Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optimization of Biomass Production Using a Central Composite Design (CCD)
2.2. Extreme Vertex Design for Biomass Production in Solid Fermentation Using Oil Palm By-Product Blends
Determination of Laccase Enzyme Activity
2.3. Transcriptome Analysis
2.4. Determination of the Chemical Composition of PKC Fermented in Urea-Enriched Solid Medium
2.5. Statistical Analysis
3. Results and Discussion
3.1. Biomass Production Optimization
3.2. Biomass Production and Laccase Enzyme Activity in Solid-State Fermentation
3.3. Transcriptomic Analysis
3.4. Changes in the Chemical Composition of PKC Fermented
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, V.; Goala, M.; Kumar, P.; Singh, J.; Kumar, P. Integration of treated agro-based wastewaters (TAWs) management with mushroom cultivation. In Environmental Degradation: Causes and Remediation Strategies; Agro Environ Media, Agriculture and Environmental Science Academy: Haridwar, India, 2020; pp. 63–75. [Google Scholar] [CrossRef]
- Conceição, A.A.; Mendes, T.D.; Mendonça, S.; Quirino, B.F.; de Almeida, E.G.; de Siquiera, F.G. Nutraceutical Enrichment of Animal Feed by Filamentous Fungi Fermentation. Fermentation 2022, 8, 402. [Google Scholar] [CrossRef]
- Thamvithayakorn, P.; Phosri, C.; Pisutpaisal, N.; Krajangsang, S.; Whalley, A.J.S.; Suwannasai, N. Utilization of oil palm decanter cake for valuable laccase and manganese peroxidase enzyme production from a novel white-rot fungus, Pseudolagarobasidium sp. PP17-33. 3 Biotech 2019, 9, 417. [Google Scholar] [CrossRef] [PubMed]
- Azzahra, Y.R.; Toharmat, T.; Prihantoro, I. Bio-processing Plantation by-products with White Oyster Mushroom (Pleurotus ostreatus) to Improve Fermentability and Digestibility Based on Substrate Type and Fermentation Time. Bul. Peternak. 2022, 46, 228. [Google Scholar] [CrossRef]
- Santos, L.V.; Silva, R.R.; Silva, F.F.; Silva, J.W.D.; Barroso, D.S.; Silva, A.P.; Souza, S.O.; Santos, M.C. Increasing levels of palm kernel cake (Elaeis guineensis jacq.) in diets for feedlot cull cows. Chil. J. Agric. Res. 2019, 79, 628–635. [Google Scholar] [CrossRef]
- Olukomaiya, O.; Fernando, C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-state fermented plant protein sources in the diets of broiler chickens: A review. Anim. Nutr. 2019, 5, 319–330. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Amorim, G.M.; Azevêdo, J.A.G.; Godoy, M.G.; Freire, D.M.G. Solid-state fermentation of co-products from palm oil processing: Production of lipase and xylanase and effects on chemical composition. Biocatal Biotransform. 2018, 36, 381–388. [Google Scholar] [CrossRef]
- Cruz-Vázquez, A.; Tomasini, A.; Armas-Tizapantzi, A.; Marcial-Quino, J.; Montiel-González, A.M. Extracellular proteases and laccases produced by Pleurotus ostreatus PoB: The effects of proteases on laccase activity. Int. Microbiol. 2022, 25, 495–502. [Google Scholar] [CrossRef]
- Nur-Nazratul, F.M.Y.; Rakib, M.R.M.; Zailan, M.Z.; Yaakub, H. Enhancing in vitro ruminal digestibility of oil palm empty fruit bunch by biological pre-treatment with Ganoderma lucidum fungal culture. PLoS ONE 2021, 16, e0258065. [Google Scholar] [CrossRef]
- Boadu, K.B.; Nsiah-Asante, R.; Antwi, R.T.; Obirikorang, K.A.; Anokye, R.; Ansong, M. Influence of the chemical content of sawdust on the levels of important macronutrients and ash composition in Pearl oyster mushroom (Pleurotus ostreatus). PLoS ONE 2023, 18, e0287532. [Google Scholar] [CrossRef]
- Tudzynski, B. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 2014, 5, 656. [Google Scholar] [CrossRef]
