Valorization of Agro-Industrial Orange Peel By-Products through Fermentation Strategies
Abstract
:1. Introduction
2. Fermentation
2.1. Submerged Fermentation (SmF)
2.1.1. Stirred Tank Reactor (STR)
2.1.2. Pneumatic Reactor (PR)
2.2. Solid State Fermentation (SSF)
2.2.1. Shallow-Tray Fermentor
2.2.2. Fixed-Bed Column Fermentor
2.2.3. Rotating Drum Bioreactors
3. Biotechnologically Added-Value Products from Orange Peel By-Products
3.1. Bioethanol
3.2. Enzymes
3.3. Organic Acids
3.4. Dyes
3.5. Single Cell Protein (SCP) Production and Dietary Compounds
3.6. Bacterial Cellulose
3.7. Aroma Compounds
4. Current and Future Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Mansi, E.M.T.; Nielsen, J.; Mousdale, D.; Carlson, R.P. Fermentation Microbiology and Biotechnology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Mussatto, S.I.; Ballesteros, L.F.; Silvia, M.; Texeira, J.A. Use of Agro-Industrial Wastes in Solid-State Fermentation Processes. In Industrial Waste; InTech: Houston, TX, USA, 2012. [Google Scholar]
- Seltenrich, N. Emerging Waste-to-Energy Technologies: Solid Waste Solution or Dead End? Environ. Health Perspect. 2016, 124, A106–A111. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Artola, A.; Font, X.; Gea, T.; Barrena, R.; Gabriel, D.; Sánchez-Monedero, M.Á.; Roig, A.; Cayuela, M.L.; Mondini, C. Greenhouse Gas Emissions from Organic Waste Composting. Environ. Chem. Lett. 2015, 13, 223–238. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Paone, E.; Komilis, D. Strategies for the Sustainable Management of Orange Peel Waste through Anaerobic Digestion. J. Environ. Manag. 2018, 212, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization FAOSTAT Food Production. 2020. Available online: http://www.FAO.ORG/FAOSTAT/En/#data/QC (accessed on 24 June 2020).
- Ayala, J.R.; Montero, G.; Coronado, M.A.; García, C.; Curiel-Alvarez, M.A.; León, J.A.; Sagaste, C.A.; Montes, D.G. Characterization of Orange Peel Waste and Valorization to Obtain Reducing Sugars. Molecules 2021, 26, 1348. [Google Scholar] [CrossRef] [PubMed]
- Mahato, N.; Sharma, K.; Sinha, M.; Dhyani, A.; Pathak, B.; Jang, H.; Park, S.; Pashikanti, S.; Cho, S. Biotransformation of Citrus Waste-I: Production of Biofuel and Valuable Compounds by Fermentation. Processes 2021, 9, 220. [Google Scholar] [CrossRef]
- Mandalari, G.; Bennett, R.N.; Bisignano, G.; Saija, A.; Dugo, G.; Lo Curto, R.B.; Faulds, C.B.; Waldron, K.W. Characterization of Flavonoids and Pectins from Bergamot (Citrus Bergamia Risso) Peel, a Major Byproduct of Essential Oil Extraction. J. Agric. Food Chem. 2006, 54, 197–203. [Google Scholar] [CrossRef]
- Gervasi, T.; Pellizzeri, V.; Calabrese, G.; Di Bella, G.; Cicero, N.; Dugo, G. Production of Single Cell Protein (SCP) from Food and Agricultural Waste by Using Saccharomyces cerevisiae. Nat. Prod. Res. 2018, 32, 648–653. [Google Scholar] [CrossRef] [PubMed]
- De Medina-Salas, L.; Giraldi-Díaz, M.R.; Castillo-González, E.; Morales-Mendoza, L.E. Valorization of Orange Peel Waste Using Precomposting and Vermicomposting Processes. Sustainability 2020, 12, 7626. [Google Scholar] [CrossRef]
- Vani, B.S.; Anoop, S. A Review on Bioethanol Production from the Orange Peel Waste (OPW) Using Cellulolytic Soil Bacteria. Int. J. Sci. Eng. Res. 2021, 12, 662–674. [Google Scholar]
