Effects of Lactiplantibacillus plantarum from Homemade Pickles on Mixed Maize–Soybean Silage Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical, Physical, and Microbiological Properties
2.2. Aerobic Stability
2.3. In Vitro Digestibility and Feed Value
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical, Physical, and Microbiological Properties
3.2. Aerobic Stability
3.3. In Vitro Digestibility and Feed Value
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, A.P.M.; Santos, E.M.; Araújo, G.G.L.; Oliveira, J.S.; Zanine, A.M.; Pinho, R.M.A.; Cruz, G.F.L.; Ferreira, D.J.; Perazzo, A.F.; Pereira, D.M. Effect of inoculation with preactivated Lactobacillus buchneri and urea on fermentative profile, aerobic stability and nutritive value in corn silage. Agriculture 2020, 10, 335. [Google Scholar] [CrossRef]
- Zeng, T.; Li, X.; Guan, H.; Yang, W.; Liu, W.; Liu, J.; Du, Z.; Li, X.; Xiao, Q.; Wang, X. Dynamic microbial diversity and fermentation quality of the mixed silage of corn and soybean grown in strip intercropping system. Bioresour. Technol. 2020, 313, 123655. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, B.F.; Sales, G.F.C.; Schwan, R.F.; Ávila, C.L.S. Criteria for lactic acid bacteria screening to enhance silage quality. J. Appl. Microbiol. 2021, 130, 341–355. [Google Scholar] [CrossRef]
- Queiroz, O.C.M.; Ogunade, I.M.; Weinberg, Z.; Adesogan, A.T. Silage review: Foodborne pathogens in silage and their mitigation by silage additives. J. Dairy Sci. 2018, 101, 4132–4142. [Google Scholar] [CrossRef]
- Tahir, M.; Wang, T.; Zhang, J.; Xia, T.; Deng, X.; Cao, X.; Zhong, J. Compound lactic acid bacteria enhance the aerobic stability of Sesbania cannabina and corn mixed silage. BMC Microbiol. 2025, 25, 68. [Google Scholar] [CrossRef] [PubMed]
- Hanif, A.; Li, F.; Usman, S.; Sheoran, N.; Guo, X. Bacterial diversity, chemical composition, and fermentation quality of alfalfa-based total mixed ration silage inoculated with Lactobacillus reuteri and Lentilactobacillus buchneri. Fermentation 2025, 11, 164. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wang, Y.; Gao, L.; Wu, Y.; Li, X.; Sun, J.; Jiang, J. The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef] [PubMed]
- Plessas, S. Advancements in the use of fermented fruit juices by lactic acid bacteria as functional foods: Prospects and challenges of Lactiplantibacillus (Lpb.) plantarum subsp. plantarum application. Fermentation 2021, 8, 6. [Google Scholar] [CrossRef]
- Rizzi, F.; Juan, B.; Espadaler-Mazo, J.; Capellas, M.; Huedo, P. Lactiplantibacillus plantarum KABP051: Stability in fruit juices and production of bioactive compounds during their fermentation. Foods 2024, 13, 3851. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiong, H.; Wen, Z.; Tian, H.; Chen, Y.; Wu, L.; Guo, Y.; Sun, B. Effects of different concentrations of Lactobacillus plantarum and Bacillus licheniformis on silage quality, in vitro fermentation and microbial community of hybrid Pennisetum. Animals 2022, 12, 1752. [Google Scholar] [CrossRef]
- Erdem, B.; Kıray, E.; Kariptaş, E.; Tulumoğlu, Ş.; Akıllı, A. Characterization of probiotic abilities of lactic acid bacteria from traditional pickle juice and shalgam. In Research and Reviews in Science and Mathematics, 1st ed.; Akgül, H., Doğan, H.H., Yüksel, M., Karaman, O., Eds.; Gece Publishing: Ankara, Turkey, 2021; Volume 1, pp. 33–50. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOCS. Approved Procedure am 5–04, rapid determination of oil/fat utilizing high temperature solvent extraction. In Official Procedure; American Oil Chemists’ Society: Urbana, IL, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.D.; Lewis, B.A. Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- ISO Standard 10520; Native Starch. Determination of Starch Content. Ewers Polarimetric Method. ISO: Geneva, Switzerland, 1997.
