Yeast Culture Is Beneficial for Improving the Rumen Fermentation and Promoting the Growth Performance of Goats in Summer
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Fermentation
2.2. Feeding Experiment
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Goats Meet the Criteria to Be Rumen Fluid Donors
3.2. Heat Stress Adversely Affects the Antioxidant Capacity and Rumen Fermentation of Goats
3.3. Rumen Fermentation with Yeast Culture Supplementation In Vitro
3.4. Effects of Diets Supplemented with Yeast Culture on the Serum Antioxidant Indices of Goats in the Summer
3.5. Diets Supplemented with Yeast Culture Improved the Rumen Fermentation of Goats in the Summer
3.6. Effects of Diets Supplemented with Antioxidant Yeast Culture on the Growth Performance of Goats in the Summer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caulfield, M.P.; Cambridge, H.; Foster, S.F.; Susan, F.F.; Paul, D.M. Heat stress: A major contributor to poor animal welfare associated with long-haul live export voyages. Vet. J. 2014, 199, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Publ. Health 2008, 29, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Tajima, K.I.; Nonaka, K.; Higuchi, N.; Takusari, M.; Kurihara, A.; Takenak, M.; Mitsumori, H.; Kajikawa, R.I.; Aminov, R.I. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 2007, 2, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.L.; Xu, Y.Y.; Wang, Z.Q.; Shi, B.L. Effects of oxidative stress induced by heat stress and its mechanism in sheep and goats. Chin. J. Anim. Nutr. 2019, 31, 3016–3022. [Google Scholar]
- Xue, L.G.; Zhou, S.Y.; Wang, D.; Zhang, F.Y.; Li, J.F.; Cai, L.Y. The low dose of Saccharomyces cerevisiae is beneficial for rumen fermentation (both in vivo and in vitro) and the growth performance of heat-stressed goats. Microorganisms 2022, 10, 1877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Z.S.; Peng, Q.H.; Zou, H.W.; Jing, X.P.; Pu, Q.J. Effects of moist-heat stress on growth performance, oxidation resistance and immunity of Tibetan sheep and goats. Chin. J. Anim. Nutr. 2017, 29, 2179–2187. [Google Scholar]
- Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci. 2014, 16, 193–217. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.Y. Environmental Control of Intensive Goat Buildings and the Effects of Heat Stress on Rumen Fermentation of Goats. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2015. [Google Scholar]
- Cai, L.Y.; Yu, J.K.; Hartanto, R.; Zhang, J.; Yang, A.; Qi, D.S. Effects of heat challenge on growth performance, ruminal, blood and physiological parameters of Chinese crossbred goats. Small Rumin. Res. 2019, 174, 125–130. [Google Scholar] [CrossRef]
- Yadav, B. Impact of heat stress on rumen functions. Vet. World 2013, 6, 992–996. [Google Scholar] [CrossRef]
- Hooda, O.K.; Upadhyay, R.C. Physiological responses, growth rate and blood metabolites under feed restriction and thermal exposure in kids. J. Stress Physiol. Biochem. 2014, 10, 214–227. [Google Scholar]
- Maloiy, G.M.O.; Kanui, T.I.; Towett, P.K.; Wambugua, S.N.; Miarona, J.O.; Wanyoike, M.M. Effects of dehydration and heat stress on food intake and dry matter digestibility in East African ruminants. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 2, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.F.; Du, R.P.; Gao, P. Effect of heat stress on dairy goat performance and rumen epithelial cell morphology. Chin. Agr. Sci. 2013, 21, 4486–4495. [Google Scholar]
