Fermentation Quality and In Vitro Digestibility of Sweet Corn Processing Byproducts Silage Mixed with Millet Hull or Wheat Bran and Inoculated with a Lactic Acid Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Preparation
2.1.1. Step 1, (Preliminary Experiment) SCPBs Silage
2.1.2. Step 2, Mixed Silage Preparation of SCPBs with Millet Hull or Wheat Bran
2.2. Chemical Composition Analysis
2.3. Fermentation Quality and Microbiological Analyses
2.4. In Vitro Digestibility Analysis
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition of Raw Materials before Ensiling
3.2. Fermentation Characteristics of SCPBs Silage Alone
3.3. Step 2 Mixed Silage of the SCPBs with Wheat Bran or Millet Hull
3.3.1. Fermentation Characteristics
3.3.2. Chemical Composition of Mixed Silage
3.3.3. In Vitro Digestibility of Mixed Silage
4. Discussion
4.1. Effects of the Mixing Proportion and Lactic Acid Bacteria Addition on Silage Fermentation Quality
4.2. Effect of the Mixing Proportion and Lactic Acid Bacteria Additive on the Chemical Composition
4.3. Effect of the Mixing Proportion and Lactic Acid Bacteria Additive on In Vitro Digestibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.N.; Illés, A.; Bojtor, C.; Demeter, C.; Zsuzsanna, B.; Vad, A.; Abakeer, R.A.; Sidahmed, H.M.I.; Nagy, J. Quantitative and qualitative yield in sweet maize hybrids. Braz. J. Biol. 2022, 84, e265735. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Yu, M.; Wang, P.; Du, J.; Zhao, T.; Jin, Y.; Tang, H.; Yuan, B. Effects of Moisture Content and Silage Starter on the Fermentation Quality and In Vitro Digestibility of Waxy Corn Processing Byproduct Silage. Fermentation 2023, 9, 1025. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Bolsen, K.K.; Lin, C. History of Silage. 2015. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronmonogr42.c1 (accessed on 16 April 2024).
- Broberg, A.; Jacobsson, K.; Ström, K.; Schnürer, J. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage. Appl. Environ. Microbiol. 2007, 73, 5547–5552. [Google Scholar] [CrossRef] [PubMed]
- Goenaga, I.; García-Rodríguez, A.; Goiri, I.; León-Ecay, S.; De Las Heras, J.; Aldai, N.; Insausti, K. Vegetable By-Products as Alternative and Sustainable Raw Materials for Ruminant Feeding: Nutritive Evaluation and Their Inclusion in a Novel Ration for Calf Fattening. Animals 2023, 13, 1391. [Google Scholar] [CrossRef] [PubMed]
- Gül, S.; Coskuntuna, L.; Koç, F.; Özdüven, L. The effect of wheat bran added to canola silage on feed value and in vitro organic matter digestibility. Appl. Ecol. Environ. Res. 2019, 17, 10823–10829. [Google Scholar] [CrossRef]
- Friedman, M. Rice Brans, Rice Bran Oils, and Rice Hulls: Composition, Food and Industrial Uses, and Bioactivities in Humans, Animals, and Cells. J. Agric. Food Chem. 2013, 61, 10626–10641. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, K.D.; Choi, K.C. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production—An overview. AIMS Agric. Food 2021, 6, 216–234. [Google Scholar] [CrossRef]
- Ellis, J.L.; Hindrichsen, I.K.; Klop, G.; Kinley, R.D.; Milora, N.; Bannink, A.; Dijkstra, J. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle. J. Dairy Sci. 2016, 99, 7159–7174. [Google Scholar] [CrossRef]
