High-Level Bio-Based Production of Coproporphyrin in Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Plasmids
2.2. Media and Bacterial Cell Cultivation
2.3. Analysis
3. Results
3.1. Effects of the Native HemD for CP Biosynthesis
3.2. Effects of the Native HemD/E for CP Biosynthesis
3.3. Tuning of Expression Levels of HemD/E for CP Biosynthesis
3.4. Effects of HemY on CP Biosynthesis
3.5. HemD Overexpression Was Not Essential for CP Biosynthesis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poulos, T.L. Heme enzyme structure and function. Chem. Rev. 2014, 114, 3919–3962. [Google Scholar] [CrossRef] [PubMed]
- Beas, J.Z.; Videira, M.A.; Saraiva, L.M. Regulation of bacterial haem biosynthesis. Coord. Chem. Rev. 2022, 452, 214286. [Google Scholar] [CrossRef]
- Celis, A.I.; DuBois, J.L. Making and breaking heme. Curr. Opin. Struct. Biol. 2019, 59, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Dailey, H.A.; Dailey, T.A.; Gerdes, S.; Jahn, D.; Jahn, M.; O’Brian, M.R.; Warren, M.J. Prokaryotic heme biosynthesis: Multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 2017, 81, e00048-16. [Google Scholar] [CrossRef] [PubMed]
- Kořený, L.; Oborník, M.; Horáková, E.; Waller, R.F.; Lukeš, J. The convoluted history of haem biosynthesis. Biol. Rev. 2022, 97, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.D. Heme biosynthesis and the porphyrias. Mol. Genet. Metab. 2019, 128, 164–177. [Google Scholar] [CrossRef]
- Aman Mohammadi, M.; Ahangari, H.; Mousazadeh, S.; Hosseini, S.M.; Dufossé, L. Microbial pigments as an alternative to synthetic dyes and food additives: A brief review of recent studies. Bioprocess Biosyst. Eng. 2022, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Wang, X.; Gao, S.; Li, D.; Zhou, J. Production of Natural Pigments Using Microorganisms. J. Agric. Food Chem. 2023, 71, 9243–9254. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Park, S.Y.; Park, Y.S.; Eun, H.; Lee, S.Y. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol. 2020, 38, 745–765. [Google Scholar] [CrossRef]
- Frankenberg, N.; Moser, J.; Jahn, D. Bacterial heme biosynthesis and its biotechnological application. Appl. Microbiol. Biotechnol. 2003, 63, 115–127. [Google Scholar] [CrossRef]
- Anzaldi, L.L.; Skaar, E.P. Overcoming the heme paradox: Heme toxicity and tolerance in bacterial pathogens. Infect. Immun. 2010, 78, 4977–4989. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Chen, X.; Chen, S.; Guo, M.; Liu, H. Applications of the whole-cell system in the efficient biosynthesis of heme. Int. J. Mol. Sci. 2023, 24, 8384. [Google Scholar] [CrossRef] [PubMed]
- Layer, G. Heme biosynthesis in prokaryotes. Biochim. Et Biophys. Acta BBA-Mol. Cell Res. 2021, 1868, 118861. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, E.; De Canio, M.; Mercadante, R.; Savino, M.; Granata, F.; Tavazzi, D.; Nicolli, A.M.; Trevisan, A.; Marchini, S.; Fustinoni, S. Laboratory diagnosis of porphyria. Diagnostics 2021, 11, 1343. [Google Scholar] [CrossRef]
- Neuvonen, M.; Tornio, A.; Hirvensalo, P.; Backman, J.T.; Niemi, M. Performance of plasma coproporphyrin I and III as OATP1B1 biomarkers in humans. Clin. Pharmacol. Ther. 2021, 110, 1622–1632. [Google Scholar] [CrossRef] [PubMed]
