Yeast Biotechnology 6.0
1. Yeast Biotechnology 6.0
2. Yeasts as Cell Factory
3. Yeast Nanobiotechnology
4. Wine Yeasts and Wine Fermentation
5. Yeasts and Food Fermentation
6. Biocontainment for Yeast Biotechnology
Funding
Conflicts of Interest
References
- Park, J.; Kim, I.J.; Kim, S.R. Nonconventional Yeasts Engineered Using the CRISPR-Cas System as Emerging Microbial Cell Factories. Fermentation 2022, 8, 656. [Google Scholar] [CrossRef]
- Parapouli, M.; Vasileiadis, A.; Afendra, A.-S.; Hatziloukas, E. Saccharomyces Cerevisiae and Its Industrial Applications. AIMS Microbiol. 2020, 6, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Rainha, J.; Gomes, D.; Rodrigues, L.R.; Rodrigues, J.L. Synthetic Biology Approaches to Engineer Saccharomyces Cerevisiae towards the Industrial Production of Valuable Polyphenolic Compounds. Life 2020, 10, 56. [Google Scholar] [CrossRef]
- Spencer, J.; Ragout de Spencer, A.; Laluce, C. Non-Conventional Yeasts. Appl. Microbiol. Biotechnol. 2002, 58, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Binati, R.L.; Salvetti, E.; Bzducha-Wróbel, A.; Bašinskienė, L.; Čižeikienė, D.; Bolzonella, D.; Felis, G.E. Non-Conventional Yeasts for Food and Additives Production in a Circular Economy Perspective. FEMS Yeast Res. 2021, 21, foab052. [Google Scholar] [CrossRef] [PubMed]
- Noseda, D.G.; D’Alessio, C.; Santos, J.; Idrovo-Hidalgo, T.; Pignataro, F.; Wetzler, D.E.; Gentili, H.; Nadra, A.D.; Roman, E.; Paván, C.; et al. Development of a Cost-Effective Process for the Heterologous Production of SARS-CoV-2 Spike Receptor Binding Domain Using Pichia pastoris in Stirred-Tank Bioreactor. Fermentation 2023, 9, 497. [Google Scholar] [CrossRef]
- Perico, L.; Benigni, A.; Remuzzi, G. SARS-CoV-2 and the Spike Protein in Endotheliopathy. Trends Microbiol. 2024, 32, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Carneiro, C.V.G.C.; Serra, L.A.; Pacheco, T.F.; Ferreira, L.M.M.; Brandão, L.T.D.; Freitas, M.N.D.M.; Trichez, D.; Almeida, J.R.M.D. Advances in Komagataella phaffii Engineering for the Production of Renewable Chemicals and Proteins. Fermentation 2022, 8, 575. [Google Scholar] [CrossRef]
- Mastropietro, G.; Aw, R.; Polizzi, K.M. Expression of Proteins in Pichia pastoris. In Methods in Enzymology; O’Dell, W.B., Kelman, Z., Eds.; Recombinant Protein Expression: Eukaryotic Hosts; Academic Press: Cambridge, MA, USA, 2021; Volume 660, pp. 53–80. [Google Scholar]
- Khlebodarova, T.M.; Bogacheva, N.V.; Zadorozhny, A.V.; Bryanskaya, A.V.; Vasilieva, A.R.; Chesnokov, D.O.; Pavlova, E.I.; Peltek, S.E. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024, 12, 346. [Google Scholar] [CrossRef]
- Barone, G.D.; Emmerstorfer-Augustin, A.; Biundo, A.; Pisano, I.; Coccetti, P.; Mapelli, V.; Camattari, A. Industrial Production of Proteins with Pichia pastoris—Komagataella phaffii. Biomolecules 2023, 13, 441. [Google Scholar] [CrossRef] [PubMed]
- Bernauer, L.; Emmerstorfer-Augustin, A. Komagataella phaffii as Emerging Model Organism in Fundamental Research. Front. Microbiol. 2021, 11, 607028. [Google Scholar] [CrossRef] [PubMed]
- Radonicic, V.; Yvanoff, C.; Villalba, M.I.; Devreese, B.; Kasas, S.; Willaert, R.G. Single-Cell Optical Nanomotion of Candida albicans in Microwells for Rapid Antifungal Susceptibility Testing. Fermentation 2023, 9, 365. [Google Scholar] [CrossRef]
- Longo, G.; Alonso-Sarduy, L.; Rio, L.M.; Bizzini, A.; Trampuz, A.; Notz, J.; Dietler, G.; Kasas, S. Rapid Detection of Bacterial Resistance to Antibiotics Using AFM Cantilevers as Nanomechanical Sensors. Nat. Nanotechnol. 2013, 8, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Caruana, G.; Kritikos, A.; Vocat, A.; Luraschi, A.; Delarze, E.; Sturm, A.; Verge, M.P.; Jozwiak, G.; Kushwaha, S.; Delaloye, J.; et al. Investigating Nanomotion-Based Technology (Resistell AST) for Rapid Antibiotic Susceptibility Testing among Adult Patients Admitted to a Tertiary-Care Hospital with Gram-Negative Bacteraemia: Protocol for a Prospective, Observational, Cross-Sectional, Single-Arm Study. BMJ Open 2022, 12, e064016. [Google Scholar] [CrossRef] [PubMed]