- Official Methods of Analysis of Aoac International Boq Title Official Methods of Analysis of Aoac International. 2022. Available online: https://www.proquest.com/docview/2653122225?parentSessionId=qV%2FNSJiurFa8yTiXi068y4Ln3v8o7CoQGfoRnYZpYdA%3D&pq-origsite=summon&sourcetype=Wire%20Feeds (accessed on 16 April 2024).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Playne, M.J.; McDonald, P. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Owens, V.N.; Albrecht, K.A.; Muck, R.E. Protein degradation and ensiling characteristics of red clover and alfalfa wilted under varying levels of shade. Can. J. Plant Sci. 1999, 79, 209–222. [Google Scholar] [CrossRef]
- Robinson, D. Compensatory changes in the partitioning of dry matter in relation to nitrogen uptake and optimal variations in growth. Ann. Bot. 1986, 58, 841–848. [Google Scholar] [CrossRef]
- Yi, Q.; Wang, P.; Tang, H.; Yu, M.; Zhao, T.; Sheng, Z.; Luo, H. Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Ensiling Spent Mushroom Substrate with Microbial Additives. Animals 2023, 13, 920. [Google Scholar] [CrossRef] [PubMed]
- Longland, A.C.; Theodorou, M.K.; Sanderson, R.; Lister, S.J.; Powell, C.J.; Morris, P. Non-starch polysaccharide composition and in vitro fermentability of tropical forage legumes varying in phenolic content. Anim. Feed Sci. Technol. 1995, 55, 161–177. [Google Scholar] [CrossRef]
- Kaewpila, C.; Khota, W.; Gunun, P.; Kesorn, P.; Cherdthong, A. Strategic addition of different additives to improve silage fermentation, aerobic stability and in vitro digestibility of napier grasses at late maturity stage. Agriculture 2020, 10, 262. [Google Scholar] [CrossRef]
- Muck, R.E. Dry matter level effects on alfalfa silage quality. II. Fermentation products and starch hydrolysis. Trans. ASABE 1990, 33, 373–381. [Google Scholar] [CrossRef]
- Smith, L.H. Theoretical Carbohydrate Requirement for Alfalfa Silage Production. Agron. J. 1962, 54, 291. [Google Scholar] [CrossRef]
- Teixeira Franco, R.; Buffière, P.; Bayard, R. Optimizing storage of a catch crop before biogas production: Impact of ensiling and wilting under unsuitable weather conditions. Biomass Bioenergy 2017, 100, 84–91. [Google Scholar] [CrossRef]
- Nair, J.; Huaxin, N.; Andrada, E.; Yang, H.E.; Chevaux, E.; Drouin, P.; McAllister, T.A.; Wang, Y. Effects of inoculation of corn silage with Lactobacillus hilgardii and Lactobacillus buchneri on silage quality, aerobic stability, nutrient digestibility, and growth performance of growing beef cattle. J. Anim. Sci. 2020, 98, skaa267. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Magaji, U.; Hussin, G.; Ramli, A.; Miah, G. Fermentation Quality and Additives: A Case of Rice Straw Silage. Biomed. Res. Int. 2016, 2016, 7985167. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Duarte, J.I.; García, A. Ammonia-N concentration in alfalfa silage and its effects on dairy cow performance: A meta-analysis. Rev. Colomb. Cienc. Pecu. 2017, 30, 175–184. [Google Scholar] [CrossRef]
- Henderson, A.R.; McDonald, P.; Anderson, D.H. The effect of silage additives containing formaldehyde on the fermentation of ryegrass ensiled at different dry matter levels and on the nutritive value of direct-cut silage. Anim. Feed Sci. Technol. 1982, 7, 303–314. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Lin, Y.; Xu, G.; Ni, K.; Yang, F. Effect of lactic acid bacteria and wheat bran on the fermentation quality and bacterial community of Broussonetia papyrifera silage. Chem. Biol. Technol. Agric. 2023, 10, 130. [Google Scholar] [CrossRef]