- Demain, A.L.; Sánchez, S. Microbial Synthesis of Primary Metabolites- Fermentation Microbiology and Biotechnology: Control of Carbon Flux to Product Formation in Microbial Cell Factorie. In Fermentation Microbiology and Biotechnology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Kossel, A. Arch Anat Physiol. Physiol. Abt. 1891, 181–186. [Google Scholar]
- Chapman, R.F. Entomology in the Twentieth Century. Annu. Rev. Entomol. 2000, 45, 261–285. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, B.; Chávez, A.; Forero, A.; García-Huante, Y.; Romero, A.; Sánchez, M.; Rocha, D.; Sánchez, B.; Rodríguez-Sanoja, R.; Sánchez, S.; et al. Production of Microbial Secondary Metabolites: Regulation by the Carbon Source. Crit. Rev. Microbiol. 2010, 36, 146–167. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, I.; Ladero, M.; Santos, V.E. D-Lactic Acid Production from Orange Waste Enzymatic Hydrolysates with L. Delbrueckii Cells in Growing and Resting State. Ind. Crops Prod. 2020, 146, 112176. [Google Scholar] [CrossRef]
- Davaritouchaee, M.; Mosleh, I.; Dadmohammadi, Y.; Abbaspourrad, A. One-Step Oxidation of Orange Peel Waste to Carbon Feedstock for Bacterial Production of Polyhydroxybutyrate. Polymers 2023, 15, 697. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, P.S.; Panzera, M.F. Anaerobic Digestion of Ensiled Orange Peel Waste: Preliminary Batch Results. Therm. Sci. Eng. Prog. 2018, 6, 355–360. [Google Scholar] [CrossRef]
- Bustamante, D.; Tortajada, M.; Ramón, D.; Rojas, A. Production of D-Lactic Acid by the Fermentation of Orange Peel Waste Hydrolysate by Lactic Acid Bacteria. Fermentation 2019, 6, 1. [Google Scholar] [CrossRef]
- Escanciano, I.A.; Ripoll, V.; Ladero, M.; Santos, V.E. Study on the Operational Modes Using Both Growing and Resting Cells for Succinic Acid Production from Xylose Kinetic Modelling. Fermentation 2023, 9, 663. [Google Scholar] [CrossRef]
- Nielsen, J. Fermentation Kinetics Central and Modern Concepts. In Fermentation Microbiology and Biotechnology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Gaden, E.L. Fermentation Process Kinetics. J. Biochem. Microbiol. Technol. Eng. 1959, 1, 413–429. [Google Scholar] [CrossRef]
- Sabater, C.; Ruiz, L.; Delgado, S.; Ruas-Madiedo, P.; Margolles, A. Valorization of Vegetable Food Waste and By-Products Through Fermentation Processes. Front. Microbiol. 2020, 11, 581997. [Google Scholar] [CrossRef]
- Taddia, A.; Tubio, G. Enzyme Technology in Value Addition of Bakery and Confectionery Products. In Value-Addition in Food Products and Processing through Enzyme Technology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 71–82. [Google Scholar]
- Singh, V.; Örmeci, B.; Singh, A.; Saha, S.; Hussain, A. A Novel Solid-State Submerged Fermenter (3SF) for Acidogenic Fermentation of Food Waste at High Volumetric Loading: Effect of Inoculum to Substrate Ratio, Design Optimization, and Inoculum Enrichment. Chem. Eng. J. 2023, 475, 146173. [Google Scholar] [CrossRef]
- Musoni, M.; Destain, J.; Thonart, P.; Bahama, J.-B.; Delvigne, F. Bioreactor Design and Implementation Strategies for the Cultivation of Filamentous Fungi and the Production of Fungal Metabolites: From Traditional Methods to Engineered Systems. Biotechnol. Agron. Soc. Environ. 2015, 19, 430–442. [Google Scholar]