- Davis, M.A.; Wong, K.H. Nitrogen Metabolism in Filamentous Fungi. In Cellular and Molecular Biology of Filamentous Fungi; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 325–338. [Google Scholar] [CrossRef]
- Velásquez-Quintero, C.; Merino-Restrepo, A.; Hormaza-Anaguano, A. Production, extraction, and quantification of laccase obtained from an optimized solid-state fermentation of corncob with white-rot fungi. J. Clean. Prod. 2022, 370, 133598. [Google Scholar] [CrossRef]
- Xu, F.; Chen, P.; Li, H.; Qiao, S.; Wang, J.; Wang, Y.; Wang, X.; Wu, B.; Liu, H.; Wang, C.; et al. Comparative transcriptome analysis reveals the differential response to cadmium stress of two Pleurotus fungi: Pleurotus cornucopiae and Pleurotus ostreatus. J. Hazard. Mater. 2021, 416, 125814. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fueyo, E.; Ruiz-Dueñas, F.J.; López-Lucendo, M.F.; Pérez-Boada, M.; Rencoret, J.; Gutiérrez, A.; Pisabarro, A.G.; Ramírez, L.; Martínez, A.T. A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. Biotechnol Biofuels 2016, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Datsomor, O.; Gou-qi, Z.; Miao, L. Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics. Sci. Rep. 2022, 12, 1129. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Y.; Luo, L.; Zhang, H.; Liao, Y.; Gou, C. Enhancement of the nutritional value of fermented corn stover as ruminant feed using the fungi Pleurotus spp. Sci. Rep. 2021, 11, 11961. [Google Scholar] [CrossRef]
- Venkateswarulu, T.C.; Prabhakar, K.V.; Kumar, R.B.; Krupanidhi, S. Modeling and optimization of fermentation variables for enhanced production of lactase by isolated Bacillus subtilis strain VUVD001 using artificial neural networking and response surface methodology. 3 Biotech 2017, 7, 186. [Google Scholar] [CrossRef]
- Durán-Sequeda, D.; Suspes, D.; Maestre, E.; Alfaro, M.; Pérez, G.; Ramírez, L.; Pisabarro, A.G.; Sierra, R. Effect of Nutritional Factors and Copper on the Regulation of Laccase Enzyme Production in Pleurotus ostreatus. J. Fungi 2022, 8, 7. [Google Scholar] [CrossRef]
- Tinoco-Valencia, R.; Gómez-Cruz, C.; Galindo, E.; Serrano-Carreón, L. Toward an understanding of the effects of agitation and aeration on growth and laccases production by Pleurotus ostreatus. J. Biotechnol. 2014, 177, 67–73. [Google Scholar] [CrossRef]
- Rubiano-Orozco, L.A.; Castro-Pacheco, A.C.; Jiménez-Rojas, F.; Fragoso-Castilla, P.J.; Ibarra-Rondón, A.J.; Rodríguez-Jiménez, D.M. Evaluación de la actividad lignocelulolítica de hongos cultivados en subproductos de la palma de aceite (Elaeis guineensis). Biotecnol. Sect. Agropecu. Agroind. 2024, 22, 70–86. [Google Scholar]
- Melanouri, E.-M.; Dedousi, M.; Diamantopoulou, P. Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part I: Screening for growth, endoglucanase, laccase and biomass production in the colonization pase. Carbon Resour. Convers. 2022, 5, 61–70. [Google Scholar] [CrossRef]
- Zhou, S.; Raouche, S.; Grisel, S.; Navarro, D.; Sigoillot, J.C.; Herpoël-Gimbert, I. Solid-state fermentation in multi-well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass. Microb. Biotechnol. 2015, 8, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef] [PubMed]
- Ariza Nieto, C.; Mayorga Mogollón, O.L.; Parra Forero, D.M.; Camargo Hernández, D.B.; Buitrago Albarado, C.P.; Moreno Rodríguez, J.M. Tecnología NIRS para el Análisis Rápido y Confiable de la Composición Química de Forrajes Tropicales; Corporación Colombiana de Investigación Agropecuaria (Agrosavia): Agustín Codazzi, Colombia, 2020. [Google Scholar] [CrossRef]
- Minitab Inc, “Minitab® 18” [Software de Análisis Estadístico]. 2017. Available online: https://www.minitab.com/es-mx/products/minitab/ (accessed on 30 October 2024).