- Vocat, A.; Sturm, A.; Jóźwiak, G.; Cathomen, G.; Świątkowski, M.; Buga, R.; Wielgoszewski, G.; Cichocka, D.; Greub, G.; Opota, O. Nanomotion Technology in Combination with Machine Learning: A New Approach for a Rapid Antibiotic Susceptibility Test for Mycobacterium tuberculosis. Microbes Infect. 2023, 25, 105151. [Google Scholar] [CrossRef] [PubMed]
- Syal, K.; Iriya, R.; Yang, Y.; Yu, H.; Wang, S.; Haydel, S.E.; Chen, H.-Y.; Tao, N. Antimicrobial Susceptibility Test with Plasmonic Imaging and Tracking of Single Bacterial Motions on Nanometer Scale. ACS Nano 2016, 10, 845–852. [Google Scholar] [CrossRef]
- Johnson, W.L.; France, D.C.; Rentz, N.S.; Cordell, W.T.; Walls, F.L. Sensing Bacterial Vibrations and Early Response to Antibiotics with Phase Noise of a Resonant Crystal. Sci. Rep. 2017, 7, 12138. [Google Scholar] [CrossRef]
- Syal, K.; Shen, S.; Yang, Y.; Wang, S.; Haydel, S.E.; Tao, N. Rapid Antibiotic Susceptibility Testing of Uropathogenic E. coli by Tracking Submicron Scale Motion of Single Bacterial Cells. ACS Sens. 2017, 2, 1231–1239. [Google Scholar] [CrossRef]
- Bermingham, C.R.; Murillo, I.; Payot, A.D.J.; Balram, K.C.; Kloucek, M.B.; Hanna, S.; Redmond, N.M.; Baxter, H.; Oulton, R.; Avison, M.B.; et al. Imaging of Sub-Cellular Fluctuations Provides a Rapid Way to Observe Bacterial Viability and Response to Antibiotics. Biorxiv 2018, 460139. [Google Scholar] [CrossRef]
- Leonard, H.; Halachmi, S.; Ben-Dov, N.; Nativ, O.; Segal, E. Unraveling Antimicrobial Susceptibility of Bacterial Networks on Micropillar Architectures Using Intrinsic Phase-Shift Spectroscopy. ACS Nano 2017, 11, 6167–6177. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Tiwari, R.; Karthik, K.; Chakraborty, S.; Shahali, Y.; Dhama, K. Candida albicans—Biology, Molecular Characterization, Pathogenicity, and Advances in Diagnosis and Control—An Update. Microb. Pathog. 2018, 117, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Durand, C.; Maubon, D.; Cornet, M.; Wang, Y.; Aldebert, D.; Garnaud, C. Can We Improve Antifungal Susceptibility Testing? Front. Cell. Infect. Microbiol. 2021, 11, 720609. [Google Scholar] [CrossRef] [PubMed]
- Knabl, L.; Lass-Flörl, C. Antifungal Susceptibility Testing in Candida Species: Current Methods and Promising New Tools for Shortening the Turnaround Time. Expert Rev. Anti-Infect. Ther. 2020, 18, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Villalba, M.I.; LeibundGut-Landmann, S.; Bougnoux, M.-E.; d’Enfert, C.; Willaert, R.G.; Kasas, S. Candida albicans Adhesion Measured by Optical Nanomotion Detection. Fermentation 2023, 9, 991. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, X.; Miller, P.; Ozkan, M.; Ozkan, C.; Wang, J. Cell Adhesion Measurement by Laser-Induced Stress Waves. J. Appl. Phys. 2006, 100, 084701. [Google Scholar] [CrossRef]
- Khalili, A.A.; Ahmad, M.R. A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int. J. Mol. Sci. 2015, 16, 18149–18184. [Google Scholar] [CrossRef]
- Zhou, D.W.; García, A.J. Measurement Systems for Cell Adhesive Forces. J. Biomech. Eng. 2015, 137, 020908. [Google Scholar] [CrossRef]
- Gunaratnam, G.; Dudek, J.; Jung, P.; Becker, S.L.; Jacobs, K.; Bischoff, M.; Hannig, M. Quantification of the Adhesion Strength of Candida albicans to Tooth Enamel. Microorganisms 2021, 9, 2213. [Google Scholar] [CrossRef]
- Dekhtyar, Y.; Abols, D.; Avotina, L.; Stoppel, A.; Balakin, S.; Khroustalyova, G.; Opitz, J.; Sorokins, H.; Beshchasna, N.; Tamane, P.; et al. Effects of Diamond Nanoparticles Immobilisation on the Surface of Yeast Cells: A Phenomenological Study. Fermentation 2023, 9, 162. [Google Scholar] [CrossRef]
- Hemelaar, S.R.; van der Laan, K.J.; Hinterding, S.R.; Koot, M.V.; Ellermann, E.; Perona-Martinez, F.P.; Roig, D.; Hommelet, S.; Novarina, D.; Takahashi, H.; et al. Generally Applicable Transformation Protocols for Fluorescent Nanodiamond Internalization into Cells. Sci. Rep. 2017, 7, 5862. [Google Scholar] [CrossRef] [PubMed]
