Effects of Aging in Wood Casks on Anthocyanins Compositions, Volatile Compounds, Colorimetric Properties, and Sensory Profile of Jerez Vinegars
Abstract
:1. Introduction
2. Materials and Method
2.1. Reagents and Chemicals
2.2. Vinegar Samples
2.3. Anthocyanins and the Other Polyphenol Compositions (LC-MS/MS)
2.4. Volatile Analysis by Gas Chromatography–Mass Spectrometry (GC-MS)
2.5. Chromatic Characteristics of Sherry Vinegars
2.6. Descriptive Sensory Analysis with Trained Personnel
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compounds
3.2. Volatile Compounds
3.3. Chromatic Characteristics
3.4. Sensory Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palacios, V.; Valcárcel, M.; Caro, I.; Pérez, L. Chemical and biochemical transformations during the industrial process of sherry vinegar aging. J. Agric. Food. Chem. 2002, 50, 4221–4225. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, W.; García-Parrilla, M.; Troncoso, A. Sensory evaluation of Sherry wine vinegar. J. Sens. Stud. 2002, 17, 133–144. [Google Scholar] [CrossRef]
- Council Regulation (EC) No 510/2006 of 20 March 2006 on the Protection of Geographical Indications and Designations of Origin for Agricultural Products and Foodstuffs. 2006. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:093:0012:0025:en:PDF (accessed on 1 September 2024).
- Consejo Regulador del Vino de Jerez (2023, November 7). Sherry Wine. Available online: https://www.sherry.wine/sherry-wine (accessed on 1 September 2024).
- Parrilla, M.G.; Heredia, F.J.; Troncoso, A.M. Sherry wine vinegars: Phenolic composition changes during aging. Food Res. Int. 1999, 32, 433–440. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Zheng, F.; Li, H.; Huang, M.; Chen, F. Characterization of volatile compounds in three commercial Chinese vinegars by SPME-GC-MS and GC-O. LWT 2019, 112, 108264. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Segura-Borrego, M.P.; Morales, M.L.; Callejón, R.M. Characterization of the aroma profile and key odorants of the Spanish PDO wine vinegars. Food Chem. 2020, 311, 126012. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Xie, J.; Hou, L.; Zhao, M.; Zhao, J.; Cheng, J.; Wang, S.; Sun, B.-G. Aroma constituents in Shanxi aged vinegar before and after aging. J. Agric. Food. Chem. 2016, 64, 7597–7605. [Google Scholar] [CrossRef]
- Corsini, L.; Castro, R.; Barroso, C.G.; Durán-Guerrero, E. Characterization by gas chromatography-olfactometry of the most odour-active compounds in Italian balsamic vinegars with geographical indication. Food Chem. 2019, 272, 702–708. [Google Scholar] [CrossRef]
- Morales, M.L.; Tesfaye, W.; García-Parrilla, M.C.; Casas, J.A.; Troncoso, A.M. Evolution of the aroma profile of sherry wine vinegars during an experimental aging in wood. J. Agric. Food. Chem. 2002, 50, 3173–3178. [Google Scholar] [CrossRef]
- Callejon, R.M.; Morales, M.L.; Ferreira, A.C.S.; Troncoso, A.M. Defining the typical aroma of sherry vinegar: Sensory and chemical approach. J. Agric. Food. Chem. 2008, 56, 8086–8095. [Google Scholar] [CrossRef]
- Cerezo, A.B.; Cuevas, E.; Winterhalter, P.; Garcia-Parrilla, M.C.; Troncoso, A.M. Anthocyanin composition in Cabernet Sauvignon red wine vinegar obtained by submerged acetification. Food Res. Int. 2010, 43, 1577–1584. [Google Scholar] [CrossRef]
