Co-Fermentation of Lactobacillus Plantarum and Lactobacillus Casei Improves In Vitro Antioxidant Capacity and Quality of Apple Juice
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Apple Juice
2.3. Preparation of Seed Liquid
2.4. Screening of LAB
2.5. Optimization of Apple Juice Fermentation
2.5.1. Strains Formulation Experimental Design
2.5.2. Single-Factor Experimental Design
2.5.3. Box–Behnken Design (BBD)
2.6. Volatile Compound Analysis (HS-SPME-GC-MS)
2.7. Physicochemical Analysis
2.8. Determination of Antioxidant Activity In Vitro
2.8.1. Total Reducing Power Assay
2.8.2. DPPH Scavenging Ability
2.8.3. ABTS Scavenging Ability
2.9. Data Analysis
3. Results and Discussion
3.1. The Effects of Fermentation of Different LAB on Apple Juice
3.2. Optimization of Apple Juice Fermented by LAB
3.2.1. Strains Formulation Experiments
3.2.2. Single Factor Experiments
3.2.3. Results of Box–Behnken Design (BBD)
3.3. Volatile Composition Analysis (HS-SPME-GC-MS)
3.3.1. Categorization-Based Evaluation of Volatile Compounds
3.3.2. Clustering and PCA of Volatile Compounds
3.4. Physicochemical Parameters
3.5. Antioxidant Activity In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DPPH | 2,2′-diphenyl-1-picrylhydrazyl |
ABTS | 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid |
HS-SPME-GC-MS | Headspace solid-phase micro-extraction and gas chromatography–mass spectrometry |
PCA | Principal component analysis |
References
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. cv Bravo de Esmolfe). Food Chem. 2017, 240, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sun, Y.; Gao, T.; Wu, Y.; Sun, H.; Zhu, Q.; Liu, C.; Zhou, C.; Han, Y.; Tao, Y. Fermentation and Storage Characteristics of “Fuji” Apple Juice Using Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum: Microbial Growth, Metabolism of Bioactives and in vitro Bioactivities. Front. Nutr. 2022, 9, 833906. [Google Scholar] [CrossRef]
- Dimitrovski, D.; Velickova, E.; Langerholc, T.; Winkelhausen, E. Apple juice as a medium for fermentation by the probiotic Lactobacillus plantarum PCS 26 strain. Ann. Microbiol. 2015, 65, 2161–2170. [Google Scholar] [CrossRef]
- Deng, D.; Li, W. Current situation of apple production and processing in China and development counter-measures. Modern Food 2020, 21, 12–14. [Google Scholar] [CrossRef]
- Siciliano, R.A.; Reale, A.; Mazzeo, M.F.; Morandi, S.; Silvetti, T.; Brasca, M. Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients 2021, 13, 1225. [Google Scholar] [CrossRef] [PubMed]
- Khushboo; Karnwal, A.; Malik, T. Characterization and selection of probiotic lactic acid bacteria from different dietary sources for development of functional foods. Front. Microbiol. 2023, 14, 1170725. [Google Scholar] [CrossRef]