- Al-Hussaini, A.; Asery, A.; Alharbi, O. Urinary coproporphyrins as a diagnostic biomarker of Dubin-Johnson syndrome in neonates: A diagnostic pathway is proposed. Saudi J. Gastroenterol. 2023, 29, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Belousova, I.; Dobrun, M.; Galebskaya, L.; Gorelov, S.; Kislyakov, I.; Kolbasov, S.; Kris’ Ko, A.; Kris’ko, T.; Malkov, M.; Murav’eva, T. New preparation based on coproporphyrin III for photoluminescence diagnostics and photodynamic therapy. In Proceedings of the Laser Optics 2010, St Petersburg, Russia, 28 June–2 July 2010; pp. 200–205. [Google Scholar]
- Gilibili, R.R.; Chatterjee, S.; Bagul, P.; Mosure, K.W.; Murali, B.V.; Mariappan, T.T.; Mandlekar, S.; Lai, Y. Coproporphyrin-I: A fluorescent, endogenous optimal probe substrate for ABCC2 (MRP2) suitable for vesicle-based MRP2 inhibition assay. Drug Metab. Dispos. 2017, 45, 604–611. [Google Scholar] [CrossRef]
- Walter, A.B.; Simpson, J.; Jenkins, J.L.; Skaar, E.P.; Jansen, E.D. Optimization of optical parameters for improved photodynamic therapy of Staphylococcus aureus using endogenous coproporphyrin III. Photodiagnosis Photodyn. Ther. 2020, 29, 101624. [Google Scholar] [CrossRef] [PubMed]
- Arab, B.; Westbrook, A.W.; Moo-Young, M.; Liu, Y.; Chou, C.P. Bio-Based Production of Uroporphyrin in Escherichia coli. Synth. Biol. Eng. 2024, 2, 10002. [Google Scholar] [CrossRef]
- Jones, J.A.; Koffas, M.A. Optimizing metabolic pathways for the improved production of natural products. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 575, pp. 179–193. [Google Scholar]
- Miscevic, D.; Mao, J.Y.; Moo-Young, M.; Chou, C.H.P. High-level heterologous production of propionate in engineered Escherichia coli. Biotechnol. Bioeng. 2020, 117, 1304–1315. [Google Scholar] [CrossRef]
- Srirangan, K.; Liu, X.; Westbrook, A.; Akawi, L.; Pyne, M.E.; Moo-Young, M.; Chou, C.P. Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 2014, 98, 9499–9515. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.G.; Young, L.; Chuang, R.-Y.; Venter, J.C.; Hutchison, C.A.; Smith, H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Mauzerall, D.; Granick, S. The Occurrence and Determination of Δ-Aminolevulinic Acid and Porphobilinogen in Urine. J. Biol. Chem. 1956, 219, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; De Boer, A.L.; Petri, R.; Schmidt-Dannert, C. High-Level Production of Porphyrins in Metabolically Engineered Escherichia coli: Systematic Extension of a Pathway Assembled from Overexpressed Genes Involved in Heme Biosynthesis. Appl. Environ. Microbiol. 2003, 69, 4875–4883. [Google Scholar] [CrossRef]
- Miscevic, D.; Mao, J.Y.; Kefale, T.; Abedi, D.; Moo-Young, M.; Perry Chou, C. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnol Bioeng 2021, 118, 30–42. [Google Scholar] [CrossRef]
- Lall, D.; Miscevic, D.; Bruder, M.; Westbrook, A.; Aucoin, M.; Moo-Young, M.; Perry Chou, C. Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli. Bioresour. Bioprocess. 2021, 8, 1–16. [Google Scholar] [CrossRef]
- Makoff, A.; Smallwood, A. The use of two-cistron constructions in improving the expression of a heterologous gene in E. coli. Nucleic Acids Res. 1990, 18, 1711–1718. [Google Scholar] [CrossRef]