- Webb, C. Design Aspects of Solid State Fermentation as Applied to Microbial Bioprocessing. J. Appl. Biotechnol. Bioeng. 2017, 4, 511–532. [Google Scholar] [CrossRef]
- Subramaniyam, R.; Vimala, R. Solid State and Submerged Fermentation for the Production of Bioactive Substances: A Comparative Study. Int. J. Sci. Nat. 2012, 3, 480–486. [Google Scholar]
- Kaur, P.; Vohra, A.; Satyanarayana, T. Industrial Bioreactors for Submerged Fermentations. In Fermentation Processes Engineering in the Food Industry; Soccol, C.R., Pandey, A., Larroche, C., Eds.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Allaman, T. Bioreactors Design, Operation and Application—Fermentation Microbiology and Biotechnology: Tools, Monitoring, and Controll of Fermentation Processes. In Fermentation Microbiology and Biotechnology; CCR Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Nienow, A.W. Stirring and Stirred-Tank Reactors. Chem. Ing. Tech. 2014, 86, 2063–2074. [Google Scholar] [CrossRef]
- Lopes, M.; Belo, I.; Mota, M. Over-pressurized Bioreactors: Application to Microbial Cell Cultures. Biotechnol. Prog. 2014, 30, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Max, B.; Salgado, J.M.; Rodríguez, N.; Cortés, S.; Converti, A.; Domínguez, J.M. Biotechnological Production of Citric Acid. Braz. J. Microbiol. 2010, 41, 862–875. [Google Scholar] [CrossRef] [PubMed]
- Fratebianchi, D.; Crespo, J.M.; Tari, C.; Cavalitto, S. Control of Agitation Rate and Aeration for Enhanced Polygalacturonase Production in Submerged Fermentation by Aspergillus Sojae Using Agro-industrial Wastes. J. Chem. Technol. Biotechnol. 2017, 92, 305–310. [Google Scholar] [CrossRef]
- Khamseh, A.A.G.; Miccio, M. Comparison of Batch, Fed-Batch and Continuous Well-Mixed Reactors for Enzymatic Hydrolysis of Orange Peel Wastes. Process Biochem. 2012, 47, 1588–1594. [Google Scholar] [CrossRef]
- Kadam, K.L.; Rydholm, E.C.; McMillan, J.D. Development and Validation of a Kinetic Model for Enzymatic Saccharification of Lignocellulosic Biomass. Biotechnol. Prog. 2004, 20, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.-J. Bioreactor Engineering. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 257–269. [Google Scholar]
- Satari, B.; Karimi, K.; Taherzadeh, M.; Zamani, A. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor. Int. J. Mol. Sci. 2016, 17, 302. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A. Recent Process Developments in Solid-State Fermentation. Process Biochem. 1992, 27, 109–117. [Google Scholar] [CrossRef]
- Thomas, L.; Larroche, C.; Pandey, A. Current Developments in Solid-State Fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Thomas, L.; Pandey, A. Solid-State Fermentation. In Industrial Biotechnology: Products and Processes; Wittmann, C., Liao, J.C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 187–204. [Google Scholar]
- Pandey, A. Solid-State Fermentation. Biochem. Eng. J. 2003, 13, 81–84. [Google Scholar] [CrossRef]
- Singhania, R.; Patel, A.K.; Gottumukkala, L.D.; Rajasree, K.; Soccol, C.R.; Pandey, A. Solid-State Fermentation—Fermentation Microbiology and Biotechnology: Bioconversion of Renewable Resources to Desirable End Products. In Fermentation Microbiology and Biotechnology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Khaskheli, M.I.; Memon, S.Q.; Siyal, A.N.; Khuhawar, M.Y. Use of Orange Peel Waste for Arsenic Remediation of Drinking Water. Waste Biomass Valorization 2011, 2, 423–433. [Google Scholar] [CrossRef]