- Cai, L.Y.; Hartanto, R.; Xu, Q.B.; Zhang, J.; Qi, D.S. Saccharomyces cerevisiae and Clostridium butyricum could improve B-vitamin production in the rumen and growth performance of heat-stressed goats. Metabolites 2022, 12, 766. [Google Scholar] [CrossRef] [PubMed]
- Indu, S.; Sejian, V.; Naqvi, S.M.K. Impact of simulated heat stress on growth, physiological adaptability, blood metabolites and endocrine responses in Malpura ewes under semiarid tropical environment. Anim. Prod. Sci. 2015, 55, 766. [Google Scholar] [CrossRef]
- Popoola, M.A.; Bolarinwa, M.O.; Yahaya, M.O.; Adebisi, G.L.; Saka, A.A. Thermal comfort effects on physiological adaptations and growth performance of West African dwarf goats raised in Nigeria. Eur. Sci. J. 2014, 10, 275–281. [Google Scholar]
- Pragna, P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.R.; Soren, N.M.; Beena, V.; Bhatta, R. Comparative assessment of growth performance of three different indigenous goat breeds exposed to summer heat. Stress. J. Anim. Physiol. Anim. Nutr. 2018, 102, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.G.; Wang, D.; Zhang, F.Y.; Cai, L.Y. Prophylactic feeding of Clostridium butyricum and Saccharomyces cerevisiae were advantageous in resisting the adverse effects of heat stress on rumen fermentation and growth performance of goats. Animals 2022, 12, 2455. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.Y.; Yu, J.K.; Hartanto, R.; Qi, D.S. Dietary supplementation with Saccharomy ceserevisiae, Clostridium butyricum and their combination ameliorate rumen fermentation and growth performance of heat-stressed goats. Animals 2021, 11, 2116. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.Y.; Li, M.; Zhou, S.Y.; Xu, Q.B. The mixture of Saccharomyces cerevisiae and Clostridium butyricum could promote rumen fermentation and improve the growth performance of goats in hot summer. Metabolites 2023, 13, 104. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhou, X.F.; Zhen, Y.G.; Wang, L.H. The application of yeast culture in ruminant production. Chin. J. Vet. Sci. 2016, 36, 1986–1989. [Google Scholar]
- Schingoethe, D.J.; Linke, K.N.; Kalscheur, K.F.; Hippen, A.R.; Rennich, D.R.; Yoon, I. Feed efficiency of mid-lactation dairy cows fed yeast culture during summer. J. Dairy Sci. 2004, 87, 4178–4181. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.C.; Pang, X.D.; Zhuang, S.; Wang, T. Effects of yeast culture on rumen cellulase activity and volatile fatty acids of goats. Chin. J. Anim. Sci. 2006, 42, 34–38. [Google Scholar]
- Kou, H.J.; Chen, Y.L.; Liu, J.M.; Cao, B.H.; Zhou, G.X.; Zhang, S.H.; Zhang, E.P. Effects of yeast culture on performance, nutrient performance digestibility and rumen development of lambs. J. Northwest A F Univ. (Nat. Sci. Ed.) 2011, 8, 45–50. [Google Scholar]
- Xiang, H.; Lin, Y.H.; Zhang, X.D.; Ding, J.P.; Zhang, X.R. effects of silage on the nutrient preservation of corn harvested in different period. Chin. Herb. Sci. 2012, 2, 33–36. [Google Scholar]
- LPHSI. Livestock and Poultry Heat Stress Indices Agriculture Engineering Technology Guide; Clemson University: Clemson, SC, USA, 1990. [Google Scholar]