- García-Parrilla, M.C.; Cerezo, A.B.; Tesfaye, W.; Troncoso, A.M. Phenolic compounds as markers for the authentication of Sherry vinegars: A foresight for high quality vinegars characterization. In Progress in Authentication of Food and Wine; ACS Publications: Washington, DC, USA, 2011; pp. 201–213. [Google Scholar]
- Gao, Y.; Jo, Y.; Chung, N.; Gu, S.-Y.; Jeong, Y.-J.; Kwon, J.-H. Physicochemical qualities and flavor patterns of traditional Chinese vinegars manufactured by different fermentation methods and aging periods. Prev. Nutr. Food Sci. 2017, 22, 30. [Google Scholar] [CrossRef] [PubMed]
- Giudici, P.; Gullo, M.; Solieri, L.; Falcone, P.M. Technological and microbiological aspects of traditional balsamic vinegar and their influence on quality and sensorial properties. Adv. Food Nutr. Res. 2009, 58, 137–182. [Google Scholar]
- Góamez, M.L.M.; Bellido, B.B.; Tesfaye, W.; Fernandez, R.M.C.; Valencia, D.; Fernandez-Pachón, M.S.; García-Parrilla, M.C.; González, A.M.T. Sensory evaluation of sherry vinegar: Traditional compared to accelerated aging with oak chips. J. Food Sci. 2006, 71, S238–S242. [Google Scholar] [CrossRef]
- Durán-Guerrero, E.; Castro, R.; García-Moreno, M.d.V.; Rodríguez-Dodero, M.d.C.; Schwarz, M.; Guillén-Sánchez, D. Aroma of sherry products: A review. Foods 2021, 10, 753. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Durán, E.; Castro, R.; Rodríguez-Dodero, M.C.; Natera, R.; García-Barroso, C. Study of the volatile composition and sensory characteristics of new Sherry vinegar-derived products by maceration with fruits. LWT-Food Sci. Technol. 2013, 50, 469–479. [Google Scholar] [CrossRef]
- González-García, J.A.; Cereceda, M.; Durán-Guerrero, E.; Rodríguez-Dodero, M.C.; Castro, R. Comparative study on the use of seasoned or unseasoned casks made of wood from different origins for the ageing of Sherry vinegar. J. Sci. Food Agric. 2024, 104, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Yao, J.; Zhang, J.; Duan, W.; Zhang, B.; Xie, X.; Xia, M.; Song, J.; Zheng, Y.; Wang, M. Evaluation of nutritional compositions, bioactive compounds, and antioxidant activities of Shanxi aged vinegars during the aging process. J. Food Sci. 2018, 83, 2638–2644. [Google Scholar] [CrossRef]
- Verzelloni, E.; Tagliazucchi, D.; Conte, A. Changes in major antioxidant compounds during aging of traditional balsamic vinegar. J. Food Biochem. 2010, 34, 152–171. [Google Scholar] [CrossRef]
- Durán-Guerrero, E.; Schwarz, M.; Fernández-Recamales, M.Á.; Barroso, C.G.; Castro, R. Characterization and differentiation of Spanish vinegars from jerez and condado de huelva protected designations of origin. Foods 2019, 8, 341. [Google Scholar] [CrossRef]
- Uysal, R.S.; Issa-Issa, H.; Sendra, E.; Carbonell-Barrachina, Á.A. Changes in anthocyanin pigments, trans-resveratrol, and colorimetric characteristics of Fondillón wine and other “Monastrell” wines during the aging period. Eur. Food Res. Technol. 2023, 249, 1821–1831. [Google Scholar] [CrossRef]
- Carbonell-Barrachina, Á.A.; Szychowski, P.J.; Vásquez, M.V.; Hernández, F.; Wojdyło, A. Technological aspects as the main impact on quality of quince liquors. Food Chem. 2015, 167, 387–395. [Google Scholar] [CrossRef] [PubMed]
- OIV. Compendium of international methods of wine and must analysis. In Proceedings of the International Organisation of Vine and Wine, Paris, France, 6 July 2021; p. 196. [Google Scholar]
- Glories, Y. The colour of red wines. Conn. Vigne Vin 1984, 18, 195–217. [Google Scholar]
- OECCA. Ficha de Cata de Vinagres. 2022. Available online: https://www.oecca.es/ (accessed on 1 September 2024).