- Bancalari, E.; Castellone, V.; Bottari, B.; Gatti, M. Wild Lactobacillus casei Group Strains: Potentiality to Ferment Plant Derived Juices. Foods 2020, 9, 314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, X.; Wang, X.; Han, M.; Li, H.; Yue, T.; Wang, Z.; Gao, Z. Effects of fermentation with Lactobacillus fermentum 21828 on the nutritional characteristics and antioxidant activity of Lentinus edodes liquid. J. Sci. Food Agric. 2021, 102, 3405–3415. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, W.; Liu, X.; Shen, W.; Gu, R.; Tang, C. The Antioxidant Activity and Protection of Probiotic Bacteria in the In Vitro Gastrointestinal Digestion of a Blueberry Juice and Whey Protein Fermentation System. Fermentation 2023, 9, 335. [Google Scholar] [CrossRef]
- Mazlan, F.A.; Annuar, M.S.M.; Sharifuddin, Y. Biotransformation ofMomordica charantiafresh juice by Lactobacillus plantarumBET003 and its putative anti-diabetic potential. PeerJ 2015, 3, e1376. [Google Scholar] [CrossRef]
- Li, C.; Ding, Q.; Nie, S.-P.; Zhang, Y.-S.; Xiong, T.; Xie, M.-Y. Carrot Juice Fermented with Lactobacillus plantarum NCU116 Ameliorates Type 2 Diabetes in Rats. J. Agric. Food Chem. 2014, 62, 11884–11891. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- de Souza Neves Ellendersen, L.; Granato, D.; Bigetti Guergoletto, K.; Wosiacki, G. Development and sensory profile of a probiotic beverage from apple fermented with Lactobacillus casei. Eng. Life Sci. 2012, 12, 475–485. [Google Scholar] [CrossRef]
- Wang, N.; Jiang, S.; Zhang, Z.; Fang, H.; Xu, H.; Wang, Y.; Chen, X. Malus sieversii: The origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples. Hortic. Res. 2018, 5, 70. [Google Scholar] [CrossRef]
- Zhao, L.; Maimaitiyiming, R.; Hong, J.; Wang, L.; Mu, Y.; Liu, B.; Zhang, H.; Chen, K.; Aihaiti, A. Optimization of tomato (Solanum lycopersicum L.) juice fermentation process and analysis of its metabolites during fermentation. Front. Nutr. 2024, 11, 1344117. [Google Scholar] [CrossRef]
- Park, S.; Son, H.-K.; Chang, H.-C.; Lee, J.-J. Effects of Cabbage-Apple Juice Fermented by Lactobacillus plantarum EM on Lipid Profile Improvement and Obesity Amelioration in Rats. Nutrients 2020, 12, 1135. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liu, H.; Duan, C.; Yan, G. Effects of mixed starters of plant- and wine-derived L. plantarum on hawthorn juice fermentation: Physicochemical properties, phenolic and volatile profiles. Food Biosci. 2023, 56, 103363. [Google Scholar] [CrossRef]
- Bujna, E.; Farkas, N.A.; Tran, A.M.; Dam, M.S.; Nguyen, Q.D. Lactic acid fermentation of apricot juice by mono- and mixed cultures of probiotic Lactobacillus and Bifidobacterium strains. Food Sci. Biotechnol. 2018, 27, 547–554. [Google Scholar] [CrossRef]
- Ran, J.; Tang, Y.; Mao, W.; Meng, X.; Jiao, L.; Li, Y.; Zhao, R.; Zhou, H. Optimization of the fermentation process and antioxidant activity of mixed lactic acid bacteria for honeysuckle beverage. Front. Microbiol. 2024, 15, 1364448. [Google Scholar] [CrossRef]
- Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules 2018, 24, 51. [Google Scholar] [CrossRef]
- GB 12456.35-2021; Food Safety Food Total Acid Determination. Standards Press of China: Beijing, China, 2021.