- Naim, L.; Alsanad, M.A.; El Sebaaly, Z.; Shaban, N.; Abou Fayssal, S.; Sassine, Y.N. Variation of Pleurotus ostreatus (Jacq. Ex Fr.) P. Kumm. (1871) performance subjected to different doses and timings of nano-urea. Saudi J. Biol. Sci. 2020, 27, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.D.; Rodríguez da Luz, J.M.; Albino Paes, S.; Oliveira Ribeiro, J.J.; Soares da Silva, M.C.; Megumi Kasuya, M.C. Nitrogen Supplementation on the Productivity and the Chemical Composition of Oyster Mushroom. J. Food Res. 2012, 1, 113. [Google Scholar] [CrossRef]
- Sassine, Y.N.; Naim, L.; El Sebaaly, Z.; Abou Fayssal, S.; Alsanad, M.A.; Yordanova, M.H. Nano urea effects on Pleurotus ostreatus nutritional value depending on the dose and timing of application. Sci. Rep. 2021, 11, 5588. [Google Scholar] [CrossRef]
- Chiranjeevi, P.V.; Rajasekara, M.; Sathish, T. Enhancement of Laccase Production from Pleurotus ostreatus PVCRSP-7 by altering the Nutritional Conditions using Response Surface Methodology. BioResources 2014, 9, 4212–4225. [Google Scholar] [CrossRef]
- Déo, N.; Faustin, K. Effect of substrates and doses of urea on growth and yield of an oyster mushroom (Pleurotus ostreatus) in greenhouse. Int. J. Agric. Policy Res. 2015, 3, 314–322. [Google Scholar] [CrossRef]
- Sośnicka, A.; Kózka, B.; Makarova, K.; Giebułtowicz, J.; Klimaszewska, M.; Turło, J. Optimization of White-Rot Fungi Mycelial Culture Components for Bioremediation of Pharmaceutical-Derived Pollutants. Water 2022, 14, 1374. [Google Scholar] [CrossRef]
- Haider, A.; Alam, M.M.; Khan, A.A.; Zulfiqar, M.A. Optimization of Cultural Conditions for the Treatment of Pulp and Paper Industrial Effluent by Pleurotus ostreatus (L.). Pak. J. Agric. Res. 2019, 32, 507–513. [Google Scholar] [CrossRef]
- Agustin, F.; Elihasridas; Juliyarsi, I. The effect of urea supplementation and incubation time in fermentation process of bagasse by using Ganoderma lucidum on the growth of G. lucidum and the nutritive value of bagasse. IOP Conf. Ser. Earth Environ. Sci. 2019, 287, 012016. [Google Scholar] [CrossRef]
- Daou, M.; Faulds, C.B. Glyoxal oxidases: Their nature and properties. World J. Microbiol. Biotechnol. 2017, 33, 87. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.J.; Wei, F.; Wan, Z.; Dong, Y.; Lu, Y.; Yang, P.; Jin, Y.; Saddler, J. Elucidating the synergistic action between sulfonated lignin and lytic polysaccharide monooxygenases (LPMOs) in enhancing cellulose hydrolysis. Int. J. Biol. Macromol. 2025, 296, 139674. [Google Scholar] [CrossRef]