- Ferreira, I.M.; Pérez-Palacios, M.T. Anthocyanic Compounds and Antioxidant Capacity in Fortified Wines. In Processing and Impact on Antioxidants in Beverages; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–14. [Google Scholar]
- Escribano-Bailón, T.; Dangles, O.; Brouillard, R. Coupling reactions between flavylium ions and catechin. Phytochemistry 1996, 41, 1583–1592. [Google Scholar] [CrossRef]
- Saucier, C.; Bourgeois, G.; Vitry, C.; Roux, D.; Glories, Y. Characterization of (+)-catechin− acetaldehyde polymers: A model for colloidal state of wine polyphenols. J. Agric. Food. Chem. 1997, 45, 1045–1049. [Google Scholar]
- Andlauer, W.; Stumpf, C.; Fürst, P. Influence of the acetification process on phenolic compounds. J. Agric. Food. Chem. 2000, 48, 3533–3536. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, X.; Yao, Y.; Qu, A.; Ding, K.; Zhao, G.; Liu, S.Q. Insights into the microbiota and driving forces to control the quality of vinegar. LWT 2022, 157, 113085. [Google Scholar] [CrossRef]
- Jiang, Y.; Lv, X.; Zhang, C.; Zheng, Y.; Zheng, B.; Duan, X.; Tian, Y. Microbial dynamics and flavor formation during the traditional brewing of Monascus vinegar. Food Res. Int. 2019, 125, 108531. [Google Scholar] [CrossRef]
- Tesfaye, W.; Morales, M.L.; García-Parrilla, M.C.; Troncoso, A.M. Jerez vinegar. In Vinegars of the World; Springer: Berlin/Heidelberg, Germany, 2009; pp. 179–195. [Google Scholar]
- Al-Dalali, S.; Zheng, F.; Sun, B.; Chen, F. Comparison of aroma profiles of traditional and modern Zhenjiang aromatic vinegars and their changes during the vinegar aging by SPME-GC-MS and GC-O. Food Anal. Methods 2019, 12, 544–557. [Google Scholar] [CrossRef]
- Durán Guerrero, E.; Chinnici, F.; Natali, N.; Marín, R.N.; Riponi, C. Solid-phase extraction method for determination of volatile compounds in traditional balsamic vinegar. J. Sep. Sci. 2008, 31, 3030–3036. [Google Scholar] [CrossRef]
- Chen, T.; Gui, Q.; Shi, J.J.; Zhang, X.Y.; Chen, F.S. Analysis of variation of main components during aging process of Shanxi Aged Vinegar. Acetic Acid Bact. 2013, 2, 31–38. [Google Scholar] [CrossRef]
- Larios, A.; García, H.S.; Oliart, R.M.; Valerio-Alfaro, G. Synthesis of flavor and fragrance esters using Candida antarctica lipase. Appl. Microbiol. Biotechnol. 2004, 65, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Tie, Y.; Zhu, W.; Zhang, C.; Yin, L.; Li, L.; Liu, J. Effect of temperature on chemical compounds of Cupei (precursor of bran vinegar) during in-situ aging and revelation of functional microorganisms in the process. LWT 2023, 182, 114912. [Google Scholar] [CrossRef]
- Hongwen, L.; Xuping, W.; Xiaolan, Y. Influence of different fumigation processes on aroma compounds of Shanxi aged vinegar. Food Sci 2015, 36, 90–94. [Google Scholar]
- Al-Dalali, S.; Zheng, F.; Sun, B.; Rahman, T.; Chen, F. Tracking volatile flavor changes during two years of aging of Chinese vinegar by HS-SPME-GC-MS and GC-O. J. Food Compos. Anal. 2022, 106, 104295. [Google Scholar] [CrossRef]
- Callejón, R.; Torija, M.; Mas, A.; Morales, M.; Troncoso, A. Changes of volatile compounds in wine vinegars during their elaboration in barrels made from different woods. Food Chem. 2010, 120, 561–571. [Google Scholar] [CrossRef]
- Zhu, H.; Falcone, P.M.; Qiu, J.; Ren, C.-Z.; Li, Z.-G. Effect of ageing on rheological properties and quality of Shanxi aged vinegar. IOP Conf. Ser. Earth Environ. Sci. 2020, 615, 012096. [Google Scholar] [CrossRef]
- Bozkurt, H.; Göğüş, F.; Eren, S. Nonenzymic browning reactions in boiled grape juice and its models during storage. Food Chem. 1999, 64, 89–93. [Google Scholar] [CrossRef]
- España. Denominación de Origen de España. Dossier de Informacion.Vinagre de Jerez. Available online: https://www.vinagredejerez.org/noticias/Dossier_de_prensa_Vinagre_de_Jerez.pdf (accessed on 1 September 2024).