- Phuong, N.T.X.; Hong, N.T.T.; Le, P.T.K.; Do, T.C. Chemically Treated Orange Peels as a Bio-Absorbent for Various Dyes. Chem. Eng. Trans. 2021, 89, 79–84. [Google Scholar]
- Michael-Igolima, U.; Abbey, S.J.; Ifelebuegu, A.O.; Eyo, E.U. Modified Orange Peel Waste as a Sustainable Material for Adsorption of Contaminants. Materials 2023, 16, 1092. [Google Scholar] [CrossRef] [PubMed]
- Krishna, C. Solid-State Fermentation Systems—An Overview. Crit. Rev. Biotechnol. 2005, 25, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Farinas, C.S. Developments in Solid-State Fermentation for the Production of Biomass-Degrading Enzymes for the Bioenergy Sector. Renew. Sustain. Energy Rev. 2015, 52, 179–188. [Google Scholar] [CrossRef]
- Mattedi, A.; Sabbi, E.; Farda, B.; Djebaili, R.; Mitra, D.; Ercole, C.; Cacchio, P.; Del Gallo, M.; Pellegrini, M. Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms 2023, 11, 1408. [Google Scholar] [CrossRef] [PubMed]
- Kosseva, M.R. Recovery of Commodities from Food Wastes Using Solid-State Fermentation. In Food Industry Wastes; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Demir, H.; Göğüş, N.; Tari, C.; Heerd, D.; Lahore, M.F. Optimization of the Process Parameters for the Utilization of Orange Peel to Produce Polygalacturonase by Solid-State Fermentation from an Aspergillus Sojae Mutant Strain. Turk. J. Biol. 2012, 36, 394–404. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Najafpour, G.D.; Mohammadi, M. Bioconversion of Agroindustrial Wastes to Pectinases Enzyme via Solid State Fermentation in Trays and Rotating Drum Bioreactors. Biocatal. Agric. Biotechnol. 2019, 21, 101280. [Google Scholar] [CrossRef]
- Díaz, A.B.; Alvarado, O.; de Ory, I.; Caro, I.; Blandino, A. Valorization of Grape Pomace and Orange Peels: Improved Production of Hydrolytic Enzymes for the Clarification of Orange Juice. Food Bioprod. Process. 2013, 91, 580–586. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; Shafiq, M. Batch and Fixed-Bed Column Studies for the Biosorption of Cu (II) and Pb (II) by Raw and Treated Date Palm Leaves and Orange Peel. Glob. Nest J. 2017, 19, 464–478. [Google Scholar]
- Biz, A.; Finkler, A.T.J.; Pitol, L.O.; Medina, B.S.; Krieger, N.; Mitchell, D.A. Production of Pectinases by Solid-State Fermentation of a Mixture of Citrus Waste and Sugarcane Bagasse in a Pilot-Scale Packed-Bed Bioreactor. Biochem. Eng. J. 2016, 111, 54–62. [Google Scholar] [CrossRef]
- Maciel, M.; Ottoni, C.; Santos, C.; Lima, N.; Moreira, K.; Souza-Motta, C. Production of Polygalacturonases by Aspergillus Section Nigri Strains in a Fixed Bed Reactor. Molecules 2013, 18, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.A.; de Lima Luz, L.F.; Krieger, N.; Berovič, M. Bioreactors for Solid-State Fermentation. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 347–360. [Google Scholar]
- Grohmann, K.; Baldwin, E.A.; Buslig, B.S. Production of Ethanol from Enzymatically Hydrolyzed Orange Peel by the Yeast Saccharomyces Cerevisiae. Appl. Biochem. Biotechnol. 1994, 45–46, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, K.; Cameron, R.G.; Buslig, B.S. Fermentation of Sugars in Organe Peel Hydrolysates to Ethanol by Recombinant Escherichia Coli KO11. Appl. Biochem. Biotechnol. 1995, 51–52, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.; Widmer, W.; Grohmann, K.; Wilkins, M. Ethanol Production from Citrus Processing Wastes. U.S. Patent Application Publication No. US/2006/0177916-A1, 10 August 2006. [Google Scholar]