- Gül, S. The impact of wheat bran and molasses addition to caramba mix silage on feed value and in vitro organic matter digestibility. J. King Saud Univ. Sci. 2023, 35, 102400. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; Abdel-Hafez, A.; Zaki, M.M.; Saleh, E.A. Factors affecting the microbial and chemical composition of silage. IV. Effect of wilting on maize silage. Zentralbl Bakteriol. Naturwiss 1979, 134, 34–39. [Google Scholar] [CrossRef]
- Ghasemi, S.; Naserian, A.A.; Valizadeh, R.; Tahmasebi, A.M.; Vakili, A.R.; Behgar, M.; Ghovvati, S. Inclusion of pistachio hulls as a replacement for alfalfa hay in the diet of sheep causes a shift in the rumen cellulolytic bacterial population. Small Rumin. Res. 2012, 104, 94–98. [Google Scholar] [CrossRef]
- Chen, J.; Huang, G.; Xiong, H.; Qin, H.; Zhang, H.; Sun, Y.; Dong, X.; Lei, Y.; Zhao, Y.; Zhao, Z. Effects of Mixing Garlic Skin on Fermentation Quality, Microbial Community of High-Moisture Pennisetum hydridum Silage. Front. Microbiol. 2021, 12, 770591. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Niu, D.; Zuo, S.; Mao, P.; Meng, L.; Xu, C. The effect of cultivar, wilting and storage period on fermentation and the clostridial community of alfalfa silage. Ital. J. Anim. Sci. 2018, 17, 336–346. [Google Scholar] [CrossRef]
- Vendramini, J.M.; Aguiar, A.D.; Adesogan, A.T.; Sollenberger, L.E.; Alves, E.; Galzerano, L.; Salvo, P.; Valente, A.L.; Arriola, K.G.; Ma, Z.X.; et al. Effects of genotype, wilting, and additives on the nutritive value and fermentation of bermudagrass silage. J. Anim. Sci. 2016, 94, 3061–3071. [Google Scholar] [CrossRef]
- Seale, D.R.; Henderson, A.R.; Pettersson, K.O.; Lowe, J.F. effect of addition of sugar and inoculation with two commercial inoculants on the fermentation of lucerne silage in laboratory silos. Grass Forage Sci. 1986, 41, 61–70. [Google Scholar] [CrossRef]
- Driehuis, F.; Oude Elferink, S.J. The impact of the quality of silage on animal health and food safety: A review. Vet. Q. 2000, 22, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Agarussi, M.C.N.; Pereira, O.G.; da Silva, V.P.; Leandro, E.S.; Ribeiro, K.G.; Santos, S.A. Fermentative profile and lactic acid bacterial dynamics in non-wilted and wilted alfalfa silage in tropical conditions. Mol. Biol. Rep. 2019, 46, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.H.; Wu, C.R.; Zhang, M.Z.; Yang, F.; Chen, C.; Hao, J. The metabolome and bacterial composition of high-moisture Italian ryegrass silage inoculated with lactic acid bacteria during ensiling. Biotechnol. Biofuels Bioprod. 2023, 16, 91. [Google Scholar] [CrossRef]
- Sun, L.; Xue, Y.; Xiao, Y.; Te, R.; Wu, X.; Na, N.; Wu, N.; Qili, M.; Zhao, Y.; Cai, Y. Community Synergy of Lactic Acid Bacteria and Cleaner Fermentation of Oat Silage Prepared with a Multispecies Microbial Inoculant. Microbiol. Spectr. 2023, 11, e0070523. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Schmidt, R.J.; McDonell, E.E.; Klingerman, C.M.; Kung, L. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. J. Dairy Sci. 2009, 92, 3907–3914. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Nishino, N. Bacterial and fungal communities of wilted Italian ryegrass silage inoculated with and without Lactobacillus rhamnosus or Lactobacillus buchneri. Lett. Appl. Microbiol. 2011, 52, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.C.; Xie, K.Y.; Wang, Y.X.; Liu, L.; Yu, Z.; Wang, B. Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage. Anim. Biosci. 2021, 34, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Rooke, J.A.; Armstrong, D.G. The importance of the form of nitrogen on microbial protein synthesis in the rumen of cattle receiving grass silage and continuous intrarumen infusions of sucrose. Br. J. Nutr. 1989, 61, 113–121. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, G.Q.; Wei, S.N.; Kim, H.J.; Li, Y.F.; Kim, J.G. Changes in fermentation pattern and quality of Italian ryegrass (Lolium multiflorum Lam.) silage by wilting and inoculant treatments. Anim. Biosci. 2021, 34, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.J. Grass silage as a basic feed for store lambs. 1. Effect of wilting, chop length and stage of maturity of grass silage on intake and performance of store lambs. Grass Forage Sci. 1996, 51, 363–377. [Google Scholar] [CrossRef]
- Hashemzadeh-Cigari, F.; Taghizadeh, A.; Ghorbani, G.R.; Khorvash, M. The effects of wilting, molasses and inoculants on the fermentation quality and nutritive value of lucerne silage. S. Afr. J. Anim. Sci. 2011, 41, 377–388. [Google Scholar] [CrossRef]
- Aydin, S.S. Effect of almond (Prunus dulcis) hull addition to corn silage on silage quality, silage fermentation properties and in vitro digestibility. Med. Weter. 2023, 79, 417–421. [Google Scholar] [CrossRef]
- Keady, T.W.J.; Murphy, J. Effects of inoculant treatment on ryegrass silage fermentation, digestibility, rumen fermentation, intake and performance of lactating dairy cattle. Grass Forage Sci. 1996, 51, 232. [Google Scholar] [CrossRef]
- Kennedy, S.J. An evaluation of three bacterial inoculants and formic acid as additives for first harvest grass. Grass Forage Sci. 1990, 45, 281–288. [Google Scholar] [CrossRef]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria. Asian-Australas J. Anim. Sci. 2017, 30, 1568–1574. [Google Scholar] [CrossRef]
- Cao, C.; Bao, W.; Li, W.; Zhao, F.; Kwok, L.-Y.; Zhang, W.; Zhang, H. Changes in physico-chemical characteristics and viable bacterial communities during fermentation of alfalfa silages inoculated with Lactobacillus plantarum. World J. Microbiol. Biotechnol. 2021, 37, 127. [Google Scholar] [CrossRef]
- Mertens, D.R. Creating a System for Meeting the Fiber Requirements of Dairy Cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef] [PubMed]
- Méchin, V.; Argillier, O.; Menanteau, V.; Barrière, Y.; Mila, I.; Pollet, B.; Lapierre, C. Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems. J. Sci. Food Agric. 2000, 80, 574–580. [Google Scholar] [CrossRef]
- Rotger, A.; Ferret, A.; Manteca, X.; Ruiz de la Torre, J.L.; Calsamiglia, S. Effects of dietary nonstructural carbohydrates and protein sources on feeding behavior of tethered heifers fed high-concentrate diets. J. Anim. Sci. 2006, 84, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zi, X.; Zhou, H.; Hou, G.; Cai, Y. Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Anim. Feed Sci. Technol. 2014, 197, 206–212. [Google Scholar] [CrossRef]