- Issa-Issa, H.; Noguera-Artiaga, L.; Sendra, E.; Pérez-López, A.J.; Burló, F.; Carbonell-Barrachina, Á.A.; López-Lluch, D. Volatile composition, sensory profile, and consumers’ acceptance of Fondillón. J. Food Qual. 2019, 2019, 5981762. [Google Scholar] [CrossRef]
- Tarko, T.; Krankowski, F.; Duda-Chodak, A. The impact of compounds extracted from wood on the quality of alcoholic beverages. Molecules 2023, 28, 620. [Google Scholar] [CrossRef]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Ruiz de Mier, M.; Delgado-González, M.J.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Use of alternative wood for the ageing of brandy de Jerez. Foods 2020, 9, 250. [Google Scholar] [CrossRef] [PubMed]
- Masson, G.; Guichard, E.; Fournier, N.; Puech, J.-L. Stereoisomers of ß-methyl-γ-octalactone. II. Contents in the wood of French (Quercus robur and Quercus petraea) and American (Quercus alba) oaks. Am. J. Enol. Vitic. 1995, 46, 424–428. [Google Scholar] [CrossRef]
- Piggott, J.; Conner, J.; Melvin, J. The contribution of oak lactone to the aroma of wood-aged wine. In Developments in Food Science; Elsevier: Amsterdam, The Netherlands, 1995; Volume 37, pp. 1695–1702. [Google Scholar]
- Vilela, A. Microbial dynamics in sour–sweet wine vinegar: Impacts on chemical and sensory composition. Appl. Sci. 2023, 13, 7366. [Google Scholar] [CrossRef]
- Salles, C. Acids in foods and perception of sourness. In Handbook of Molecular Gastronomy; CRC Press: Boca Raton, FL, USA, 2021; pp. 7–12. [Google Scholar]
- Junge, J.Y.; Bertelsen, A.S.; Mielby, L.A.; Zeng, Y.; Sun, Y.-X.; Byrne, D.V.; Kidmose, U. Taste interactions between sweetness of sucrose and sourness of citric and tartaric acid among Chinese and Danish consumers. Foods 2020, 9, 1425. [Google Scholar] [CrossRef] [PubMed]
- Lytra, G.; Tempere, S.; Marchand, S.; de Revel, G.; Barbe, J.-C. How do esters and dimethyl sulphide concentrations affect fruity aroma perception of red wine? Demonstration by dynamic sensory profile evaluation. Food Chem. 2016, 194, 196–200. [Google Scholar] [CrossRef]
Code | Compound | Retention Time (min) | [M – H]− (m/z) | MS/MS (m/z) | ANOVA ǂ | Apto | Jerez | Reserva | Gran Reserva |
---|---|---|---|---|---|---|---|---|---|
Stilbenes | |||||||||
1 | (E)-resveratrol | 8.16 | 229.00 | 135.10/107.10 †/91.10 | *** | ND ‡ b | 25.04 a | ND b | ND b |
Anthocyanins | |||||||||
2 | Peonidin-3,5-di-O-glucoside | 4.89 | 625.15 | 462.95/300.95/285.95 | NS | ND a | ND a | tr ¶ a | ND a |
3 | Cyanidin-3-O-rutinoside | 4.94 | 595.10 | 449.00/287.10 | NS | tr a | ND a | ND a | ND a |
4 | Pelargonidin-3-O-glucoside | 5.04 | 433.00 | 271.10/121.10 | *** | tr b | 15.70 a | ND b | ND b |
5 | Peonidin-3-O-glucoside | 5.14 | 463.00 | 301.10/286.00/201.05 | NS | ND a | ND a | tr a | ND a |
6 | Malvidin-3-O-glucoside | 5.16 | 493.10 | 331.10/315.10/287.10 | NS | tr a | ND a | tr a | ND a |