- You, L.; Shuangjie, F.; Fuxia, H.; Fengqin, W.; Changxin, Z.; Zhaosheng, W. Optimization of extraction of polyphenols from chestnut shell by response surface methodology. IOP Conf. Ser. Earth Environ. Sci. 2021, 791, 012206. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Wu, A.; Ju, C.; Jiang, J.; Chen, J. Multiple-strain Lactobacillus-fermented soymilk with antioxidant capacity and delicate flavour. Int. J. Food Sci. Technol. 2021, 56, 6052–6061. [Google Scholar] [CrossRef]
- Abdel-Aty, A.M.; Salama, W.H.; Fahmy, A.S.; Mohamed, S.A. Impact of germination on antioxidant capacity of garden cress: New calculation for determination of total antioxidant activity. Sci. Hortic. 2019, 246, 155–160. [Google Scholar] [CrossRef]
- Raju, S.; Deka, S.C. Influence of thermosonication treatments on bioactive compounds and sensory quality of fruit (Haematocarpus validus) juice. J. Food Process. Preserv. 2018, 42, e13701. [Google Scholar] [CrossRef]
- Ren, T.; Yue, T.; Wei, X.; Wang, X.; Yuan, Y. Optimization of probiotic fermentation process for apple pulp and analysis of volatile flavor components before and after fermentation. Food Sci. 2019, 40, 87–93. [Google Scholar]
- Cong, S.; Zhang, X.; Zhao, H.; Sun, M.; Hu, N. Process Optimization and Analysis of Product Quality of Blueberry and Corn Peptide Fermented by Mixed Lactic Acid Bacteria. Fermentation 2024, 10, 454. [Google Scholar] [CrossRef]
- Lan, T.; Lv, X.; Zhao, Q.; Lei, Y.; Gao, C.; Yuan, Q.; Sun, X.; Liu, X.; Ma, T. Optimization of strains for fermentation of kiwifruit juice and effects of mono- and mixed culture fermentation on its sensory and aroma profiles. Food Chem. X 2023, 17, 100595. [Google Scholar] [CrossRef]
- Ma, X.-L.; Wang, X.-C.; Zhang, J.-N.; Liu, J.-N.; Ma, M.-H.; Ma, F.-L.; Lv, Y.; Yu, Y.-J.; She, Y. A study of flavor variations during the flaxseed roasting procedure by developed real-time SPME GC–MS coupled with chemometrics. Food Chem. 2023, 410, 135453. [Google Scholar] [CrossRef]
- Sun, W.; Chen, X.; Bi, P.; Han, J.; Li, S.; Liu, X.; Zhang, Z.; Long, F.; Guo, J. Screening and characterization of indigenous non-Saccharomyces cerevisiae with high enzyme activity for kiwifruit wine production. Food Chem. 2023, 440, 138309. [Google Scholar] [CrossRef]
- Yang, S.; Hou, M.; Tan, W.; Chen, Y.; Li, H.; Song, J.; Wang, X.; Ren, J.; Gao, Z. Lactic acid bacteria sequential fermentation improves viable counts and quality of fermented apple juice via generating two logarithmic phases. Food Chem. 2024, 464, 141635. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Lv, J.; Liu, Q.; Liu, X.; Liu, Y.; Xie, S.; Nan, F. Optimization of the preparation process of Spirulina blended liquor and Spirulina fermented wine, analysis of volatile components and in vitro antioxidant study. J. Food Sci. 2024, 89, 7228–7243. [Google Scholar] [CrossRef]
- Garzón, G.A.; Soto, C.Y.; López-R, M.; Riedl, K.M.; Browmiller, C.R.; Howard, L. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon 2020, 6, e03845. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sheng, J.; Li, J.; Zhang, P.; Tang, F.; Shan, C. Influence of lactic acid bacteria on physicochemical indexes, sensory and flavor characteristics of fermented sea buckthorn juice. Food Biosci. 2021, 46, 101519. [Google Scholar] [CrossRef]
- Zheng, R. Optimization of Probiotic Fermentation Process of Apple Juice and Changes of Flavor Substances and Functional Components During Fermentation. Bachelor’s Thesis, Shenyang Agricultural University, Shenyang, China, 2020. [Google Scholar]