- Wilkins, M.R.; Widmer, W.W.; Grohmann, K. Simultaneous Saccharification and Fermentation of Citrus Peel Waste by Saccharomyces Cerevisiae to Produce Ethanol. Process Biochem. 2007, 42, 1614–1619. [Google Scholar] [CrossRef]
- Oberoi, H.S.; Vadlani, P.V.; Madl, R.L.; Saida, L.; Abeykoon, J.P. Ethanol Production from Orange Peels: Two-Stage Hydrolysis and Fermentation Studies Using Optimized Parameters through Experimental Design. J. Agric. Food Chem. 2010, 58, 3422–3429. [Google Scholar] [CrossRef] [PubMed]
- Poletto, P.; Polidoro, T.A.; Zeni, M.; da Silveira, M.M. Evaluation of the Operating Conditions for the Solid-State Production of Pectinases by Aspergillus Niger in a Bench-Scale, Intermittently Agitated Rotating Drum Bioreactor. LWT—Food Sci. Technol. 2017, 79, 92–101. [Google Scholar] [CrossRef]
- Li, P.; Xia, J.; Shan, Y.; Nie, Z. Comparative Study of Multi-Enzyme Production from Typical Agro-Industrial Residues and Ultrasound-Assisted Extraction of Crude Enzyme in Fermentation with Aspergillus Japonicus PJ01. Bioprocess. Biosyst. Eng. 2015, 38, 2013–2022. [Google Scholar] [CrossRef] [PubMed]
- Torrado, A.M.; Cortés, S.; Salgado, J.M.; Max, B.; Rodríguez, N.; Bibbins, B.P.; Converti, A.; Domínguez, J.M. Citric Acid Production from Orange Peel Wastes by Solid-State Fermentation. Braz. J. Microbiol. 2011, 42, 394–409. [Google Scholar] [CrossRef]
- Zafar, M.; Bano, H.S.; Anwar, Z. Orange Peels Valorization for Citric Acid Production through Single and Co-Culture Fermentation. Jordan. J. Biol. Sci. 2021, 14, 261–266. [Google Scholar] [CrossRef]
- Hamdy, H.S. Citric Acid Production by Aspergillus Niger Grown on Orange Peel Medium Fortified with Cane Molasses. Ann. Microbiol. 2013, 63, 267–278. [Google Scholar] [CrossRef]
- Rodrigues, C.; de Souza Vandenberghe, L.P.; Teodoro, J.; Pandey, A.; Soccol, C.R. Improvement on Citric Acid Production in Solid-State Fermentation by Aspergillus Niger LPB BC Mutant Using Citric Pulp. Appl. Biochem. Biotechnol. 2009, 158, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Kuivanen, J.; Dantas, H.; Mojzita, D.; Mallmann, E.; Biz, A.; Krieger, N.; Mitchell, D.; Richard, P. Conversion of Orange Peel to L-Galactonic Acid in a Consolidated Process Using Engineered Strains of Aspergillus Niger. AMB Express 2014, 4, 33. [Google Scholar] [CrossRef] [PubMed]
- Rivas, B.; Torrado, A.; Torre, P.; Converti, A.; Domínguez, J.M. Submerged Citric Acid Fermentation on Orange Peel Autohydrolysate. J. Agric. Food Chem. 2008, 56, 2380–2387. [Google Scholar] [CrossRef] [PubMed]
- Maurya, K.K.; Tripathi, A.D.; Kumar, D.; Srivastava, S.K. Production, Purification and Characterization of Prodigiosin by Serratia Nematodiphilia (NCIM 5606) Using Solid-State Fermentation with Various Substrate. Ann. Phytomed. Int. J. 2020, 9. [Google Scholar] [CrossRef]
- Kantifedaki, A.; Kachrimanidou, V.; Mallouchos, A.; Papanikolaou, S.; Koutinas, A.A. Orange Processing Waste Valorisation for the Production of Bio-Based Pigments Using the Fungal Strains Monascus Purpureus and Penicillium Purpurogenum. J. Clean. Prod. 2018, 185, 882–890. [Google Scholar] [CrossRef]