7 | Malvidin-3-O-galactoside | 5.21 | 493.20 | 331.10/315.10/287.10 | NS | tr a | ND a | tr a | ND a |
Flavones | |||||||||
8 | Luteolin-7-O-glucoside | 6.68 | 448.90 | 287.10/153.10/135.15 | * | 7.28 a | 4.19 ab | 2.39 b | 1.77 b |
Flavanones | |||||||||
9 | Eriotricin | 5.95 | 595.20 | 287.05/150.09/135.05 | *** | 65.82 b | ND c | 84.67 a | ND c |
10 | Hesperidin | 7.02 | 609.20 | 301.00/163.90/150.95 | *** | tr b | ND b | 65.05 a | ND b |
Flavonols | |||||||||
11 | Myricetin-3-O-glucoside | 5.69 | 481.10 | 319.10/273.10/153.00 | *** | 31.72 b | 28.59 c | 45.50 a | 28.69 c |
12 | Quercetin-3-O-glucoside | 5.95 | 463.25 | 300.15/271.15/255.20 | * | 153.89 a | 36.44 b | 21.80 b | ND c |
13 | Quercetin-3-O-glucuronide | 5.97 | 478.95 | 303.05/229.00/153.00/112.80 | *** | 1806.09 a | 1008.81 b | 142.32 c | 61.44 c |
14 | Quercetin-3-O-galactoside | 5.98 | 465.00 | 303.10/229.10/164.00/153.00 | *** | 239.92 a | 61.19 b | 39.11 c | ND d |
15 | Quercetin-3-O-rutinoside | 6.20 | 608.90 | 301.00/299.95/270.95 | NS | ND a | ND a | tr a | ND a |
16 | Quercetin-3-O-glucopyranoside | 6.41 | 463.10 | 300.95/300.00/270.95 | *** | 79.71 a | 34.85 b | 30.71 b | nd c |
Phenolic acids and derivatives | |||||||||
17 | Gallic acid | 1.18 | 169.10 | 124.95/124.30/78.95 | NS | 421.84 a | 539.01 a | 196.17 a | 177.05 a |
18 | Chlorogenic acid | 3.22 | 353.30 | 191.05/92.95/85.05 | NS | tr a | nd a | 73.25 a | nd a |
19 | Caffeic acid | 4.12 | 179.10 | 135.00/134.00/106.95 | *** | 907.27 a | 992.92 a | 202.6 b | 92.73 b |
Total of polyphenolic compounds | *** | 3713.56 a | 2731.06 b | 903.59 c | 361.69 c |
Chemical Family | Compound | Code | RT ‡ | RI † | ANOVA ǂ | Apto | Vinagre de Jerez | Reserva | Gran Reserva | ||
---|---|---|---|---|---|---|---|---|---|---|---|
DB-Wax | DB-5 | DB-Wax | DB-5 | ||||||||
Esters | Methyl acetate | V3 | 2.80 | N ¶ | 857 | N | *** | 3.232 a | 1.904 b | 1.318 c | 0.811 d |
Ethyl acetate | V4 | 3.16 | 2.72 | 888 | 624 | *** | 37.87 a | 35.91 a | 36.14 a | 24.54 b | |
Ethyl propanoate | V7 | 3.88 | N | 947 | N | *** | 0.082 b | 0.235 b | 0.045 b | 1.179 a | |
Ethyl isobutyrate | V8 | 4.0 | 4.62 | 957 | 752 | *** | 0.282 b | 0.211 bc | 0.101 c | 1.420 a | |
sec-Butyl acetate | V10 | 4.29 | N | 980 | N | *** | NDƛ c | 0.346 a | ND c | 0.111 b | |
Isobutyl acetate | V11 | 4.7 | 4.95 | 1007 | 766 | *** | 10.56 a | 5.575 b | 4.803 b | 5.484 b | |
Methyl isovalerate | V12 | 4.81 | N | 1012 | N | *** | 0.202 a | 0.125 b | ND c | ND c | |
Ethyl butanoate | V13 | 5.13 | N | 1027 | N | *** | ND b | ND b | ND b | 0.623 a | |
Ethyl 2-methylbutanoate | V14 | 5.45 | N | 1041 | N | *** | 0.166 b | 0.118 b | 0.087 b | 1.848 a | |
Ethyl isovalerate | V16 | 5.77 | 7.396 | 1056 | 841 | *** | 4.568 b | 2.477 b | 1.967 b | 22.15 a | |
Butyl acetate | V17 | 5.84 | N | 1059 | N | *** | 0.009 b | ND b | ND b | 0.162 a | |
2-Methylbutyl acetate | V20 | 7.21 | 8.39 | 1113 | 868 | *** | 107.65 a | 51.07 c | 60.45 c | 83.55 b | |