- Saarisalo, E.; Skyttä, E.; Haikara, A.; Jalava, T.; Jaakkola, S. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 2007, 102, 327–336. [Google Scholar] [CrossRef]
- Perera, H.D.S.M.; Samarasekera, J.K.R.R.; Handunnetti, S.M.; Weerasena, O.V.D.S.J. In vitro anti-inflammatory and anti-oxidant activities of Sri Lankan medicinal plants. Ind. Crops Prod. 2016, 94, 610–620. [Google Scholar] [CrossRef]
- Chaudhary, N.; Roy, Z.; Bansal, R.; Siddiqui, L. Understanding the Role of Free Radicals and Antioxidant Enzymes in Human Diseases. Curr. Pharm. Biotechnol. 2023, 24, 1265–1276. [Google Scholar] [CrossRef]
- Jürkenbeck, K.; Spiller, A. Importance of sensory quality signals in consumers’ food choice. Food Qual. Prefer. 2021, 90, 104155. [Google Scholar] [CrossRef]
- Chen, C.; Lu, Y.; Yu, H.; Chen, Z.; Tian, H. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice. Food Biosci. 2018, 27, 30–36. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, G.; Xu, Y.; Yu, Y.; Wu, J.; Zou, B. High Hydrostatic Pressure and Co-Fermentation by Lactobacillus rhamnosus and Gluconacetobacter xylinus Improve Flavor of Yacon-Litchi-Longan Juice. Foods 2019, 8, 308. [Google Scholar] [CrossRef]
- Zhang, W.; Lao, F.; Bi, S.; Pan, X.; Pang, X.; Hu, X.; Liao, X.; Wu, J. Insights into the major aroma-active compounds in clear red raspberry juice (Rubus idaeus L. cv. Heritage) by molecular sensory science approaches. Food Chem. 2021, 336, 127721. [Google Scholar] [CrossRef]
- Lai, Y.T.; Hou, C.Y.; Lin, S.P.; Lo, Y.C.; Chen, C.H.; Hsieh, C.W.; Lin, H.W.; Cheng, K.C. Sequential culture with aroma-producing yeast strains to improve the quality of Kyoho wine. J. Food Sci. 2023, 88, 1114–1127. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Shi, J.; Ren, X.; Tao, Y.; Ma, F.; Li, R.; Liu, X.; Liu, C. Insights into the aroma profiles and characteristic aroma of ‘Honeycrisp’ apple (Malus × domestica). Food Chem. 2020, 327, 127074. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Liu, G.; Li, B.; Tan, H.; Zheng, R.; Sun, X.; He, F. Influence on the aroma substances and functional ingredients of apple juice by lactic acid bacteria fermentation. Food Biosci. 2022, 51, 102337. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, Y.; Zhou, S.; Li, X.; Tao, Y.; Pan, Y.; Feng, X.; Guo, H.; Chen, P.; Chu, Q. A newly-discovered tea population variety processed Bai Mu Dan white tea: Flavor characteristics and chemical basis. Food Chem. 2024, 446, 138851. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, C.; Su, W.; Tan, R.; Ma, L.; Pan, W.; Li, W. Dynamic effects of ultrasonic treatment on flavor and metabolic pathway of pumpkin juice during storage based on GC–MS and GC-IMS. Food Chem. 2024, 469, 142599. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.R.; Deng, H.; Hu, C.Y.; Zhao, P.T.; Meng, Y.H. Vitality, fermentation, aroma profile, and digestive tolerance of the newly selected Lactiplantibacillus plantarum and Lacticaseibacillus paracasei in fermented apple juice. Front. Nutr. 2022, 9, 1045347. [Google Scholar] [CrossRef]
- Ma, H.; Wang, L.; Yu, H.; Wang, W.; Wu, G.; Qin, G.; Tan, Z.; Wang, Y.; Pang, H. Protease-producing lactic acid bacteria with antibacterial properties and their potential use in soybean meal fermentation. Chem. Biol. Technol. Agric. 2022, 9, 40. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, X.; Hu, C.; Wei, B.; Xu, F.; Guo, Q. Fermentation Performance Evaluation of Lactic Acid Bacteria Strains for Sichuan Radish Paocai Production. Foods 2024, 13, 1813. [Google Scholar] [CrossRef]
- GB 7101-2022; Food Safety Beverages. Standards Press of China: Beijing, China, 2022.