- Singh, D.; Choudhary, A. Potential of maize cultivars for nutrients, yield and silage quality. Forage Res. 2021, 47, 159–166. [Google Scholar]
- Kılıç, A. Determined of Quality in Roughage; Hasat Publication: İstanbul, Turkey, 2006; pp. 68–69. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Research Council: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Rohweder, D.A.; Barnes, R.F.; Jorgensen, N. Proposed hay grading standards based on laboratory analyses for evaluating quality. J. Anim. Sci. 1978, 47, 747–759. [Google Scholar] [CrossRef]
- King, D.A.; Hunt, M.C.; Barbut, S.; Claus, J.R.; Cornforth, D.P.; Joseph, P.; Kim, Y.H.B.; Lindahl, G.; Mancini, R.A.; Nair, M.N. American meat science association guidelines for meat color measurement. Meat Muscle Biol. 2023, 6, 12473. [Google Scholar] [CrossRef]
- Seale, D.R.; Pahlow, G.; Spoelstra, S.F.; Lindgren, S.; Dellaglio, F.; Lowe, J.F. Methods for the microbiological analysis of silage. In Proceeding of the Eurobac Conference; Sveriges Lantbruksuniv: Uppsala, Sweden, 1990; pp. 147–164. [Google Scholar]
- Ashbell, G.; Weinberg, Z.; Azrieli, A.; Hen, Y.; Horev, B. A simple system to study the aerobic deterioration of silages. Can. Agric. Eng. 1991, 33, 391–394. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Serbester, U.; Akkaya, M.R.; Yucel, C.; Gorgulu, M. Comparison of yield, nutritive value, and in vitro digestibility of monocrop and intercropped corn-soybean silages cut at two maturity stages. Ital. J. Anim. Sci. 2015, 14, 3636. [Google Scholar] [CrossRef]
- Carpici, E.B. Nutritive values of soybean silages ensiled with maize at different rates. Legume Res.-Int. J. 2016, 39, 810–813. [Google Scholar] [CrossRef]
- Erdal, S.; Pamukcu, M.; Curek, M.; Kocaturk, M.; Dogu, O.Y. Silage yield and quality of row intercropped maize and soybean in a crop rotation following winter wheat. Arch. Agron. Soil Sci. 2016, 62, 1487–1495. [Google Scholar] [CrossRef]
- Kızılşımşek, M.; Günaydın, T.; Aslan, A.; Keklik, K.; Açıkgöz, H. Improving silage feed quality of maize intercropped with some legumes. Turk. J. Agric. Nat. Sci. 2020, 7, 165–169. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Ke, W.C.; Vyas, D.; Adesogan, A.T.; Franco, M.; Li, F.H.; Bai, J.; Guo, X.S. Antioxidant status, chemical composition and fermentation profile of alfalfa silage ensiled at two dry matter contents with a novel Lactobacillus plantarum strain with high-antioxidant activity. Anim. Feed Sci. Technol. 2021, 272, 114751. [Google Scholar] [CrossRef]
- Da Silva, É.B.; Liu, X.; Mellinger, C.; Gressley, T.F.; Stypinski, J.D.; Moyer, N.A.; Kung, L., Jr. Effect of dry matter content on the microbial community and on the effectiveness of a microbial inoculant to improve the aerobic stability of corn silage. J. Dairy Sci. 2022, 105, 5024–5043. [Google Scholar] [CrossRef]