- Erickson, E.; Bleem, A.; Kuatsjah, E.; Werner, A.Z.; DuBois, J.L.; McGeehan, J.E.; Eltis, L.D.; Beckham, G.T. Critical enzyme reactions in aromatic catabolism for microbial lignin conversión. Nat. Catal. 2022, 5, 86–98. [Google Scholar] [CrossRef]
- Ning, D.; Wang, H.; Ding, C.; Lu, H. Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Biodegradation 2010, 21, 889–901. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, C.; Zhou, Y.; Zheng, S.; Hu, Q.; Zou, Y. Label-free comparative proteomic analysis of Pleurotus eryngii grown on sawdust, bagasse, and peanut shell substrates. J. Proteom. 2024, 294, 105074. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Wang, G.; Yang, M.; Yang, X.; Li, T.; Chen, G. De novo transcriptome analysis of Pleurotus djamor to identify genes encoding CAZymes related to the decomposition of corn stalk lignocellulose. J. Biosci. Bioeng. 2019, 128, 529–536. [Google Scholar] [CrossRef]
- Xie, C.; Gong, W.; Zhu, Z.; Zhou, Y.; Xu, C.; Yan, L.; Hu, Z.; Ai, L.; Peng, Y. Comparative secretome of white-rot fungi reveals co-regulated carbohydrate-active enzymes associated with selective ligninolysis of ramie stalks. Microb. Biotechnol. 2021, 14, 911–922. [Google Scholar] [CrossRef]
- Valadares, F.; Gonçalves, T.A.; Damasio, A.; Milagres, A.M.F.; Squina, F.M.; Segato, F.; Ferraz, A. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Enzyme Microb. Technol. 2019, 130, 109370. [Google Scholar] [CrossRef]
- Wu, H.; Nakazawa, T.; Xu, H.; Yang, R.; Bao, D.; Kawauchi, M.; Sakamoto, M.; Honda, Y. Comparative transcriptional analyses of Pleurotus ostreatus mutants on beech wood and rice straw shed light on substrate-biased gene regulation. Appl. Microbiol. Biotechnol. 2021, 105, 1175–1190. [Google Scholar] [CrossRef]
- Peña, A.; Peña, A.; Babiker, R.; Chaduli, D.; Lipzen, A.; Wang, M.; Chovatia, M.; Rencoret, J.; Marques, G.; Sánchez-Ruiz, M.I.; et al. A multiomic approach to understand how Pleurotus eryngii transforms non-woody lignocellulosic material. J. Fungi 2021, 7, 426. [Google Scholar] [CrossRef]
- Alfaro, M.; Oguiza, J.A.; Ramírez, L.; Pisabarro, A.G. Comparative analysis of secretomes in basidiomycete fungi. J. Proteom. 2014, 6, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sossah, F.L.; Li, Z.; Hyde, K.D.; Li, D.; Xiao, S.; Fu, Y.; Yuan, X.; Li, Y. Genome-Wide Identification and Analysis of Chitinase GH18 Gene Family in Mycogone perniciosa. Front. Microbiol. 2021, 11, 596719. [Google Scholar] [CrossRef]