- Ahmadi, F.; Zamiri, M.J.; Khorvash, M.; Banihashemi, Z.; Bayat, A.R. Chemical Composition and Protein Enrichment of Orange Peels and Sugar Beet Pulp after Fermentation by Two Trichoderma Species. Iran. J. Vet. Res. 2015, 16, 25–30. [Google Scholar]
- Vaccarino, C.; Lo Curto, R.; Tripodo, M.M.; Patané, R.; Laganá, G.; Schachter, S. SCP from Orange Peel by Fermentation with Fungi—Submerged and ‘Surface’ Fermentations. Biol. Wastes 1989, 29, 279–287. [Google Scholar] [CrossRef]
- Aggelopoulos, T.; Katsieris, K.; Bekatorou, A.; Pandey, A.; Banat, I.M.; Koutinas, A.A. Solid State Fermentation of Food Waste Mixtures for Single Cell Protein, Aroma Volatiles and Fat Production. Food Chem. 2014, 145, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Güzel, M.; Akpınar, Ö. Production and Characterization of Bacterial Cellulose from Citrus Peels. Waste Biomass Valorization 2019, 10, 2165–2175. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Huang, C.-Y.; Shieh, C.-J.; Wang, H.-M.D.; Tseng, C.-Y. Hydrolysis of Orange Peel with Cellulase and Pectinase to Produce Bacterial Cellulose Using Gluconacetobacter Xylinus. Waste Biomass Valorization 2019, 10, 85–93. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, P.; Chen, Y.; Xie, J.; Peng, G.; Tian, S.; Chang, X.; Yu, Q. Effect of Soluble Dietary Fiber of Navel Orange Peel Prepared by Mixed Solid-State Fermentation on the Quality of Jelly. Foods 2023, 12, 1724. [Google Scholar] [CrossRef] [PubMed]
- Mantzouridou, F.T.; Paraskevopoulou, A.; Lalou, S. Yeast Flavour Production by Solid State Fermentation of Orange Peel Waste. Biochem. Eng. J. 2015, 101, 1–8. [Google Scholar] [CrossRef]
- Andrade, M.A.; Barbosa, C.H.; Shah, M.A.; Ahmad, N.; Vilarinho, F.; Khwaldia, K.; Silva, A.S.; Ramos, F. Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants 2022, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Pourbafrani, M.; Forgács, G.; Horváth, I.S.; Niklasson, C.; Taherzadeh, M.J. Production of Biofuels, Limonene and Pectin from Citrus Wastes. Bioresour. Technol. 2010, 101, 4246–4250. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.S.; Lee, Y.G.; Khanal, S.K.; Park, B.J.; Bae, H.-J. A Low-Energy, Cost-Effective Approach to Fruit and Citrus Peel Waste Processing for Bioethanol Production. Appl. Energy 2015, 140, 65–74. [Google Scholar] [CrossRef]
- Ismail, A.-M.S. Utilization of Orange Peels for the Production of Multienzyme Complexes by Some Fungal Strains. Process Biochem. 1996, 31, 645–650. [Google Scholar] [CrossRef]
- Amin, F.; Bhatti, H.N.; Bilal, M. Recent Advances in the Production Strategies of Microbial Pectinases—A Review. Int. J. Biol. Macromol. 2019, 122, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.Zionmarketresearch.Com/Report/Pectinase-Market (accessed on 12 December 2023).
- Książek, E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules 2023, 29, 22. [Google Scholar] [CrossRef] [PubMed]
- Abd Alsaheb, R.A.; Mohammed, M.M.; Abdullah, J.K.; Abbas, A.H. Citric Acid Production: Raw Material, Microbial Production, Fermentation Strategy and Global Market: Critical Review. Al-Khwarizmi Eng. J. 2023, 19, 1–14. [Google Scholar] [CrossRef]
- Zion Market Research. Global Organic Acids Market: Overview; Zion Market Research: Maharashtra, India.