Factors | |||
---|---|---|---|
−1 | 0 | 1 | |
Inoculum/% | 1 | 3 | 5 |
Fermentation temperature/°C | 34 | 37 | 40 |
Fermentation time/h | 24 | 36 | 48 |
Run | A | B | C | DPPH Scavenging Rate (%) | Sensory Score (Points) |
---|---|---|---|---|---|
1 | −1 | 0 | −1 | 57.08 ± 0.57 | 83.8 ± 0.28 |
2 | 0 | 0 | 0 | 63.33 ± 0.92 | 92.07 ± 0.96 |
3 | 1 | 0 | 1 | 56.52 ± 0.28 | 90.8 ± 0.59 |
4 | 0 | −1 | 1 | 58.38 ± 0.16 | 79.37 ± 0.74 |
5 | 1 | −1 | 0 | 58.3 ± 0.33 | 78.83 ± 1.35 |
6 | 0 | 0 | 0 | 64.1 ± 0.51 | 89.1 ± 0.78 |
7 | 0 | −1 | −1 | 63.29 ± 0.71 | 78.37 ± 0.6 |
8 | 0 | 0 | 0 | 62.74 ± 0.22 | 91.9 ± 0.33 |
9 | 0 | 1 | 1 | 60.98 ± 0.53 | 87.77 ± 0.69 |
10 | −1 | −1 | 0 | 61.4 ± 0.82 | 76.93 ± 0.62 |
11 | −1 | 0 | 1 | 60.57 ± 0.58 | 84.77 ± 0.61 |
12 | 0 | 0 | 0 | 64.01 ± 0.43 | 92.07 ± 0.33 |
13 | 1 | 1 | 0 | 59.79 ± 0.61 | 91.1 ± 0.5 |
14 | 0 | 0 | 0 | 62.61 ± 0.9 | 91.8 ± 0.94 |
15 | −1 | 1 | 0 | 57.9 ± 0.21 | 83.3 ± 0.73 |
16 | 0 | 1 | −1 | 59.7 ± 0.44 | 86.73 ± 0.63 |
17 | 1 | 0 | −1 | 61.62 ± 0.62 | 89.63 ± 0.31 |
ANOVA Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 115.51 | 9 | 12.83 | 43.56 | <0.0001 *** |
A | 0.94 | 1 | 0.94 | 3.20 | 0.1170 |
B | 2.01 | 1 | 2.01 | 6.81 | 0.0350 * |
C | 8.48 | 1 | 8.48 | 28.79 | 0.0010 ** |
AB | 6.24 | 1 | 6.24 | 21.18 | 0.0025 ** |
AC | 28.06 | 1 | 28.06 | 95.22 | <0.0001 *** |
BC | 6.74 | 1 | 6.74 | 22.86 | 0.0020 ** |
A2 | 36.66 | 1 | 36.66 | 124.41 | <0.0001 *** |
B2 | 4.74 | 1 | 4.74 | 16.07 | 0.0049 ** |
C2 | 16.14 | 1 | 16.14 | 54.78 | 0.0001 *** |
Residual | 2.06 | 7 | 0.29 | 0.097 | 0.9576 |
Lack of fft | 0.14 | 3 | 0.047 | ||
Pure error | 1.92 | 4 | 0.48 | ||
Cor total | 117.57 | 16 | |||
R2 = 0.9825 R2adj = 0.9599 R2pred = 0.9554 |
ANOVA Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 457.86 | 9 | 50.87 | 47.17 | <0.0001 *** |
A | 58.16 | 1 | 58.16 | 53.92 | 0.0002 *** |
B | 156.91 | 1 | 156.91 | 145.47 | <0.0001 *** |
C | 2.18 | 1 | 2.18 | 2.02 | 0.1977 |
AB | 8.61 | 1 | 8.61 | 7.99 | 0.0256 * |
AC | 0.026 | 1 | 0.026 | 0.024 | 0.8819 |
BC | 1.000 × 10−4 | 1 | 1.000 × 10−4 | 9.271 × 10−5 | 0.9926 |
A2 | 22.70 | 1 | 22.70 | 21.04 | 0.0025 ** |
B2 | 179.36 | 1 | 179.36 | 166.29 | <0.0001 *** |
C2 | 13.94 | 1 | 13.94 | 12.92 | 0.0088 ** |
Residual | 7.55 | 7 | 1.08 | 0.2 | 0.8867 |
Lack of fft | 0.99 | 3 | 0.33 | ||