- Khan, N.A.; Yu, P.; Ali, M.; Cone, J.W.; Hendriks, W.H. Nutritive value of maize silage in relation to dairy cow performance and milk quality. J. Sci. Food Agric. 2015, 95, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Heinzen, C., Jr.; Pupo, M.R.; Ghizzi, L.G.; Diepersloot, E.C.; Ferraretto, L.F. Effects of a genetically modified corn hybrid with α-amylase and storage length on fermentation profile and starch disappearance of whole-plant corn silage and earlage. J. Dairy Sci. 2024, 107, 3631–3641. [Google Scholar] [CrossRef] [PubMed]
- Marbun, T.D.; Lee, K.; Song, J.; Kwon, C.H.; Yoon, D.; Lee, S.M.; Kang, J.; Lee, C.; Cho, S.; Kim, E.J. Effect of lactic acid bacteria on the nutritive value and in vitro ruminal digestibility of maize and rice straw silage. Appl. Sci. 2020, 10, 7801. [Google Scholar] [CrossRef]
- Sarubbi, F.; Chiariotti, A.; Baculo, R.; Contò, G.; Huws, S.A. Nutritive value of maize and sorghum silages: Fibre fraction degradation and rumen microbial density in buffalo cows. Czech J. Anim. Sci. 2014, 6, 278–287. [Google Scholar] [CrossRef]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Filik, A.G.; Filik, G. Nutritive value of ensiled Amaranthus powellii Wild. treated with salt and barley. Trop. Anim. Health Prod. 2021, 53, 52. [Google Scholar] [CrossRef]
- Sahar, A.K.; Vurarak, Y.; Cubukcu, P.; Oluk, C.A. Effects of storage length and variety on some quality and color parameters in soybean silage. J. Elementol. 2022, 27, 981–994. [Google Scholar] [CrossRef]
- Batista, V.V.; Adami, P.F.; Moraes, P.V.D.; Oligini, K.F.; Giacomel, C.L.; Link, L. Row arrangements of maize and soybean intercrop on silage quality and grain yield. J. Agric. Sci. 2019, 11, 286. [Google Scholar] [CrossRef]
- Bolson, D.C.; Jacovaci, F.A.; Gritti, V.C.; Bueno, A.V.L.; Daniel, J.L.P.; Nussio, L.G.; Jobim, C.C. Intercropped maize-soybean silage: Effects on forage yield, fermentation pattern and nutritional composition. Grassl. Sci. 2022, 68, 3–12. [Google Scholar] [CrossRef]
- Lee, S.S.; Lee, H.J.; Paradhipta, D.H.V.; Joo, Y.H.; Kim, S.B.; Kim, D.H.; Kim, S.C. Temperature and microbial changes of corn silage during aerobic exposure. Asian-Australas. J. Anim. Sci. 2019, 32, 988. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, B.D.; Meeske, R.; Langa, T.; Motiang, M.D.; Modiba, S.; Mkhize, N.R.; Groenewald, I.B. Effects of ensiling forage soybean (Glycine max (L.) Merr.) with or without bacterial inoculants on the fermentation characteristics, aerobic stability and nutrient digestion of the silage by Damara rams. Small Rumin. Res. 2016, 134, 90–96. [Google Scholar] [CrossRef]
- Wang, M.; Yang, C.; Jia, L.; Yu, K. Effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation characteristics and aerobic stability of whipgrass silage in laboratory silos. Grassl. Sci. 2014, 60, 233–239. [Google Scholar] [CrossRef]
- Kansagara, Y.G.; Savsani, H.H.; Chavda, M.R.; Chavda, J.A.; Makwana, R.B.; Karangiya, V.K.; Belim, S.Y.; Makwana, K.R. Effects of xylanase and bacterial inoculants on in vitro rumen fermentation pattern of seasonal pasture hay and green maize based silage. Indian J. Vet. Sci. Biotechnol. 2023, 19, 47–50. [Google Scholar] [CrossRef]
Items | Maize | Soya Bean |
---|---|---|
Dry matter, g/kg fresh plant | 319.4 | 279.8 |