- Li, Q.; Siles, J.A.; Thompson, I.P. Succinic Acid Production from Orange Peel and Wheat Straw by Batch Fermentations of Fibrobacter Succinogenes S85. Appl. Microbiol. Biotechnol. 2010, 88, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.A.; Bento, H.B.S.; Picheli, F.P.; Paz-Cedeno, F.R.; Mussagy, C.U.; Masarin, F.; Torres Acosta, M.A.; Santos-Ebinuma, V.C. Process Development and Techno-Economic Analysis of Co-Production of Colorants and Enzymes Valuing Agro-Industrial Citrus Waste. Sustain. Chem. Pharm. 2023, 35, 101204. [Google Scholar] [CrossRef]
- Thiviya, P.; Gamage, A.; Kapilan, R.; Merah, O.; Madhujith, T. Single Cell Protein Production Using Different Fruit Waste: A Review. Separations 2022, 9, 178. [Google Scholar] [CrossRef]
- Mondal, A.K.; Sengupta, S.; Bhowal, J.; Bhattacharya, D.K. Utilization of Fruit Wastes Producing Single Cell Protein. Int. J. Sci. Environ. Technol. 2012, 1, 430–438. [Google Scholar]
- Sayah, I.; Gervasi, C.; Achour, S.; Gervasi, T. Fermentation Techniques and Biotechnological Applications of Modified Bacterial Cellulose: An Up-to-Date Overview. Fermentation 2024, 10, 100. [Google Scholar] [CrossRef]
- EC. A New Circular Economy Action Plan; COM (2020) 98 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- EC. Towards A Circular Economy: A Zero Waste Programme for Europe. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions (COM), 398; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment; COM(2018) 673 Final; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Panwar, D.; Saini, A.; Panesar, P.S.; Chopra, H.K. Unraveling the Scientific Perspectives of Citrus By-Products Utilization: Progress towards Circular Economy. Trends Food Sci. Technol. 2021, 111, 549–562. [Google Scholar] [CrossRef]
- FAO. Citrus Fruit-Fresh and Processed. Statistical Bulletin 2016; FAO: Rome, Italy, 2017. [Google Scholar]
- Mandalari, G.; Nueno Palop, C.; Tuohy, K.; Gibson, G.R.; Bennett, R.N.; Waldron, K.W.; Bisignano, G.; Narbad, A.; Faulds, C.B. In Vitro Evaluation of the Prebiotic Activity of a Pectic Oligosaccharide-Rich Extract Enzymatically Derived from Bergamot Peel. Appl. Microbiol. Biotechnol. 2007, 73, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Mandalari, G.; Bennett, R.N.; Bisignano, G.; Trombetta, D.; Saija, A.; Faulds, C.B.; Gasson, M.J.; Narbad, A. Antimicrobial Activity of Flavonoids Extracted from Bergamot (Citrus Bergamia Risso) Peel, a Byproduct of the Essential Oil Industry. J. Appl. Microbiol. 2007, 103, 2056–2064. [Google Scholar] [CrossRef] [PubMed]
- Filocamo, A.; Bisignano, C.; Ferlazzo, N.; Cirmi, S.; Mandalari, G.; Navarra, M. In Vitro Effect of Bergamot (Citrus bergamia) Juice against CagA-Positive and-Negative Clinical Isolates of Helicobacter Pylori. BMC Complement. Altern. Med. 2015, 15, 256. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, A.; Russo, C.; Musumeci, L.; Lombardo, G.E.; De Sarro, G.; Barreca, D.; Cirmi, S.; Navarra, M. The Anticancer Effect of a Flavonoid-Rich Extract of Bergamot Juice in THP-1 Cells Engages the SIRT2/AKT/P53 Pathway. Pharmaceutics 2022, 14, 2168. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, D.; Cimino, F.; Cristani, M.; Mandalari, G.; Saija, A.; Ginestra, G.; Speciale, A.; Chirafisi, J.; Bisignano, G.; Waldron, K.; et al. In Vitro Protective Effects of Two Extracts from Bergamot Peels on Human Endothelial Cells Exposed to Tumor Necrosis Factor-α (TNF-α). J. Agric. Food Chem. 2010, 58, 8430–8436. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Lombardo, G.E.; Bruschetta, G.; Rapisarda, A.; Maugeri, A.; Navarra, M. Bergamot Byproducts: A Sustainable Source to Counteract Inflammation. Nutrients 2024, 16, 259. [Google Scholar] [CrossRef] [PubMed]
- Teigiserova, D.A.; Hamelin, L.; Tiruta-Barna, L.; Ahmadi, A.; Thomsen, M. Circular Bioeconomy: Life Cycle Assessment of Scaled-up Cascading Production from Orange Peel Waste under Current and Future Electricity Mixes. Sci. Total Environ. 2022, 812, 152574. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: http://www.Fao.Org/Faostat/En/#data/QC/Visualize (accessed on 12 December 2023).