- Totakul, P.; Matra, M.; Sommai, S.; Viennasay, B.; Wanapat, M. Combination effects of phytonutrient pellet and lemongrass (Cymbopogon citratus) powder on rumen fermentation efficiency and nutrient degradability using in vitro technique. Trop. Anim. Health Prod. 2024, 56, 97. [Google Scholar] [CrossRef]
- Al-Masri, M.R. An in vitro nutritive evaluation and rumen fermentation kinetics of Sesbania aculeate as affected by harvest time and cutting regimen. Trop. Anim. Health Prod. 2009, 41, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Rafael Monteiro Araújo, T.; José Maurício de Souza, C.; Sebastião de Campos Valadares, F.; André Soares de, O.; Assis, A.J.; Douglas dos Santos, P. Consumo, digestibilidade e desempenho de novilhas alimentadas com casca de café em substituição à silagem de milho Intake, digestibility and performance of dairy heifers fed coffee hulls replacing of corn silage. Rev. Bras. Zootec. 2007, 36, 968–977. [Google Scholar] [CrossRef]
- Filya, I. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages. J. Appl. Microbiol. 2003, 95, 1080–1086. [Google Scholar] [CrossRef]
Item | SCPBs | Millet Hull | Wheat Bran |
---|---|---|---|
Chemical composition and buffering capacity | |||
Dry matter (%FW) | 24.55 | 93.05 | 88.76 |
Organic matter (%DM) | 97.52 | 91.40 | 93.86 |
Crude protein (%DM) | 11.16 | 4.56 | 17.89 |
Neutral detergent fibre (%DM) | 75.76 | 73.86 | 56.28 |
Acid detergent fibre (%DM) | 28.26 | 46.11 | 15.04 |
Acid detergent lignin (%DM) | 4.50 | 27.65 | 6.94 |
Water-soluble carbohydrate (%DM) | 6.06 | 3.25 | 6.77 |
Buffering capacity (mEq kg−1 DM) | 191.17 | 178.26 | 113.30 |
Energy | |||
Gross energy (MJ kg−1 DM) | 19.98 | 18.73 | 19.27 |
Microbial counts | |||
Lactic acid bacteria (log10 cfu g−1 FW) | 6.06 | ND | ND |
Yeasts (log10 cfu g−1 FW) | 3.35 | ND | ND |
Moulds (log10 cfu g−1 FW) | ND | ND | ND |
Item ‡ | Additive † | SEM | p-Value | |
---|---|---|---|---|
Control | LAB | |||
pH | 3.54 | 3.56 | 0.007 | 0.067 |
Ammonia nitrogen (%TN) | 8.07 | 7.84 | 0.321 | 0.508 |
Lactic acid (%DM) | 17.84 | 19.01 | 1.506 | 0.481 |
Acetic acid (%DM) | 8.21 | 8.78 | 0.650 | 0.471 |
Propionic acid (%DM) | 0.85 | 1.02 | 0.359 | 0.666 |
Butyric acid (%DM) | 6.87 | 7.17 | 0.565 | 0.623 |
Item ‡ | Additive † | SEM | p-Value | |
---|---|---|---|---|
Control | LAB | |||
Dry matter (%FW) | 23.54 | 24.55 | 0.100 | 0.001 |
Organic matter (%DM) | 97.52 | 97.41 | 0.056 | 0.119 |
Crude protein (%DM) | 11.26 | 11.83 | 0.162 | 0.025 |
Neutral detergent fiber (%DM) | 69.46 | 71.13 | 0.708 | 0.078 |
Acid detergent fiber (%DM) | 32.20 | 31.39 | 1.423 | 0.623 |
Acid detergent lignin (%DM) | 6.42 | 6.40 | 0.560 | 0.973 |
Gross energy (MJ kg−1 DM) | 21.34 | 21.77 | 0.171 | 0.066 |
IVDMD (%DM) | 61.01 | 61.60 | 1.074 | 0.640 |
IVOMD (%DM) | 63.46 | 64.07 | 1.039 | 0.615 |
IVCPD (%DM) | 53.43 | 54.13 | 0.469 | 0.268 |
IVGED (%DM) | 63.67 | 64.25 | 0.978 | 0.615 |
IVNDFD (%DM) | 60.10 | 61.55 | 0.599 | 0.073 |
Item ‡ | T | Additives † | Mean | SEM | Significance of Main Effects and Interactions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMH | SWB | |||||||||||||
Control | LAB | Control | LAB | T | A | E | T × A | T × E | A × E | T × A × E | ||||
pH | T1 | 3.75 aC | 3.77 aC | 3.85 bC | 3.86 bC | 3.81 | 0.002 | <0.001 | 0.002 | <0.001 | 0.451 | <0.001 | 0.099 | 0.890 |