- Yarden, O.; Zhang, J.; Marcus, D.; Changwal, C.; Mabjeesh, S.J.; Lipzen, A.; Zhang, Y.; Savage, E.; Ng, V.; Grigoriev, I.V.; et al. Altered Expression of Two Small Secreted Proteins (ssp4 and ssp6) Affects the Degradation of a Natural Lignocellulosic Substrate by Pleurotus ostreatus. Int. J. Mol. Sci. 2023, 24, 16828. [Google Scholar] [CrossRef]
- Olagunju, L.K.; Isikhuemhen, O.S.; Dele, P.A.; Anike, F.N.; Essick, B.G.; Holt, N.; Udombang, N.S.; Ike, K.A.; Shaw, Y.; Brice, R.M.; et al. Pleurotus ostreatus Can Significantly Improve the Nutritive Value of Lignocellulosic Crop Residues. Agriculture 2023, 13, 1161. [Google Scholar] [CrossRef]
- Sabariyah, S.; Rusdi; Damry; Hasanuddin, A. The nutritional value enhancement of oil palm empty fruit bunches as animal feed using the fungus Coprinus comatus, with different numbers of inoculums and incubation times. Int. J. Des. Nat. Ecodyn. 2021, 16, 269–274. [Google Scholar] [CrossRef]
- van Dam, L.; Cruz-Morales, P.; Valerón, N.R.; de Carvalho, A.C.; Vásquez, D.P.; Lübke, M.; Pedersen, L.K.; Munk, R.; Sommer, M.O.A.; Jahn, L.J. GastronOmics: Edibility and safety of mycelium of the oyster mushroom Pleurotus ostreatus. Curr. Res. Food Sci. 2024, 9, 100866. [Google Scholar] [CrossRef]
- Jaworska, G.; Berna, E. Comparison of amino acid content in canned Pleurotus ostreatus and Agaricus bisporus mushrooms. Veg. Crops Res. Bull. 2011, 74, 107–115. [Google Scholar] [CrossRef]
- Castorina, G.; Cappa, C.; Negrini, N.; Criscuoli, F.; Casiraghi, M.C.; Marti, A.; Rollini, M.; Consonni, G.; Erba, D. Characterization and nutritional valorization of agricultural waste corncobs from Italian maize landraces through the growth of medicinal mushrooms. Sci. Rep. 2023, 13, 21148. [Google Scholar] [CrossRef]
- Cateni, F.; Gargano, M.L.; Procida, G.; Venturella, G.; Cirlincione, F.; Ferraro, V. Mycochemicals in wild and cultivated mushrooms: Nutrition and health. Phytochem. Rev. 2022, 21, 339–383. [Google Scholar] [CrossRef]
- Ábrego-Gacía, A.; Poggi-Varaldo, H.M.; Robles-González, V.; Ponce-Noyola, T.; Calva-Calva, G.; Ríos-Leal, E.; Estrada-Bárcenas, D.; Mendoza-Vargas, A. Lovastatin as a supplement to mitigate rumen methanogenesis: An overview. J. Anim. Sci. Biotechnol. 2021, 12, 123. [Google Scholar] [CrossRef]
- Astudillo-Neira, R.; Suescun-Ospina, S.; Vera-Aguilera, N.; Alarcon-Enos, J.; Ávila-Stagno, J. Biodegraded hay with graded addition of Pleurotus ostreatus improves dry matter disappearance and reduces methane production of diets incubated in vitro. Ital. J. Anim. Sci. 2023, 22, 347–358. [Google Scholar] [CrossRef]
- Khonkhaeng, B.; Cherdthong, A. Improving nutritive value of purple field corn residue and rice straw by culturing with white-rot fungi. J. Fungi 2020, 6, 69. [Google Scholar] [CrossRef] [PubMed]
