ME),3 Mcal/kg of DM | 2.43 |
CP–ME ratio (g/Mcal) | 5.50 |
Item | Treatment | SEM 1 | p-Value 2 | |||
---|---|---|---|---|---|---|
Control | −15 | −30 | L | Q | ||
Fermentation parameter | ||||||
pH | 6.71 | 6.80 | 6.81 | 0.040 | 0.161 | 0.337 |
NH3-N Fermenter 3, mmol | 21.23 | 19.57 | 16.85 | 1.4182 | 0.451 | 0.070 |
NH3-N Outflow 4, mmol | 19.55 | 18.21 | 19.64 | 2.179 | 0.685 | 0.783 |
In vitro digestibility, g | ||||||
Dry matter | 59.06 | 56.62 | 60.75 | 1.721 | 0.292 | 0.128 |
Organic matter | 58.81 | 58.19 | 62.31 | 1.164 | 0.798 | 0.079 |
Crude protein | 46.68 | 42.75 | 47.43 | 2.561 | 0.319 | 0.408 |
Neutral detergent fiber | 24.26 | 21.74 | 27.06 | 2.510 | 0.451 | 0.144 |
Starch | 92.63 | 92.13 | 93.81 | 0.960 | 0.731 | 0.252 |
Gas production | ||||||
Total, L/d | 0.186 | 0.189 | 0.168 | 0.017 | 0.919 | 0.399 |
Methane, mg/d | 2.95 | 4.36 | 4.69 | 1.085 | 0.465 | 0.483 |
Volatile fatty acids production, mmol | ||||||
Acetate | 827.58 | 962.51 | 1338.27 | 218.19 | 0.702 | 0.135 |
Propionate | 444.81 | 361.59 | 545.05 | 64.045 | 0.426 | 0.105 |
Butyrate | 326.18 | 259.27 | 474.69 | 96.678 | 0.668 | 0.163 |
Total | 1598.57 | 1583.37 | 2358.00 | 348.37 | 0.978 | 0.107 |
Volatile fatty acids production, % | ||||||
Acetate | 61.73 | 64.67 | 63.27 | 2.145 | 0.370 | 0.979 |
Propionate | 21.03 | 19.98 | 20.56 | 0.566 | 0.232 | 0.936 |
Butyrate | 17.24 | 15.35 | 16.17 | 2.450 | 0.610 | 0.967 |
Item | Treatment | SEM 1 | p-Value 2 | |||
---|---|---|---|---|---|---|
Control | −15 | −30 | L | Q | ||
Microbial protein synthesis | ||||||
NH3-N, g/d 3 | 0.11 | 0.12 | 0.12 | 0.024 | 0.805 | 0.856 |
NAN, g/d 4 | 0.33 | 0.30 | 0.30 | 0.028 | 0.396 | 0.556 |
Bacterial N, g/g 5 | 0.25 | 0.23 | 0.19 | 0.024 | 0.640 | 0.111 |
NANMN, g/d 6 | 0.09 | 0.07 | 0.09 | 0.012 | 0.247 | 0.191 |
N dig | 0.83 | 0.81 | 0.83 | 0.014 | 0.325 | 0.349 |
N use efficiency 7 | 0.54 | 0.54 | 0.45 | 0.053 | 0.977 | 0.158 |
g Bac/OM dig, g/d 8 | 34.93 | 32.01 | 24.32 | 3.003 | 0.523 | 0.028 |
RUP flow 9 | 0.34 | 0.31 | 0.33 | 0.022 | 0.355 | 0.847 |
N flow 10 | 0.58 | 0.54 | 0.51 | 0.007 | 0.006 | 0.002 |
RDP flow 11 | 0.21 | 0.22 | 0.18 | 0.021 | 0.754 | 0.223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, Í.R.R.d.; Silva, L.d.N.C.d.; Carrari, I.F.; Leite, G.B.C.; Paula, E.M.d.; Cezar, A.M.; Marcondes, M.I. The Effect of Saliva with Different Nitrogen Compositions on Ruminal Fermentation in a Rumen Simulator Technique (Rusitec®) System Fed a Lactating Dairy Cow Diet. Fermentation 2025, 11, 340. https://doi.org/10.3390/fermentation11060340
Castro ÍRRd, Silva LdNCd, Carrari IF, Leite GBC, Paula EMd, Cezar AM, Marcondes MI. The Effect of Saliva with Different Nitrogen Compositions on Ruminal Fermentation in a Rumen Simulator Technique (Rusitec®) System Fed a Lactating Dairy Cow Diet. Fermentation. 2025; 11(6):340. https://doi.org/10.3390/fermentation11060340
Chicago/Turabian StyleCastro, Ícaro Rainyer Rodrigues de, Luiza de Nazaré Carneiro da Silva, Isabela Fonseca Carrari, Giulia Berzoini Costa Leite, Eduardo Marostegan de Paula, Amanda Moelemberg Cezar, and Marcos Inácio Marcondes. 2025. "The Effect of Saliva with Different Nitrogen Compositions on Ruminal Fermentation in a Rumen Simulator Technique (Rusitec®) System Fed a Lactating Dairy Cow Diet" Fermentation 11, no. 6: 340. https://doi.org/10.3390/fermentation11060340
APA StyleCastro, Í. R. R. d., Silva, L. d. N. C. d., Carrari, I. F., Leite, G. B. C., Paula, E. M. d., Cezar, A. M., & Marcondes, M. I. (2025). The Effect of Saliva with Different Nitrogen Compositions on Ruminal Fermentation in a Rumen Simulator Technique (Rusitec®) System Fed a Lactating Dairy Cow Diet. Fermentation, 11(6), 340. https://doi.org/10.3390/fermentation11060340