Ethyl hexanoate | V22 | 11.42 | 14.64 | 1225 | 992 | *** | 1.580 b | 0.447 c | 0.220 d | 1.942 a | |
Hexyl acetate | V23 | 13.19 | 15.48 | 1262 | 1006 | ** | 0.705 b | 0.737 b | 1.598 a | 0.909 b | |
2-Methylbutyl isovalerate | V25 | 14.39 | N | 1288 | N | *** | 1.147 a | 0.270 c | 0.152 c | 0.464 b | |
(Z)-3-Hexenol acetate | V26 | 15.38 | N | 1308 | N | *** | ND b | ND b | 0.090 a | ND b | |
Ethyl heptanoate | V27 | 16.29 | N | 1325 | N | *** | ND b | ND b | ND b | 0.190 a | |
Ethyl lactate | V28 | 16.60 | N | 1330 | N | *** | ND c | 0.104 b | ND c | 0.186 a | |
Acetoin Acetate | V29 | 18.76 | 8.76 | 1370 | 877 | ** | 0.446 a | 0.385 ab | 0.328 b | 0.208 c | |
Ethyl decanoate | V35 | 32.75 | 38.68 | 1630 | 1386 | *** | 4.367 a | 0.408 c | 0.096 c | 1.232 b | |
1,3-Propylene diacetate | V36 | 33.29 | 21.41 | 1642 | 1096 | *** | 0.406 b | 0.754 a | ND c | 0.871 a | |
Diethyl succinate | V38 | 34.28 | 26.59 | 1664 | 1172 | *** | 0.345 c | 1.101 a | 0.367 c | 0.722 b | |
Benzyl acetate | V40 | 36.18 | 25.34 | 1706 | 1154 | *** | 0.570 a | 0.500 a | 0.191 b | 0.481 a | |
Methyl salicylate | V41 | 37.74 | N | 1745 | N | *** | 0.174 b | 0.340 a | ND d | 0.103 c | |
Ethyl benzeneacetate | V42 | 38.57 | 30.45 | 1765 | 1234 | *** | 0.232 b | 0.177 b | 0.139 b | 1.809 a | |
Phenethyl acetate | V43 | 39.68 | 31.14 | 1792 | 1245 | *** | 23.64 a | 10.98 c | 8.435 d | 17.82 b | |
Isopropyl myristate | V49 | 48.22 | N | 2010 | N | *** | 0.349 a | 0.308 a | 0.335 a | 0.079 b | |
Ethyl butyrate | V56 | N | 5.64 | N | 793 | *** | ND b | ND b | ND b | 0.114 a | |
1-Methoxy-2-propanol acetate | V58 | N | 10.54 | N | 917 | ** | 0.234 ab | 0.286 a | 0.161 b | 0.289 a | |
Isopentyl isovalerate | V60 | N | 21.65 | N | 1100 | *** | 0.074 a | 0.037 b | 0.032 b | 0.069 a | |
Ethyl octanoate | V62 | N | 27.81 | N | 1190 | *** | 15.20 a | 0.252 b | 0.110 b | 1.066 b | |
Acids | Acetic acid | V31 | 21.93 | 2.99 | 1427 | 661 | *** | 634.95 a | 438.53 b | 437.57 b | 352.84 c |
Isobutyric acid | V34 | 28.98 | 4.55 | 1554 | 750 | *** | 0.812 b | 1.285 a | 0.300 d | 0.540 c | |
Isovaleric acid | V37 | 33.85 | 7.39 | 1654 | 841 | *** | 23.12 a | 25.35 a | 9.331 b | 9.567 b | |
Hexanoic acid | V44 | 41.03 | N | 1828 | N | *** | 0.620 a | 0.459 b | 0.213 d | 0.328 c | |
Octanoic acid | V50 | 48.61 | 26.32 | 2013 | 1168 | ** | 0.943 a | 0.577 ab | 0.350 b | 0.875 a | |
Isobutyric acid | V54 | N | 4.55 | N | 750 | ** | 0.210 a | 0.200 a | ND b | 0.085 ab | |
α-Methylbutyric acid | V57 | N | 7.69 | N | 849 | *** | 0.363 a | 0.426 a | 0.110 b | ND c | |
Alcohols | Ethanol | V6 | 3.57 | N | 922 | N | *** | 3.573 b | 4.063 b | 4.960 b | 41.39 a |
Isobutyl alcohol | V18 | 6.43 | N | 1085 | N | *** | 1.278 a | 0.993 b | 0.778 c | 1.020 b | |
Active amyl alcohol | V21 | 10.24 | 4.25 | 1200 | 738 | ** | 13.35 bc | 14.19 ab | 11.244 c | 16.06 a | |
l-α-Terpineol | V39 | 34.95 | N | 1679 | N | *** | ND b | ND b | 0.225 a | ND b | |