Factor | Low Level | High Level |
---|---|---|
[g/L] Glucose | −1 | 1 |
[g/L] Inorganic Nitrogen | −1 | 1 |
Medium | Glucose [g/L−1] | Inorganic Nitrogen [g/L−1] | Yeast Extract [g/L−1] | C:N Ratio |
---|---|---|---|---|
GASYE1 | 13 | 0.1 | 0.4 | 5:1 |
GASYE2 | 3.7 | 0.1 | 0.4 | 81:1 |
GASYE3 | 1.3 | 0.5 | 0.4 | 6:1 |
GASYE4 | 3.7 | 0.5 | 0.4 | 16:1 |
GASYE5 | 0.8 | 0.3 | 0.4 | 6:1 |
GASYE6 | 4.2 | 0.3 | 0.4 | 31:1 |
GASYE7 | 2.5 | 0.02 | 0.4 | 321:1 |
GASYE8 | 2.5 | 0.6 | 0.4 | 9:1 |
GASYE9 | 2.5 | 0.3 | 0.4 | 18:1 |
GASYE10 | 2.5 | 0.3 | 0.4 | 18:1 |
GASYE11 | 2.5 | 0.3 | 0.4 | 18:1 |
GASYE12 | 2.5 | 0.3 | 0.4 | 18:1 |
GASYE13 | 2.5 | 0.3 | 0.4 | 18:1 |
GANYE1 | 12.5 | 1.5 | 0.4 | 4:1 |
GANYE2 | 37.5 | 1.5 | 0.4 | 11:1 |
GANYE3 | 12.5 | 5.5 | 0.4 | 1:1 |
GANYE4 | 37.5 | 5.5 | 0.4 | 3:1 |
GANYE5 | 7.3 | 3.5 | 0.4 | 1:1 |
GANYE6 | 42.7 | 3.5 | 0.4 | 5:1 |
GANYE7 | 25 | 0.67 | 0.4 | 17:1 |
GANYE8 | 25 | 6.32 | 0.4 | 2:1 |
GANYE9 | 25 | 3.5 | 0.4 | 3:1 |
GANYE10 | 25 | 3.5 | 0.4 | 3:1 |
GANYE11 | 25 | 3.5 | 0.4 | 3:1 |
GANYE12 | 25 | 3.5 | 0.4 | 3:1 |
GANYE13 | 25 | 3.5 | 0.4 | 3:1 |
GUYE1 | 12.5 | 0.5 | 0.4 | 18:1 |
GUYE2 | 25 | 0.5 | 0.4 | 36:1 |
GUYE3 | 12.5 | 1 | 0.4 | 9:1 |
GUYE4 | 25 | 1 | 0.4 | 18:1 |
GUYE5 | 9.9 | 0.8 | 0.4 | 9.4:1 |
GUYE6 | 27.6 | 0.8 | 0.4 | 26.3:1 |
GUYE7 | 18.8 | 0.4 | 0.4 | 34:1 |
GUYE8 | 18.8 | 1.1 | 0.4 | 12.2:1 |
GUYE9 | 18.8 | 0.8 | 0.4 | 18:1 |
GUYE10 | 18.8 | 0.8 | 0.4 | 18:1 |
GUYE11 | 18.8 | 0.8 | 0.4 | 18:1 |
GUYE12 | 18.8 | 0.8 | 0.4 | 18:1 |
GUYE13 | 18.8 | 0.8 | 0.4 | 18:1 |
Order | Block | Palm Kernel Cake (g) | Fiber (g) | Palm Kernel Shells (g) |
---|---|---|---|---|
1 | 1 | 40 | 0 | 0 |
2 | 1 | 0 | 40 | 0 |
3 | 1 | 0 | 0 | 40 |
4 | 1 | 20 | 20 | 0 |
5 | 1 | 20 | 0 | 20 |
6 | 1 | 0 | 20 | 20 |
7 | 1 | 13.33 | 13.33 | 13.33 |
8 | 1 | 27 | 6.5 | 6.5 |
9 | 1 | 6.5 | 27 | 6.5 |
10 | 1 | 6.5 | 6.5 | 27 |
KEGG Orthology | Protein Name | K Number | Frequency |
---|---|---|---|
Carbohydrate metabolism | Chitinase | K01183 | 26 |
Carbohydrate metabolism | B-glucosidase | K05349 | 24 |
Carbohydrate metabolism | Cellulose 1,4-B-cellobiosidase | K01225 | 18 |
Carbohydrate metabolism | Aldehyde dehydrogenase | K00128 | 18 |
Carbohydrate metabolism | Alpha-galactosidase | K07407 | 18 |
Carbohydrate metabolism | Succinate dehydrogenase | K00237 | 17 |
Carbohydrate metabolism | Pectate lyase | K01728 | 14 |
Unclassified: metabolism | Glyoxal oxidase | K20929 | 23 |
Unclassified: metabolism | Lytic cellulose monooxygenase | K19356 | 22 |
Unclassified: metabolism | NADPH2 dehydrogenase | K00354 | 18 |