- Peng, X.K.; Zhao, T.; Huang, X.Y.; Zhang, Y.; Xing, X.; Zhang, E. Effects of acute heat stress on blood biochemistry indices and expression of HSP70 family genes in blood lymphocytes in goats. Acta Vet. Zootech. Sin. 2019, 50, 1219–1229. [Google Scholar]
- Ramakers, C.; Ruijter, J.M.; Deprez, R.H.L.; Moorman, A.F.M. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 2003, 339, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Wang, Z.S.; Wang, L.Z.; Liu, J.H.; Xu, L.X. Effects of temperature and humidity index in different seasons on production performance and physiological and biochemical indexes of dairy cows. Chin. J. Anim. Sci. 2009, 45, 60–63. [Google Scholar]
- McDougall, E.I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Z.; Beauchemin, K.A.; Rode, L.M. Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows. J. Dairy Sci. 2001, 2, 203–216. [Google Scholar] [CrossRef]
- Wang, S.P.; Wang, W.J. Determination of enzyme activity related to fiber degradation in rumen. Chin. Feed 2006, 11, 31–32. [Google Scholar]
- Zhang, L.Y. Feed Analysis and Feed Quality Testing Technology; China Agricultural University Press: Beijing, China, 2007; pp. 270–274. [Google Scholar]
- Zhang, Y.F.; Qi, Z.L. Mechanism of oxidative stress in body under heat stress. Chin. J. Anim. Nutr. 2017, 2, 3051–3058. [Google Scholar]
- Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol. 2004, 142, 231–255. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Tan, G.Y.; Fu, Y.Q.; Feng, J.H.; Zhang, M.H. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010, 151, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.H.; Hao, Y.; Wang, X.L. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: Intestinal oxidative stress. Poult. Sci. 2012, 91, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Li, J.J.; Wang, D.Q.; Li, G.Q.; Wang, G.L.; Lu, L.Z. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: Evidence for differential thermal sensitivities. Cell Stress Chaperones 2014, 19, 895–901. [Google Scholar] [CrossRef]
- Liu, D.C.; Cheng, Y.; Lu, D.X. Effects of yeast culture on immune function and antioxidant function of cows with latent mastitis. Anim. Husb. Feed Sci. 2011, 1, 165–166. [Google Scholar]
- Zhang, A.Z.; Lu, D.X.; Jiang, N.; Gao, M.; Hu, H.L. Effects of yeast culture on antioxidant capacity of cashmere goats. Chin. J. Anim. Nutr. 2010, 22, 781–786. [Google Scholar]
- Xu, X.; Li, Y.; Wang, C.; Qi, Z.L. Effects of Heat Stress on Antioxidant Capacity and HSP70 mRNA Expression and Mechanism of Organic Chromium in Dairy Goats; National Symposium on Animal Nutrition, Animal Nutrition Branch, Chinese Society of Animal Husbandry and Veterinary Medicine: Changsha, China, 2012. [Google Scholar]
- Zhang, A.Z.; Lu, D.X.; Wang, L.Z.; Ren, X.P.; Shan, D. Effect of yeast culture on rumen fermentation of cashmere goats in vitro. Chin. J. Anim. Sci. 2008, 3, 31–34. [Google Scholar]
- Desnoyers, M.; Giger-Reverdin, S.; Bertin, G.; Duvaux-Pouter, C.; Sauvant, D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and mile productuin of ruminant. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef]
- Huang, Q.S.; Wang, J.Q. Effect of yeast cultures on fibrolytic bacterial population and activities of fiber hydrolytic enzymes in therumen. Acta Vet. Et Zootech. Sin. 2005, 36, 144–148. [Google Scholar]