Organic matter, g/kg DM | 928.6 | 881.2 |
Ash, g/kg DM | 71.38 | 118.8 |
Crude protein, g/kg DM | 88.1 | 145.1 |
Ether extract, g/kg DM | 33.9 | 58.5 |
Starch, g/kg DM | 281.1 | 176.5 |
Crude fiber, g/kg DM | 335.1 | 240.2 |
Acid detergent fibers, g/kg DM | 163.7 | 322.0 |
Neutral detergent fibers, g/kg DM | 584.2 | 504.2 |
Hemicellulose, g/kg DM | 153.1 | 182.3 |
Silages | Dry Matter (g/kg) | Organic Matter (g/kg DM) | Ash (g/kg DM) | Crude Protein (g/kg DM) | Ether Extract (g/kg DM) | |
---|---|---|---|---|---|---|
Uninoculated | Maize | 303.4 b | 952.9 b | 47.1 g | 65.0 h | 48.2 i |
Soybean | 296.7 b | 901.9 h | 98.1 a | 159.6 a | 93.1 b | |
75% Maize + 25% Soybean | 296.8 b | 925.7 d | 74.3 e | 99.4 de | 74.3 f | |
50% Maize + 50% Soybean | 298.2 b | 926.9 d | 73.1 e | 102.0 d | 60.4 g | |
25% Maize + 75% Soybean | 303.2 b | 905.2 f | 94.8 b | 117.1 c | 83.0 c | |
SEM | 1.947 | 6.107 | 6.107 | 10.219 | 5.321 | |
Inoculated | Maize | 332.3 a | 968.2 a | 31.8 h | 68.2 g | 56.6 h |
Soybean | 294.4 b | 918.9 e | 81.1 d | 124.7 b | 95.5 a | |
75% Maize + 25% Soybean | 328.0 a | 942.3 c | 57.7 f | 97.9 e | 76.2 e | |
50% Maize + 50% Soybean | 306.9 b | 953.8 b | 46.3 g | 88.4 f | 61.7 g | |
25% Maize + 75% Soybean | 303.5 b | 914.6 e | 85.4 c | 117.3 c | 79.6 d | |
SEM | 3.088 | 6.806 | 6.806 | 6.767 | 4.600 | |
Pooled SEM | 2.529 | 4.860 | 4.860 | 6.059 | 3.432 | |
p-values | Silage | 0.000 | <0.001 | <0.001 | <0.001 | <0.001 |
Inoculant | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Silage × Inoculant | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Silages | Crude Fiber (g/kg DM) | Starch (g/kg DM) | ADF (g/kg DM) | NDF (g/kg DM) | Hcel (g/kg DM) | |
---|---|---|---|---|---|---|
Uninoculated | Maize | 184.3 e | 409.6 b | 223.1 d | 406.7 a | 183.6 a |
Soybean | 157.6 f | 166.5 g | 290.2 a | 364.5 b | 150.7 b | |
75% Maize + 25% Soybean | 184.6 e | 247.8 e | 219.0 d | 340.4 bc | 113.5 d | |
50% Maize + 50% Soybean | 213.1 b | 220.3 f | 266.9 c | 407.5 a | 140.6 bc | |
25% Maize + 75% Soybean | 217.6 a | 106.3 h | 290.4 a | 398.4 a | 99.6 d | |
SEM | 7.302 | 33.99 | 10.45 | 9.06 | 9.98 | |
Inoculated | Maize | 146.9 g | 415.9 a | 166.1 g | 305.3 d | 131.6 c |
Soybean | 200.0 c | 62.3 j | 277.2 b | 349.4 bc | 66.9 e | |
75% Maize + 25% Soybean | 160.0 f | 299.0 c | 180. 7 f | 284.0 e | 96.8 d | |
50% Maize + 50% Soybean | 161.4 f | 255.6 d | 189.0 e | 300.6 de | 105.0 d | |
25% Maize + 75% Soybean | 191.3 d | 80.9 i | 70.8 bc | 309.3 d | 35.8 f | |
SEM | 6.760 | 44.740 | 15.822 | 7.461 | 11.119 | |
Pooled SEM | 5.336 | 27.358 | 10.366 | 10.212 | 9.287 | |
p-values | Silage | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Inoculant | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Silage × Inoculant | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Silages | Digestible Dry Matter (%) | Dry Matter Intake (% of Body Weight) | Relative Feed Value | |
---|---|---|---|---|
Uninoculated | Maize | 71.5 d | 2.95 e | 164 ef |
Soybean | 66.3 g | 3.30 d | 169 de | |
75% Maize + 25% Soybean | 71.8 d | 3.53 c | 196 c | |