T2 | 3.66 aB | 3.68 bB | 3.64 aA | 3.65 aA | 3.66 | |||||||||
T3 | 3.58 aA | 3.59 aA | 3.74 bB | 3.75 bB | 3.66 | |||||||||
Average | 3.66 | 3.68 | 3.74 | 3.75 | ||||||||||
AN (%TN) | T1 | 5.54 dC | 5.32 cC | 3.04 bB | 2.55 aA | 4.11 | 0.015 | <0.001 | <0.001 | <0.001 | 0.021 | <0.001 | 0.804 | 0.015 |
T2 | 5.26 bB | 4.98 bB | 2.64 aA | 2.58 aA | 3.87 | |||||||||
T3 | 4.52 cA | 4.37 bA | 3.24 aC | 3.10 aB | 3.81 | |||||||||
Average | 5.10 | 4.89 | 2.97 | 2.75 | ||||||||||
LA (%DM) | T1 | 3.08 a | 3.82 aA | 6.67 b | 6.66 b | 5.06 | 0.086 | 0.001 | 0.672 | <0.001 | 0.147 | 0.171 | 0.303 | 0.572 |
T2 | 4.42 a | 3.94 aA | 6.82 b | 6.48 b | 5.73 | |||||||||
T3 | 4.48 a | 4.98 aB | 7.26 b | 7.29 b | 5.69 | |||||||||
Average | 4.00 | 4.25 | 6.92 | 6.81 | ||||||||||
AA (%DM) | T1 | 1.26 | 1.56 | 1.72 | 1.89 | 1.61 | 0.038 | 0.587 | 0.288 | <0.001 | 0.079 | 0.366 | 0.070 | 0.431 |
T2 | 1.51 | 1.42 | 1.85 | 1.60 | 1.59 | |||||||||
T3 | 1.01 a | 1.49 b | 1.83 b | 1.74 b | 1.52 | |||||||||
Average | 1.26 | 1.49 | 1.80 | 1.74 | ||||||||||
PA (%DM) | T1 | 0.64 a | 2.29 bB | 0.14 a | 0.16 aB | 0.81 | 0.010 | 0.164 | 0.829 | 0.507 | 0.191 | 0.222 | 0.155 | 0.586 |
T2 | 0.76 | 0.68 AB | 2.23 | 0.11 B | 0.95 | |||||||||
T3 | 0.00 a | 0.00 aA | 0.02 b | 0.01 aA | 0.01 | |||||||||
Average | 0.47 | 0.99 | 0.80 | 0.09 | ||||||||||
BA (%DM) | T1 | 0.23 aA | 0.29 aA | 0.50 b | 0.30 aA | 0.33 | 0.210 | <0.001 | 0.143 | 0.010 | 0.115 | 0.019 | 0.013 | 0.016 |
T2 | 0.42 B | 0.34 A | 0.41 | 0.39 AB | 0.39 | |||||||||
T3 | 0.46 B | 0.54 B | 0.51 | 0.49 B | 0.50 | |||||||||
Average | 0.37 | 0.39 | 0.48 | 0.39 |
Item ‡ | T | Additives † | Mean | SEM | Significance of Main Effects and Interactions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMH | SWB | |||||||||||||
Control | LAB | Control | LAB | T | A | E | T × A | T × E | A × E | T × A × E | ||||
DM (%FW) | T1 | 38.12 C | 38.01 C | 38.32 C | 38.18 C | 38.16 | 0.046 | <0.001 | 0.012 | 0.003 | 0.023 | 0.139 | 0.269 | 0.367 |
T2 | 32.33 aB | 33.13 bB | 32.76 abB | 32.99 bB | 38.20 | |||||||||
T3 | 27.27 aA | 27.64 abA | 27.85 abA | 28.20 bA | 27.74 | |||||||||
Average | 32.57 | 32.92 | 32.98 | 33.12 | ||||||||||
OM (%DM) | T1 | 92.88 aA | 92.79 aA | 94.34 bA | 94.32 bA | 93.58 | 0.029 | <0.001 | 0.803 | <0.001 | 0.207 | <0.001 | 0.073 | 0.476 |
T2 | 93.45 aB | 93.41 aB | 94.66 bB | 95.02 bB | 94.14 | |||||||||
T3 | 94.47 aC | 94.33 aC | 95.10 bC | 95.13 bB | 94.76 | |||||||||
Average | 93.60 | 93.51 | 94.70 | 94.82 | ||||||||||
CP (%DM) | T1 | 9.08 aA | 9.28 aA | 16.26 bA | 20.32 cC | 13.71 | 0.020 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
T2 | 10.56 aB | 10.58 aB | 19.50 bC | 19.60 bB | 15.06 | |||||||||
T3 | 12.02 aC | 11.79 aC | 18.75 cB | 18.40 bA | 15.24 | |||||||||
Average | 10.55 | 10.55 | 18.17 | 19.44 | ||||||||||
NDF (%DM) | T1 | 79.17 bB | 80.09 bC | 57.02 a | 58.91 a | 38.80 | 0.218 | <0.001 | 0.403 | <0.001 | 0.029 | <0.001 | 0.150 | 0.207 |
T2 | 78.43 bB | 78.37 bB | 56.78 a | 54.44 a | 67.00 | |||||||||
T3 | 74.56 bA | 74.53 bA | 58.30 a | 55.69 a | 65.77 | |||||||||
Average | 77.39 | 77.66 | 57.37 | 56.34 | ||||||||||
ADF (%DM) | T1 | 47.53 bB | 47.47 bB | 19.37 aA | 20.20 aA | 33.64 | 0.016 | 0.078 | 0.444 | <0.001 | 0.720 | <0.001 | 0.685 | 0.771 |
T2 | 45.17 bB | 45.77 bB | 20.54 aA | 20.91 aA | 33.10 | |||||||||