Unclassified: metabolism | Protein-serine/threonine kinase | K08286 | 15 |
Xenobiotics biodegradation and metabolism | Salicylate hydroxylase | K00480 | 24 |
Xenobiotics biodegradation and metabolism | Microsomal epoxide hydrolase | K01253 | 16 |
Xenobiotics biodegradation and metabolism | Cyclohexanone monooxygenase | K03379 | 15 |
Glycan biosynthesis and metabolism | Mannosyl-oligosaccharide alpha-1,2-mannosidase | K01230 | 16 |
Lipid metabolism | Glycerol 2-dehydrogenase | K18097 | 26 |
Metabolism of other amino acids | Glutathione S-transferase | K00799 | 15 |
Amino acid metabolism | Choline dehydrogenase | K00108 | 31 |
Mitochondrial biogenesis | Mitochondrial chaperone BCS1 | K08900 | 15 |
Signal transduction | cathepsin D | K01379 | 18 |
CAZys | Main Lignocellulose Substrate | Frequency in the Transcriptome | Frequency in the Literature * |
---|---|---|---|
AA1 | Lignin | 15 | 23 |
AA2 | Lignin | 14 | 15 |
AA3 | Lignin | 11 | 13 |
AA4 | Lignin | NR | 1 |
AA5 | Lignin | 24 | 11 |
AA6 | Lignin | 2 | 3 |
AA7 | Lignin | NR | 1 |
AA8 | Lignin | NR | 1 |
AA9 | Holocellulose | 22 | 5 |
CBM1 | Holocellulose | 25 | 9 |
CBM13 | Holocellulose | NR | 1 |
CBM21 | Holocellulose | NR | 1 |
CBM48 | Holocellulose | 2 | NR |
CE | Hemicellulose/pectin | NR | 1 |
CE1 | Hemicellulose/pectin | 1 | 3 |
CE10 | Hemicellulose/pectin | 3 | 1 |
CE16 | Hemicellulose/pectin | NR | 3 |
CE4 | Hemicellulose/pectin | NR | 1 |
GH1 | Holocellulose | 8 | 3 |
GH10 | Holocellulose | NR | 4 |
GH105 | Holocellulose | 3 | NR |
GH115 | Holocellulose | NR | 1 |
GH12 | Holocellulose | 2 | 1 |
GH127 | Holocellulose | NR | 1 |
GH128 | Holocellulose | NR | 1 |
GH13 | Holocellulose | 9 | NR |
GH15 | Holocellulose | 4 | 1 |
GH16 | Holocellulose | 9 | 2 |
GH17 | Holocellulose | NR | 1 |
GH18 | Chitin | 26 | NR |
GH2 | Holocellulose | NR | 3 |
GH20 | Holocellulose | 2 | NR |
GH28 | Pectin | NR | 1 |
GH3 | Holocellulose | 32 | 9 |
GH30 | Holocellulose | 5 | NR |
GH31 | Holocellulose | 11 | 1 |
GH32 | Holocellulose | NR | NR |
GH35 | Holocellulose | NR | 6 |
GH37 | Holocellulose | 2 | NR |
GH38 | Holocellulose | 2 | NR |
GH39 | Holocellulose | NR | 1 |
GH43 | Holocellulose | 3 | 1 |
GH47 | Holocellulose | 16 | 3 |
GH5 | Holocellulose | 15 | 5 |
GH51 | Holocellulose | 4 | 6 |
GH53 | Holocellulose | NR | 1 |
GH6 | Holocellulose | 4 | 2 |
GH63 | Holocellulose | NR | 1 |
GH7 | Holocellulose | 18 | 4 |
GH72 | Holocellulose | NR | 1 |
GH74 | Holocellulose | 3 | 1 |
GH76 | Holocellulose | NR | 2 |
GH78 | Holocellulose | NR | 1 |
GH79 | Holocellulose | NR | 1 |
GH9 | Holocellulose | 13 | NR |
GH90 | Holocellulose | NR | 1 |