50% Maize + 50% Soybean | 68.1 e | 2.95 e | 156 f | |
25% Maize + 75% Soybean | 66.3 g | 3.02 e | 155 f | |
SEM | 0.813 | 0.077 | 5.58 | |
Inoculated | Maize | 76.0 a | 3.94 b | 232 b |
Soybean | 67.3 f | 3.44 cd | 179 d | |
75% Maize + 25% Soybean | 74.2 c | 4.23 a | 245 a | |
50% Maize + 50% Soybean | 67.8 ef | 4.00 b | 230 b | |
25% Maize + 75% Soybean | 74.8 b | 3.8 8 b | 204 c | |
SEM | 1.233 | 0.090 | 8.00 | |
Pooled SEM | 0.808 | 0.104 | 7.19 | |
p-values | Silage | <0.001 | <0.001 | <0.001 |
Inoculant | <0.001 | <0.001 | <0.001 | |
Inoculant x Silage | <0.001 | <0.001 | <0.001 |
Silages | Lightness (L*) | Redness (a*) | Yellowness (b*) | Chroma (C*) | Hue Angle (h°) | |
---|---|---|---|---|---|---|
Uninoculated | Maize | 29.7 bcd | 1.84 | 8.88 c | 9.08 c | 78.3 ab |
Soybean | 26.0 cd | 2.23 | 9.02 c | 9.30 c | 76.2 abc | |
75% Maize + 25% Soybean | 28.8 bcd | 2.68 | 9.84 bc | 10.2 c | 74.8 abc | |
50% Maize + 50% Soybean | 30.3 abc | 3.60 | 10.4 bc | 11.0 bc | 70.9 c | |
25% Maize + 75% Soybean | 25.3 d | 1.69 | 8.53 c | 8.71 c | 78.7 a | |
SEM | 0.702 | 0.255 | 0.235 | 0.282 | 1.187 | |
Inoculated | Maize | 33.6 a | 3.68 | 14.6 a | 15.3 a | 72.3 bc |
Soybean | 26.1 cd | 1.81 | 9.26 c | 9.44 c | 78.8 a | |
75% Maize + 25% Soybean | 31.2 ab | 2.25 | 12.3 ab | 13.3 ab | 78.1 ab | |
50% Maize + 50% Soybean | 29.8 abcd | 2.43 | 10.5 bc | 10.8 bc | 76.9 abc | |
25% Maize + 75% Soybean | 28.1b cd | 2.63 | 10.2 bc | 10.5 bc | 75.6 abc | |
SEM | 0.682 | 0.167 | 0.444 | 0.495 | 0.702 | |
Pooled SEM | 0.529 | 0.139 | 0.364 | 0.406 | 0.610 | |
p-values | Silage | 0.001 | 0.091 | 0.021 | 0.014 | 0.339 |
Inoculant | 0.061 | 0.537 | 0.001 | 0.001 | 0.639 | |
Silage × Inoculant | 0.489 | 0.004 | 0.016 | 0.010 | 0.024 |
Silages | Total Soluble Solids (% Bx) | pH0 | Flieg Score 1 | Silage Quality | |
---|---|---|---|---|---|
Uninoculated | Maize | 18.5 | 4.84 cd | 72.1 ab | Good |
Soybean | 19.5 | 5.42 a | 47.5 d | Medium | |
75% Maize + 25% Soybean | 18.5 | 4.83 cd | 71.2 ab | Good | |
50% Maize + 50% Soybean | 18.5 | 5.03 bc | 63.6 bc | Good | |
25% Maize + 75% Soybean | 19.5 | 5.38 a | 50.5 d | Medium | |
SEM | 0.233 | 0.087 | 3.467 | - | |
Inoculated | Maize | 19.3 | 4.67 d | 80.4 a | Excellent |
Soybean | 19.2 | 5.06 bc | 61.6 bc | Good | |
75% Maize + 25% Soybean | 19.3 | 4.87 cd | 75.9 a | Good | |
50% Maize + 50% Soybean | 18.7 | 4.75 d | 76.6 a | Good | |
25% Maize + 75% Soybean | 18.5 | 5.21 ab | 57.3 cd | Medium | |
SEM | 0.136 | 0.044 | 2.077 | - | |
Pooled SEM | 0.116 | 0.041 | 1.866 | - | |
p-values | Silage | 0.494 | <0.001 | <0.001 | - |
Inoculant | 0.700 | 0.001 | <0.001 | - | |
Silage × Inoculant | 0.140 | 0.048 | 0.620 | - |
Silages | Lactic Acid Bacteria (log10 cfu/g) | Yeast (log10 cfu/g) | Mold (log10 cfu/g) | |
---|---|---|---|---|
Uninoculated | Maize | 6.40 de | 6.23 b | nd |
Soybean | 6.73 bc | 7.03 a | nd | |
75% Maize + 25% Soybean | 6.17 f | 6.13 b | nd | |
50% Maize + 50% Soybean | 6.83 ab | 6.23 b | nd | |
25% Maize + 75% Soybean | 6.53 cd | 6.17 b | nd | |
SEM | 0.071 | 0.098 | ||