- Newbury, S.F.; Smith, N.H.; Higgins, C.F. Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 1987, 51, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Dailey, H.A.; Gerdes, S.; Dailey, T.A.; Burch, J.S.; Phillips, J.D. Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc. Natl. Acad. Sci. USA 2015, 112, 2210–2215. [Google Scholar] [CrossRef]
- Panek, H.; O’Brian, M.R. A whole genome view of prokaryotic haem biosynthesis. Microbiology 2002, 148, 2273–2282. [Google Scholar] [CrossRef]
- Dailey, H.A.; Septer, A.N.; Daugherty, L.; Thames, D.; Gerdes, S.; Stabb, E.V.; Dunn, A.K.; Dailey, T.A.; Phillips, J.D. The Escherichia coli protein YfeX functions as a porphyrinogen oxidase, not a heme dechelatase. MBio 2011, 2, e00248-11. [Google Scholar] [CrossRef] [PubMed]
Name | Description or Relevant Genotype | Source |
---|---|---|
Host strains | ||
HI-Control 10G | mcrA, ∆(mrr-hsdRMS-mcrBC), endA1, recA1, ϕ80dlacZ∆M15, ∆lacX74, araD139, ∆(ara leu)7697, galU, galK, rpsL (StrR), nupG, λ−, tonA, Mini-F lacIq1 (GentR) | Lucigen |
MG1655 | K-12; F−, λ−, rph-1 | Lab stock |
Bacillus Subtilis 168 | Wild type | Lab stock |
CPC-Sbm∆iclR∆sdhA | F−, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ−, rph-1, Δ(rhaD-rhaB)568, hsdR514, ∆ldhA, Ptrc::sbm (i.e., with the FRT-Ptrc cassette replacing the 204-bp upstream of the Sbm operon), ∆iclR, ∆sdhA | [22] |
BA001 | CPC-Sbm∆iclR∆sdhA/pK-hemABD | [20] |
BA002 | CPC-Sbm∆iclR∆sdhA/pK-hemABD-E | This study |
BA003 | CPC-Sbm∆iclR∆sdhA/pK-hemAB-DE | This study |
BA004 | CPC-Sbm∆iclR∆sdhA/pK-hemABD-EYB.s | This study |
BA005 | CPC-Sbm∆iclR∆sdhA/pK-hemABD-EY | This study |
BA006 | CPC-Sbm∆iclR∆sdhA/pK-hemAB-E | This study |
Plasmids | ||
pK-hemABCD | p15A ori, KmR, Ptrc::hemABCD | [20] |
pK-hemABCD-E | p15A ori, KmR, Ptrc::hemABCD-Pgracmax::hemE | This study |
pK-hemABD | p15A ori, KmR, Ptrc::hemABD | [20] |
pK-hemABD-E | p15A ori, KmR, Ptrc::hemABD-Pgracmax::hemE | This study |
pK-hemAB-DE | p15A ori, KmR, Ptrc::hemAB-Pgracmax::hemDE | This study |
pK-hemABD-EYB.s | p15A ori, KmR, Ptrc::hemABD-Pgracmax::hemEY -hemY from B. subtilis 168- | This study |
pK-hemABD-EY | p15A ori, KmR, Ptrc::hemABD-Pgracmax::hemEY -hemY from MG1655- | This study |
pK-hemAB-E | p15A ori, KmR, Ptrc::hemAB-Pgracmax::hemE | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arab, B.; Westbrook, A.; Moo-Young, M.; Liu, Y.; Chou, C.P. High-Level Bio-Based Production of Coproporphyrin in Escherichia coli. Fermentation 2024, 10, 250. https://doi.org/10.3390/fermentation10050250
Arab B, Westbrook A, Moo-Young M, Liu Y, Chou CP. High-Level Bio-Based Production of Coproporphyrin in Escherichia coli. Fermentation. 2024; 10(5):250. https://doi.org/10.3390/fermentation10050250
Chicago/Turabian StyleArab, Bahareh, Adam Westbrook, Murray Moo-Young, Yilan Liu, and C. Perry Chou. 2024. "High-Level Bio-Based Production of Coproporphyrin in Escherichia coli" Fermentation 10, no. 5: 250. https://doi.org/10.3390/fermentation10050250
APA StyleArab, B., Westbrook, A., Moo-Young, M., Liu, Y., & Chou, C. P. (2024). High-Level Bio-Based Production of Coproporphyrin in Escherichia coli. Fermentation, 10(5), 250. https://doi.org/10.3390/fermentation10050250