GH92 | Holocellulose | NR | 2 |
GH95 | Holocellulose | 4 | NR |
GT1 | Holocellulose | 5 | NR |
GT15 | Holocellulose | 9 | NR |
GT17 | Holocellulose | NR | NR |
GT18 | Holocellulose | 2 | NR |
GT2 | Holocellulose | 19 | 1 |
GT20 | Holocellulose | 3 | NR |
GT21 | Holocellulose | NR | NR |
GT22 | Holocellulose | 4 | NR |
GT24 | Holocellulose | NR | NR |
GT3 | Holocellulose | NR | NR |
GT33 | Holocellulose | 1 | NR |
GT35 | Holocellulose | NR | NR |
GT39 | Holocellulose | 3 | NR |
GT4 | Holocellulose | 11 | NR |
GT41 | Holocellulose | 2 | NR |
GT48 | Holocellulose | 3 | NR |
GT5 | Holocellulose | 2 | NR |
GT50 | Holocellulose | 1 | NR |
GT57 | Holocellulose | 7 | NR |
GT58 | Holocellulose | 4 | NR |
GT59 | Holocellulose | 2 | NR |
GT66 | Holocellulose | NR | NR |
GT69 | Holocellulose | 1 | NR |
GT76 | Holocellulose | NR | NR |
GT8 | Holocellulose | 9 | NR |
Step | Protein Name | K Number | Principal Reaction |
---|---|---|---|
1 | Urease | K01428 | Urea → 2 NH3 + CO2 |
2 | Glutamine synthetase | K01915 | NH₃ + Glutamate + ATP → Glutamine |
3 | Glutamate synthase (NADH) | K00264 | Glutamine + α-Ketoglutarate + NADH → 2 Glutamate |
4 | Aminotransferases | K01763, K20247 | Glutamate + Keto acid → New amino acid → Biomass synthesis |
Chemical Composition (% MS) | NFPKC | PoFPKC |
---|---|---|
Crude protein | 15.9 | 27.0 |
Neutral detergent fiber | 67.2 | 49.5 |
Acid detergent fiber | 40.3 | 32.1 |
Lignin | 14.5 | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarra-Rondón, A.; Durán-Sequeda, D.E.; Castro-Pacheco, A.C.; Fragoso-Castilla, P.; Barahona-Rosales, R.; Mojica-Rodríguez, J.E. Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed. Fermentation 2025, 11, 251. https://doi.org/10.3390/fermentation11050251
Ibarra-Rondón A, Durán-Sequeda DE, Castro-Pacheco AC, Fragoso-Castilla P, Barahona-Rosales R, Mojica-Rodríguez JE. Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed. Fermentation. 2025; 11(5):251. https://doi.org/10.3390/fermentation11050251
Chicago/Turabian StyleIbarra-Rondón, Aldo, Dinary Eloisa Durán-Sequeda, Andrea Carolina Castro-Pacheco, Pedro Fragoso-Castilla, Rolando Barahona-Rosales, and José Edwin Mojica-Rodríguez. 2025. "Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed" Fermentation 11, no. 5: 251. https://doi.org/10.3390/fermentation11050251
APA StyleIbarra-Rondón, A., Durán-Sequeda, D. E., Castro-Pacheco, A. C., Fragoso-Castilla, P., Barahona-Rosales, R., & Mojica-Rodríguez, J. E. (2025). Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed. Fermentation, 11(5), 251. https://doi.org/10.3390/fermentation11050251