Inoculated | Maize | 6.30 ef | 6.13 b | nd |
Soybean | 7.00 a | 6.93 a | nd | |
75% Maize + 25% Soybean | 6.70 bc | 4.63 d | nd | |
50% Maize + 50% Soybean | 6.90 ab | 5.37 c | nd | |
25% Maize + 75% Soybean | 6.70 bc | 4.70 d | nd | |
SEM | 0.067 | 0.237 | - | |
Pooled SEM | 0.051 | 0.146 | - | |
p-values | Silage | <0.001 | <0.001 | - |
Inoculant | <0.001 | <0.001 | - | |
Silage × Inoculant | 0.003 | <0.001 | - |
Silages | pH5d | CO2 (g/kg DM) | Yeast (log10 cfu/g) | Mold (log10 cfu/g) | |
---|---|---|---|---|---|
Uninoculated | Maize | 4.65 c | 5.91 a | 6.22 a | 1.17 |
Soybean | 6.97 a | 5.35 a | 5.49 a | 0.00 | |
75% Maize + 25% Soybean | 5.11 bc | 3.15 b | 1.52 cd | 0.00 | |
50% Maize + 50% Soybean | 4.35 c | 3.34 b | 0.00 d | 1.84 | |
25% Maize + 75% Soybean | 5.28 bc | 2.08 cd | 0.00 d | 0.00 | |
SEM | 0.343 | 0.482 | 0.764 | 0.422 | |
Inoculated | Maize | 5.33 bc | 5.38 a | 5.32 ab | 1.17 |
Soybean | 6.37 ab | 2.92 bc | 4.78 ab | 0.00 | |
75% Maize + 25% Soybean | 5.11 bc | 1.76 d | 2.78 bc | 1.84 | |
50% Maize + 50% Soybean | 4.65 c | 1.83 d | 1.52 cd | 0.00 | |
25% Maize + 75% Soybean | 5.52 abc | 1.70 d | 0.00 d | 1.52 | |
SEM | 0.240 | 0.483 | 0.639 | 0.494 | |
Pooled SEM | 0.204 | 0.362 | 0.490 | 0.321 | |
p-values | Silage | 0.009 | 0.001 | 0.001 | 0.849 |
Inoculant | 0.677 | 0.001 | 0.661 | 0.663 | |
Silage × Inoculant | 0.722 | 0.030 | 0.479 | 0.477 |
Silages | IVOMD (%) | MEgp, (MJ/kg DM) | NEl, (MJ/kg DM) | |
---|---|---|---|---|
Uninoculated | Maize | 68.6 a | 9.62 a | 6.07 a |
Soybean | 59.7 d | 7.48 d | 5.25 bc | |
75% Maize + 25% Soybean | 58.5 e | 6.95 e | 4.53 d | |
50% Maize + 50% Soybean | 65.1 b | 8.48 b | 5.48 b | |
25% Maize + 75% Soybean | 63.0 c | 8.21 bc | 5.31 bc | |
SEM | 1.221 | 0.308 | 1.672 | |
Inoculated | Maize | 64.8 b | 8.44 bc | 5.25 bc |
Soybean | 58.3 e | 7.14 de | 4.72 d | |
75% Maize + 25% Soybean | 59.0 de | 7.00 e | 4.57 d | |
50% Maize + 50% Soybean | 64.2 b | 8.28 bc | 5.32 bc | |
25% Maize + 75% Soybean | 62.0 c | 7.99 c | 5.06 c | |
SEM | 0.891 | 0.202 | 0.103 | |
Pooled SEM | 0.751 | 0.184 | 0.103 | |
p-values | Silage | <0.001 | <0.001 | <0.001 |
Inoculant | <0.001 | 0.001 | <0.001 | |
Silage × Inoculant | 0.002 | 0.009 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çayıroğlu, H. Effects of Lactiplantibacillus plantarum from Homemade Pickles on Mixed Maize–Soybean Silage Quality. Fermentation 2025, 11, 269. https://doi.org/10.3390/fermentation11050269
Çayıroğlu H. Effects of Lactiplantibacillus plantarum from Homemade Pickles on Mixed Maize–Soybean Silage Quality. Fermentation. 2025; 11(5):269. https://doi.org/10.3390/fermentation11050269
Chicago/Turabian StyleÇayıroğlu, Hayrettin. 2025. "Effects of Lactiplantibacillus plantarum from Homemade Pickles on Mixed Maize–Soybean Silage Quality" Fermentation 11, no. 5: 269. https://doi.org/10.3390/fermentation11050269
APA StyleÇayıroğlu, H. (2025). Effects of Lactiplantibacillus plantarum from Homemade Pickles on Mixed Maize–Soybean Silage Quality. Fermentation, 11(5), 269. https://doi.org/10.3390/fermentation11050269