Benzyl alcohol | V45 | 41.95 | N | 1852 | N | *** | 0.357 b | 0.530 a | 0.144 c | 0.475 a | |
Phenylethyl alcohol | V46 | 43.19 | 21.83 | 1885 | 1102 | *** | 10.93 a | 11.13 a | 4.791 c | 8.761 b | |
Dodecyl alcohol | V48 | 45.72 | N | 1957 | N | * | 0.165 b | 0.266 a | 0.241 ab | 0.233 ab | |
Isopentyl alcohol | V53 | N | 4.18 | N | 735 | *** | 1.016 d | 1.379 c | 1.675 b | 3.302 a | |
2,3-Butanediol | V55 | N | 5.17 | N | 774 | ** | 0.089 b | 0.060 bc | 0.028 c | 0.144 a | |
Linalool | V59 | N | 21.19 | N | 1093 | NS | 0.060 a | ND a | ND a | ND a | |
α-Terpineol | V61 | N | 27.56 | N | 1186 | *** | 0.097 a | 0.022 ab | 0.075 ab | ND b | |
Aldehydes | Acetaldehyde | V1 | 2.36 | N | 820 | N | *** | 0.098 b | 0.040 c | ND c | 0.288 a |
Isovaleraldehyde | V5 | 3.44 | N | 911 | N | *** | 0.741 a | 0.051 c | ND c | 0.330 b | |
Furfural | V32 | 22.95 | 6.61 | 1445 | 821 | *** | 0.560 a | 0.357 b | 0.164 c | 0.304 b | |
Benzaldehyde | V33 | 25.92 | 12.43 | 1496 | 951 | *** | 2.168 a | 0.327 b | 0.437 b | 0.495 b | |
Ketones | Acetone | V2 | 2.73 | N | 851 | N | *** | 0.169 b | 0.182 b | 0.249 b | 1.813 a |
2-Acetylpropane | V9 | 4.10 | N | 965 | N | *** | 1.239 b | 0.775 c | 0.693 c | 3.365 a | |
Acetoin | V24 | 13.43 | 3.73 | 1268 | 718 | ** | 3.036 a | 3.573 a | 2.876 a | 1.686 b | |
2-Nonanone | V30 | 19.05 | N | 1375 | N | *** | 0.398 b | 0.161 c | 0.196 c | 0.548 a | |
Lactones | (Z)-Oaklactone | V47 | 44.45 | N | 1920 | N | *** | ND b | ND b | ND b | 0.286 a |
Phenolic compounds | 2-Ethylphenol | V51 | 52.11 | N | 2047 | N | *** | 0.275 b | 0.373 a | 0.088 d | 0.183 c |
Others | 2-Methyl-1,3-dioxane | V15 | 5.69 | N | 1052 | N | *** | 0.037 b | 0.027 b | ND b | 0.253 a |
Linalool 3,7-oxide | V19 | 6.81 | 13.01 | 1102 | 962 | *** | 0.775 a | 0.233 b | 0.116 c | 0.074 c | |
2,4,5-Trimethyl-1,3-dioxolane | V52 | N | 4.04 | N | 730 | *** | 0.201 b | ND c | ND c | 0.924 a | |
Total | *** | 915.72 a | 620.62 b | 594.02 b | 616.60 b |
Vinegar Type | A420 ¶ | A520 ¶ | A620 ¶ | Color Intensity | Tonality | Color Density | Y ¶ (%) | R ¶ (%) | B ¶ (%) |
---|---|---|---|---|---|---|---|---|---|
ANOVA † | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Apto | 0.879 d ‡ | 0.257 d | 0.074 d | 1.210 d | 3.419 a | 1.136 d | 73 a | 21 d | 6 d |
Vinagre de Jerez | 2.049 c | 0.784 c | 0.294 c | 3.127 c | 2.616 b | 2.833 c | 66 b | 25 c | 9 c |
Reserva | 2.825 a | 1.339 a | 0.512 a | 4.676 a | 2.109 d | 4.164 a | 60 d | 29 a | 11 a |
Gran Reserva | 2.786 b | 1.190 b | 0.474 b | 4.450 b | 2.341 c | 3.976 b | 62 c | 27 b | 11 b |
Attribute | ANOVA ǂ | Sample | |||
---|---|---|---|---|---|
Apto | Vinagre de Jerez | Reserva | Gran Reserva | ||
Appearance | |||||
Color | *** | 4.16 d | 6.05 c | 9.55 a | 8.66 b |
Untuoso (texture) | *** | 2.00 d | 4.55 b | 7.00 a | 3.22 c |
Odor | |||||
Odor intensity | *** | 2.38 b | 1.55 b | 1.72 b | 4.50 a |
Vinegar ID | *** | 8.00 a | 4.61 b | 4.50 b | 3.72 b |