T3 | 41.78 bA | 41.60 bA | 23.73 aB | 23.68 aB | 32.70 | |||||||||
Average | 44.83 | 44.95 | 21.21 | 21.60 | ||||||||||
ADL (%DM) | T1 | 20.95 bB | 21.14 bC | 6.81 a | 6.59 aA | 13.87 | 0.123 | <0.001 | 0.426 | <0.001 | 0.011 | <0.001 | 0.337 | 0.020 |
T2 | 17.50 bA | 18.57 bB | 6.53 a | 6.85 aA | 12.36 | |||||||||
T3 | 17.83 cA | 15.25 bA | 7.66 a | 7.69 aB | 12.11 | |||||||||
Average | 18.76 | 18.32 | 7.00 | 7.04 | ||||||||||
GE (MJ kg−1 DM) | T1 | 19.71 bA | 19.56 aA | 20.08 cA | 20.43 dA | 19.94 | 0.024 | <0.001 | 0.550 | <0.001 | 0.212 | 0.464 | 0.002 | 0.294 |
T2 | 20.05 aA | 20.07 aB | 20.69 bB | 20.83 bB | 20.41 | |||||||||
T3 | 20.80 abB | 20.53 aC | 21.18 bC | 21.26 bC | 20.95 | |||||||||
Average | 20.19 | 20.05 | 20.65 | 20.84 |
Item ‡ | T | Additives † | Mean | SEM | Significance of Main Effects and Interactions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMH | SWB | |||||||||||||
Control | LAB | Control | LAB | T | A | E | T × A | T × E | A × E | T × A × E | ||||
IVDMD (%DM) | T1 | 46.51 aA | 46.32 aA | 66.87 b | 67.59 b | 56.82 | 0.473 | <0.001 | 0.964 | <0.001 | 0.715 | <0.001 | 0.235 | 0.862 |
T2 | 48.89 aB | 48.55 aB | 67.56 b | 67.62 b | 58.15 | |||||||||
T3 | 52.36 aC | 52.11 aC | 66.20 b | 66.24 b | 59.23 | |||||||||
Average | 49.25 | 48.99 | 66.88 | 67.15 | ||||||||||
IVOMD (%DM) | T1 | 50.14 aA | 50.09 aA | 71.10 bB | 71.39 bB | 60.68 | 0.115 | <0.001 | 0.826 | <0.001 | 0.825 | <0.001 | 0.579 | 0.971 |
T2 | 52.32 aB | 51.92 aB | 71.23 bB | 71.17 bB | 61.66 | |||||||||
T3 | 55.54 aC | 55.45 aC | 69.32 bA | 69.33 bA | 62.41 | |||||||||
Average | 52.67 | 52.49 | 70.55 | 70.63 | ||||||||||
IVCPD (%DM) | T1 | 45.07 a | 45.92 bA | 56.49 cA | 60.07 dC | 51.89 | 0.114 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.088 | <0.001 |
T2 | 46.57 a | 46.33 aA | 58.71 bB | 58.71 bB | 52.58 | |||||||||
T3 | 47.08 a | 47.70 aB | 56.14 bA | 55.56 bA | 51.62 | |||||||||
Average | 46.24 | 46.65 | 57.11 | 58.11 | ||||||||||
IVNDFD (%DM) | T1 | 73.75 bB | 74.64 bC | 52.38 a | 54.20 a | 63.74 | 0.107 | <0.001 | 0.402 | <0.001 | 0.029 | <0.001 | 0.151 | 0.208 |
T2 | 73.03 bB | 72.98 bB | 52.14 a | 49.88 a | 62.01 | |||||||||
T3 | 69.30 bA | 69.27 bA | 53.61 a | 51.09 a | 60.82 | |||||||||
Average | 72.03 | 72.30 | 52.71 | 51.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Wang, P.; Li, F.; Du, J.; Jin, Y.; Zhao, T.; Yi, Q.; Tang, H.; Yuan, B. Fermentation Quality and In Vitro Digestibility of Sweet Corn Processing Byproducts Silage Mixed with Millet Hull or Wheat Bran and Inoculated with a Lactic Acid Bacteria. Fermentation 2024, 10, 254. https://doi.org/10.3390/fermentation10050254
Yu M, Wang P, Li F, Du J, Jin Y, Zhao T, Yi Q, Tang H, Yuan B. Fermentation Quality and In Vitro Digestibility of Sweet Corn Processing Byproducts Silage Mixed with Millet Hull or Wheat Bran and Inoculated with a Lactic Acid Bacteria. Fermentation. 2024; 10(5):254. https://doi.org/10.3390/fermentation10050254
Chicago/Turabian StyleYu, Meng, Peng Wang, Fuhou Li, Jiarui Du, Yitong Jin, Tianyue Zhao, Qixuan Yi, Hongyu Tang, and Bao Yuan. 2024. "Fermentation Quality and In Vitro Digestibility of Sweet Corn Processing Byproducts Silage Mixed with Millet Hull or Wheat Bran and Inoculated with a Lactic Acid Bacteria" Fermentation 10, no. 5: 254. https://doi.org/10.3390/fermentation10050254