- Zhang, C.J.; Liu, Z.; Hao, Z.L.; Li, F.D. Effect of supplement with yeast culture on the digestibility in sheep. Pratacultural Sci. 2007, 24, 5. [Google Scholar]
- Guo, Y.Q.; Zhao, Y.F.; Zhang, X.Y. Effect of yeast culture on growth performance and rumen fermentation of weaned calves. Feed Res. 2019, 42, 10–13. [Google Scholar]
- Zhao, G.H.; Wang, S.G.; Wang, F.; Wang, H.; Diao, Q.Y.; Wang, S.Q.; Zhang, N.F. Effects of different levels of yeast culture supplementation on growth performance, slaughter performance, visceral organ development and meat quality of fattening Hu sheep. Chin. J. Anim. Nutr. 2020, 32, 9. [Google Scholar]
- Long, L. Yeast products and their uses. Chin. Feed 2001, 5, 3. [Google Scholar]
- Wang, X.; Li, F.; Zhang, N.; Ungerfeld, E.; Guo, L.; Zhang, X.; Wang, M.; Ma, Z. Effects of supplementing a yeast culture in a pelleted total mixed ration on fiber degradation, fermentation parameters, and the bacterial community in the rumen of sheep. Anim. Feed Sci. Tech. 2023, 296, 115565. [Google Scholar] [CrossRef]
- Klis, F.M. Review: Cell wall assembly in yeast. Yeast 1994, 7, 851–869. [Google Scholar] [CrossRef] [PubMed]
- Moukadiri, I.; Armero, J.; Abad, A.; Sentandreu, R.; Zueco, R. Dentification of a mannoprotein present in the inner layer of the cell wall of Saccharomyces cerevisiae. J. Bacteriol. 1997, 7, 2154–2162. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.S.; Wang, Q.S.; Liao, B.L.; Yan, X.H. Application of yeast feed in animal husbandry. Feed. Ind. 2008, 4, 4–6. [Google Scholar]
- Chen, B.; Wang, C.; Wang, Y.M.; Liu, J.X. Effect of biotin on milk performance of dairy cattle: A meta-analysis. J. Dairy Sci. 2011, 94, 3537–3546. [Google Scholar] [CrossRef]
- Li, N.; Li, M.Y.; Peng, Q.H. Research Progress of Vitamin B in Ruminant Nutrition. Chin. J. Anim. Nutr. 2021, 9, 4909–4919. [Google Scholar]
Genes | Primer Sequence | Product Length | Annealing Temperature | GenBank Accession No. |
---|---|---|---|---|
B-actin | F: TCTGGCACCACACCTTCTAC R: TCTTCTCACGGTTGGGCCTTG | 102 | 60 | XM 018039831.1 |
HSPA 1 | F: CGACCAGGGAAACCGGCAC R: CGGGTCGCCGAACTTGC | 151 | 60 | NM 005677146.3 |
HSPA 6 | F: TCTGCCGCAACAGGATAAA R: CGCCCACGCACGAGTAC | 239 | 60 | NM_001314233.1 |
HSPA 8 | F: ACCTCTATTACCCGTGCCC R: CTCTTATTCAGTTCCTTCCCATT | 203 | 60 | XM 018039831.1 |
HSP 70 | F: TGGCTTTCACCGATACCGAG R: GTCGTTGATCACGCGGAAAG | 167 | 60 | NM 001285703.1 |
Ingredients | Content % (DM Basis) | Nutritional Concentrations | |
---|---|---|---|
Corn stalk | 40 | Crude protein % | 10.55 |
Alfalfa | 20 | Digestible energy MJ/kg | 9.07 |
Dry weed | 20 | Calcium % | 0.55 |
Corn | 11 | Phosphor % | 0.26 |
Soybean meal | 3.2 | ||
Bran | 2.8 | ||
Sunflower meal | 2.4 | ||
NaCl | 0.2 | ||
CaHCO3 | 0.2 | ||
* Premix | 0.2 | ||
Total | 100 |
Parameters | Groups | SEM | |
---|---|---|---|
NHS | HS | ||
Antioxidant parameters | |||
T-AOC (U/mL) | 4.07 | 2.55 * | 0.47 |
T-SOD (U/mL) | 91.23 | 64.73 * | 5.13 |
GSH-Px (U/mL) | 254.2 | 189.7 * | 3.03 |
MDA (nmol/L) | 6.08 | 10.14 * | 1.11 |
Rumen fermentation parameters | |||
pH | 6.70 | 6.57 * | 0.06 |
Total SCFA (mmol/L) | 51.77 | 40.95 * | 2.34 |
Acetic acid (mmol/L) | 22.85 | 18.57 * | 0.56 |
Propionic acid (mmol/L) | 16.37 | 12.27 * | 1.04 |
Butyric acid (mmol/L) | 12.55 | 10.11 * | 0.49 |
Avicelase (IU/mL) | 2.37 | 1.45 * | 0.21 |