- Morita, A.; Hamoh, T.; Sigaeva, A.; Norouzi, N.; Nagl, A.; van der Laan, K.J.; Evans, E.P.P.; Schirhagl, R. Targeting Nanodiamonds to the Nucleus in Yeast Cells. Nanomaterials 2020, 10, 1962. [Google Scholar] [CrossRef] [PubMed]
- Akan, M.; Gudiksen, A.; Baran, Y.; Semmler, H.; Brezina, S.; Fritsch, S.; Rauhut, D.; Wendland, J. Exploring the Potential of Non-Conventional Yeasts in Wine Fermentation with a Focus on Saccharomycopsis Fermentans. Fermentation 2023, 9, 786. [Google Scholar] [CrossRef]
- Fleet, G.H. Yeast Interactions and Wine Flavour. Int. J. Food Microbiol. 2003, 86, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not Your Ordinary Yeast: Non-Saccharomyces Yeasts in Wine Production Uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, E.; Rodríguez-Nogales, J.M.; Vila-Crespo, J.; Falqué-López, E. Application of Immobilized Yeasts for Improved Production of Sparkling Wines. Fermentation 2022, 8, 559. [Google Scholar] [CrossRef]
- Kourkoutas, Y.; Bekatorou, A.; Banat, I.M.; Marchant, R.; Koutinas, A.A. Immobilization Technologies and Support Materials Suitable in Alcohol Beverages Production: A Review. Food Microbiol. 2004, 21, 377–397. [Google Scholar] [CrossRef]
- López de Lerma, N.; Peinado, R.A.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Influence of Two Yeast Strains in Free, Bioimmobilized or Immobilized with Alginate Forms on the Aromatic Profile of Long Aged Sparkling Wines. Food Chem. 2018, 250, 22–29. [Google Scholar] [CrossRef]
- Benucci, I.; Cerreti, M.; Maresca, D.; Mauriello, G.; Esti, M. Yeast Cells in Double Layer Calcium Alginate–Chitosan Microcapsules for Sparkling Wine Production. Food Chem. 2019, 300, 125174. [Google Scholar] [CrossRef]
- Prokes, K.; Baron, M.; Mlcek, J.; Jurikova, T.; Adamkova, A.; Ercisli, S.; Sochor, J. The Influence of Traditional and Immobilized Yeast on the Amino-Acid Content of Sparkling Wine. Fermentation 2022, 8, 36. [Google Scholar] [CrossRef]
- Bencresciuto, G.F.; Mandalà, C.; Migliori, C.A.; Cortellino, G.; Vanoli, M.; Bardi, L. Assessment of Starters of Lactic Acid Bacteria and Killer Yeasts: Selected Strains in Lab-Scale Fermentations of Table Olives (Olea europaea L.) Cv. Leccino. Fermentation 2023, 9, 182. [Google Scholar] [CrossRef]
- Marsilio, V.; Lanza, B.; Pozzi, N. Progress in Table Olive Debittering: Degradationin Vitro of Oleuropein and Its Derivatives byLactobacillus Plantarum. J. Am. Oil Chem. Soc. 1996, 73, 593–597. [Google Scholar] [CrossRef]
- Ambra, R.; Natella, F.; Bello, C.; Lucchetti, S.; Forte, V.; Pastore, G. Phenolics Fate in Table Olives (Olea europaea L. Cv. Nocellara Del Belice) Debittered Using the Spanish and Castelvetrano Methods. Food Res. Int. 2017, 100, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, Y.; Zheng, M.; Xi, X.; Zhang, X.; Han, C. Structure Properties, Acquisition Protocols, and Biological Activities of Oleuropein Aglycone. Front. Chem. 2018, 6, 00239. [Google Scholar] [CrossRef]
- Pavão, G.; Sfalcin, I.; Bonatto, D. Biocontainment Techniques and Applications for Yeast Biotechnology. Fermentation 2023, 9, 341. [Google Scholar] [CrossRef]
- Hanlon, P.; Sewalt, V. GEMs: Genetically Engineered Microorganisms and the Regulatory Oversight of Their Uses in Modern Food Production. Crit. Rev. Food Sci. Nutr. 2021, 61, 959–970. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willaert, R.G. Yeast Biotechnology 6.0. Fermentation 2024, 10, 172. https://doi.org/10.3390/fermentation10030172
Willaert RG. Yeast Biotechnology 6.0. Fermentation. 2024; 10(3):172. https://doi.org/10.3390/fermentation10030172
Chicago/Turabian StyleWillaert, Ronnie G. 2024. "Yeast Biotechnology 6.0" Fermentation 10, no. 3: 172. https://doi.org/10.3390/fermentation10030172
APA StyleWillaert, R. G. (2024). Yeast Biotechnology 6.0. Fermentation, 10(3), 172. https://doi.org/10.3390/fermentation10030172