Pure error | 6.56 | 4 | 1.64 | ||
Cor total | 465.41 | 16 | |||
R2 = 0.9838 R2adj = 0.9629 R2pred = 0.9438 |
Apple Juice | Fermented Apple Juice | |||
---|---|---|---|---|
Quantities | Relative Content (%) | Quantities | Relative Content (%) | |
Alcohol | 10 | 27.2 ± 0.62 | 12 | 34.38 ± 1.37 |
Esters | 8 | 35.03 ± 0.72 | 5 | 22.13 ± 1.15 |
Ketones | 2 | 0.59 ± 0.01 | 7 | 12.19 ± 0.37 |
Acids | 6 | 2.66 ± 0.15 | 6 | 5.84 ± 0.83 |
Olefins | 6 | 7.17 ± 0.22 | 6 | 7.15 ± 0.79 |
Hydrocarbons | 5 | 24.02 ± 0.15 | 5 | 13.39 ± 0.56 |
Others | 2 | 3.33 ± 0.12 | 5 | 4.92 ± 0.69 |
Total compounds | 39 | 100 | 46 | 100 |
Total Acid (g/L) | Inoculum Amount (%) | Polyphenol Content (mg/mL) | Flavonoid Content (mg/mL) | Sensory Score (Points) | |
---|---|---|---|---|---|
Apple juice | 0.63 ± 0.58 b | 0.13 ± 0.22 b | 0.60 ± 0.05 b | 1.04 ± 0.01 a | 67.37 ± 0.26 b |
Fermented apple juice | 6.65 ± 0.17 a | 7.3 ± 0.53 a | 0.69 ± 0.01 a | 0.77 ± 0.01 b | 90.07 ± 0.14 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Gao, W.; Wang, L.; Chen, Y.; Cai, Z.; Wu, D.; Chen, N.; Jiang, Q.; Zheng, Z.; Zhu, J.; et al. Co-Fermentation of Lactobacillus Plantarum and Lactobacillus Casei Improves In Vitro Antioxidant Capacity and Quality of Apple Juice. Fermentation 2025, 11, 161. https://doi.org/10.3390/fermentation11040161
Li X, Gao W, Wang L, Chen Y, Cai Z, Wu D, Chen N, Jiang Q, Zheng Z, Zhu J, et al. Co-Fermentation of Lactobacillus Plantarum and Lactobacillus Casei Improves In Vitro Antioxidant Capacity and Quality of Apple Juice. Fermentation. 2025; 11(4):161. https://doi.org/10.3390/fermentation11040161
Chicago/Turabian StyleLi, Xiujun, Wensheng Gao, Lei Wang, Yan Chen, Zhenhe Cai, Di Wu, Ningyu Chen, Qiyong Jiang, Zhenjia Zheng, Jiansheng Zhu, and et al. 2025. "Co-Fermentation of Lactobacillus Plantarum and Lactobacillus Casei Improves In Vitro Antioxidant Capacity and Quality of Apple Juice" Fermentation 11, no. 4: 161. https://doi.org/10.3390/fermentation11040161
APA StyleLi, X., Gao, W., Wang, L., Chen, Y., Cai, Z., Wu, D., Chen, N., Jiang, Q., Zheng, Z., Zhu, J., & Wang, Z. (2025). Co-Fermentation of Lactobacillus Plantarum and Lactobacillus Casei Improves In Vitro Antioxidant Capacity and Quality of Apple Juice. Fermentation, 11(4), 161. https://doi.org/10.3390/fermentation11040161