CMCaes (IU/mL) | 2.69 | 1.64 * | 0.37 |
Cellobiase (IU/mL) | 3.86 | 2.46 * | 0.23 |
Xylanase (IU/mL) | 5.91 | 4.35 * | 0.22 |
Digestibility | |||
DM (%) | 58.44 | 43.86 * | 1.52 |
NDF (%) | 39.36 | 36.13 * | 1.04 |
ADF (%) | 39.27 | 36.37 * | 1.17 |
Parameters | Groups | SEM | |||
---|---|---|---|---|---|
Control | Test 1 | Test 2 | Test 3 | ||
pH | 6.55 | 6.54 | 6.71 * | 6.70 * | 0.07 |
SCFAs | |||||
Total SCFA (mmol/L) | 40.45 | 42.26 | 51.01 * | 50.60 * | 2.21 |
Acetic acid (mmol/L) | 18.33 | 18.64 | 22.37 * | 21.52 * | 1.06 |
Propionic acid (mmol/L) | 12.11 | 13.25 | 16.09 * | 16.77 * | 1.22 |
Butyric acid (mmol/L) | 10.01 | 10.37 | 12.55 * | 12.31 * | 0.67 |
Digestibility | |||||
DM (%) | 41.89 | 42.42 | 57.21 * | 55.20 * | 5.26 |
NDF (%) | 35.11 | 35.25 | 39.33 * | 39.41 * | 1.35 |
ADF (%) | 36.88 | 36.74 | 39.23 * | 39.76 * | 0.78 |
Enzymes | |||||
Avicelase (IU/mL) | 1.32 | 1.37 | 2.14 * | 2.09 * | 0.18 |
CMCaes (IU/mL) | 1.42 | 1.50 | 2.72 * | 2.27 * | 0.41 |
Cellobiase (IU/mL) | 2.34 | 2.41 | 3.58 * | 3.71 * | 0.31 |
Xylanase (IU/mL) | 4.18 | 4.23 | 6.55 * | 5.96 * | 0.27 |
Parameters | Groups | SEM | ||
---|---|---|---|---|
Control | Test 1 | Test 2 | ||
T-AOC (U/mL) | 2.55 | 3.87 * | 3.81 * | 0.24 |
T-SOD (U/mL) | 65.21 | 91.25 * | 92.37 * | 8.11 |
GSH-Px (U/mL) | 191.0 | 247.7 * | 250.2 * | 4.32 |
MDA (nmol/L) | 10.25 | 6.43 * | 6.41 * | 0.32 |
Parameters | Groups | SEM | ||
---|---|---|---|---|
Control | Test 1 | Test 2 | ||
pH | 6.57 | 6.75 * | 6.77 * | 0.03 |
SCFAs | ||||
Total SCFAs (mmol/L) | 45.02 | 59.60 | 59.99 | 4.65 |
Acetic acid (nmol/L) | 18.63 | 23.71 * | 23.42 * | 1.04 |
Propionic acid (nmol/L) | 14.15 | 20.21 * | 20.70 * | 2.77 |
Butyric acid (nmol/L) | 12.24 | 15.68 * | 15.87 * | 1.42 |
Enzymes | ||||
Avicelase (IU/mL) | 1.34 | 2.45 * | 2.87 * | 0.26 |
CMCase(IU/mL) | 1.36 | 2.56 * | 2.54 * | 0.32 |
Cellobiase (IU/mL) | 2.44 | 5.14 * | 5.11 * | 1.33 |
Xylanase (IU/mL) | 4.52 | 7.01 * | 7.23 * | 1.22 |
Parameters | Groups | SEM | ||
---|---|---|---|---|
Control | Test 1 | Test 2 | ||
DMI (g) | 512.3 | 533.1 * | 533.8 * | 8.44 |
ADG (g) | 105.1 | 119.8 * | 120.3 * | 5.35 |
DM (%) | 51.10 | 67.70 * | 65.23 * | 4.02 |
NDF (%) | 40.11 | 56.33 * | 54.41 * | 6.20 |
ADF (%) | 39.74 | 50.29 * | 52.43 * | 2.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Geng, Y.; Ling, Y.; Wang, D.; Hu, G. Yeast Culture Is Beneficial for Improving the Rumen Fermentation and Promoting the Growth Performance of Goats in Summer. Fermentation 2024, 10, 307. https://doi.org/10.3390/fermentation10060307
Zhang S, Geng Y, Ling Y, Wang D, Hu G. Yeast Culture Is Beneficial for Improving the Rumen Fermentation and Promoting the Growth Performance of Goats in Summer. Fermentation. 2024; 10(6):307. https://doi.org/10.3390/fermentation10060307
Chicago/Turabian StyleZhang, Shuang, Yuancong Geng, Yan Ling, Dan Wang, and Guixue Hu. 2024. "Yeast Culture Is Beneficial for Improving the Rumen Fermentation and Promoting the Growth Performance of Goats in Summer" Fermentation 10, no. 6: 307. https://doi.org/10.3390/fermentation10060307
APA StyleZhang, S., Geng, Y., Ling, Y., Wang, D., & Hu, G. (2024). Yeast Culture Is Beneficial for Improving the Rumen Fermentation and Promoting the Growth Performance of Goats in Summer. Fermentation, 10(6), 307. https://doi.org/10.3390/fermentation10060307