- De Castro, L.A.; Lizi, J.M.; das Chagas, E.G.L.; de Carvalho, R.A.; Vanin, F.M. From Orange Juice By-Product in the Food Industry to a Functional Ingredient: Application in the Circular Economy. Foods 2020, 9, 593. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). Food Wastage Footprint. 2013. Available online: http://www.Fao.Org/3/I3347e/I3347e.Pdf (accessed on 12 December 2023).
Bioreactor Type | Pro | Cons |
---|---|---|
Shallow-Tray | Simple in design Low cost | Static condition No forced aeration |
Fixed-Bed Column | More efficient process controls | Difficult scale-up |
Rotating Drum | Possibility of mixing intermittently and of operating on continuous or semi-continuous mode. | |
Stirred Tank | Ease of control of all operating factors | High cost |
Product | Organism | Process | References |
---|---|---|---|
Bioethanol | Saccharomyces cerevisiae; recombinant Escherichia coli Koll | SmF | [59,60,61,62,63] |
Enzymes | Aspergillus oryzae; A. niger; Emericella variecolor NS3; A. japonicus (URM5620); Pleurotus pulmonarius; A. brasiliensis; A. awamori; A. sojae | SmF and SS | [52,53,54,56,57,61,64,65] |
Organic acids | Aspergillus niger; A. niger and Aspergillus fumigatus | SmF and SSF | [66,67,68,69,70,71] |
Dyes | Serratia nematodiphila (NCIM 5606); Monascus purpureus and Penicillium purpurogenum. | SmF and SSF | [72,73] |
Crude protein | Trichoderma reesei and Trichoderma viride, S. cerevisiae, Kluyveromyces marxianus and kefir | SmF and SSF | [10,74,75,76] |
Bacterial cellulose | Gluconacetobacter xylinus; Komagataeibacter hansenii GA2016 | SmF | [77,78] |
Soluble dietary fiber | Trichoderma reesei and A. niger | SSF | [79] |
Aroma volatiles | Selected industrial S. cerevisiae | SSF | [76,80] |
Fungal chitosan | Mucor indicus and Rhizopus oryzae | SmF | [39] |
Fatty acids | S. cerevisiae, Kluyveromyces marxianus and kefir | SSF | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gervasi, T.; Mandalari, G. Valorization of Agro-Industrial Orange Peel By-Products through Fermentation Strategies. Fermentation 2024, 10, 224. https://doi.org/10.3390/fermentation10050224
Gervasi T, Mandalari G. Valorization of Agro-Industrial Orange Peel By-Products through Fermentation Strategies. Fermentation. 2024; 10(5):224. https://doi.org/10.3390/fermentation10050224
Chicago/Turabian StyleGervasi, Teresa, and Giuseppina Mandalari. 2024. "Valorization of Agro-Industrial Orange Peel By-Products through Fermentation Strategies" Fermentation 10, no. 5: 224. https://doi.org/10.3390/fermentation10050224
APA StyleGervasi, T., & Mandalari, G. (2024). Valorization of Agro-Industrial Orange Peel By-Products through Fermentation Strategies. Fermentation, 10(5), 224. https://doi.org/10.3390/fermentation10050224