Winy character | *** | 1.27 c | 1.27 c | 2.44 b | 7.16 a |
Raisin | *** | 0.27 c | 1.22 bc | 1.33 b | 4.27 a |
Ethyl acetate | *** | 0.22 c | 0.05 c | 0.77 b | 1.38 a |
Alcohol/liquor | *** | 0.11 b | 0.55 b | 0.27 b | 2.38 a |
Woody | *** | 0.00 b | 0.00 b | 0.27 b | 2.88 a |
Fruity | *** | 6.61 a | 2.61 c | 2.00 c | 4.05 b |
Spicy | NS | 0.00 a | 0.00 a | 0.22 a | 0.77 a |
Vanilla | *** | 0.00 b | 0.00 b | 0.11 b | 1.50 a |
Clove | NS | 0.00 a | 0.16 a | 0.22 a | 0.33 a |
Toasted | *** | 0.00 b | 0.38 b | 0.38 b | 2.50 a |
Nuts | * | 0.00 b | 0.00 b | 0.11 ab | 0.72 a |
Leather/old | NS | 0.00 a | 0.00 a | 0.00 a | 0.16 a |
Defects | NS | 0.00 a | 0.00 a | 0.00 a | 0.00 a |
Flavor | |||||
Flavor intensity | *** | 8.27 a | 5.55 b | 6.44 b | 5.75 b |
Vinegar ID | *** | 8.05 a | 6.00 c | 6.83 b | 5.00 d |
Winy character | *** | 2.55 b | 2.33 b | 2.16 b | 5.06 a |
Raisin | *** | 0.00 b | 0.00 b | 0.38 b | 2.43 a |
Ethyl acetate | *** | 0.00 b | 0.00 b | 0.00 b | 0.43 a |
Alcohol/liquor | *** | 0.00 b | 0.00 b | 0.00 b | 1.81 a |
Woody | *** | 0.00 b | 0.00 b | 0.00 b | 1.43 a |
Fruity | ** | 5.16 a | 3.22 b | 3.27 b | 4.00 ab |
Spicy | NS | 0.00 a | 0.00 a | 0.00 a | 0.18 a |
Vanilla | NS | 0.00 a | 0.00 a | 0.00 a | 0.31 a |
Clove | NS | 0.00 a | 0.00 a | 0.11 a | 0.12 a |
Toasted | ** | 0.00 b | 0.16 b | 0.22 b | 0.81 a |
Nuts | * | 0.77 a | 0.16 ab | 0.05 b | 0.50 ab |
Leather/old | NS | 0.00 a | 0.00 a | 0.00 a | 0.00 a |
Sweetness | *** | 1.11 b | 2.50 a | 2.22 a | 2.33 a |
Sourness | *** | 8.11 a | 6.11 bc | 6.61 b | 5.38 c |
Bitterness | NS | 0.33 a | 0.38 a | 0.27 a | 0.33 a |
Astringent | NS | 0.00 a | 0.00 a | 0.00 a | 0.38 a |
Pungent | *** | 3.77 a | 1.88 b | 2.83 ab | 2.22 b |
Defects | NS | 0.00 a | 0.00 a | 0.00 a | 0.00 a |
Global | |||||
Aftertaste | *** | 6.44 a | 3.88 b | 4.16 b | 4.83 b |
Qualification | |||||
Liking ‡ | 14 | 23 | 21 | 32 | |
Ranking ‡ | *** | b | a | b | a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uysal, R.S. Effects of Aging in Wood Casks on Anthocyanins Compositions, Volatile Compounds, Colorimetric Properties, and Sensory Profile of Jerez Vinegars. Fermentation 2024, 10, 469. https://doi.org/10.3390/fermentation10090469
Uysal RS. Effects of Aging in Wood Casks on Anthocyanins Compositions, Volatile Compounds, Colorimetric Properties, and Sensory Profile of Jerez Vinegars. Fermentation. 2024; 10(9):469. https://doi.org/10.3390/fermentation10090469
Chicago/Turabian StyleUysal, Reyhan Selin. 2024. "Effects of Aging in Wood Casks on Anthocyanins Compositions, Volatile Compounds, Colorimetric Properties, and Sensory Profile of Jerez Vinegars" Fermentation 10, no. 9: 469. https://doi.org/10.3390/fermentation10090469
APA StyleUysal, R. S. (2024). Effects of Aging in Wood Casks on Anthocyanins Compositions, Volatile Compounds, Colorimetric Properties, and Sensory Profile of Jerez Vinegars. Fermentation, 10(9), 469. https://doi.org/10.3390/fermentation10090469