Next Article in Journal
Yeast Biotechnology 6.0
Previous Article in Journal
Effect of High Altitude on Serum Biochemical Parameters, Immunoglobulins, and Rumen Metabolism of Sanhe Heifers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Correction: Bintsis, T.; Papademas, P. The Evolution of Fermented Milks, from Artisanal to Industrial Products: A Critical Review. Fermentation 2022, 8, 679

1
Laboratory of Safety and Quality of Milk and Dairy Products, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2
Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 50329, Cyprus
*
Author to whom correspondence should be addressed.
Fermentation 2024, 10(3), 171; https://doi.org/10.3390/fermentation10030171
Submission received: 6 March 2024 / Accepted: 6 March 2024 / Published: 19 March 2024
(This article belongs to the Section Fermentation for Food and Beverages)

Email Correction

In the original publication [1], author Thomas Bintsis wants to change the email to: [email protected].

Text Correction

There was an error in the original publication. “Recently, Alraddadi et al., 2023 studied the microbial communities of Kefir grains, and Kefir was evaluated over time using high-throughput amplicon sequencing. It was found that Lb. kefiranofaciens and Lentilactobacillus kefiri consistently dominated Kefir grains, whereas Lc. lactis dominated Kefir [193]. Many other bacteria and yeasts were detected that comprised the minor population of Kefir grains and Kefir. The community composition in the kefir was more variable than in the Kefir grains with the relative abundance of both Lb. kefiranofaciens and Lc. lactis changing over time. The fungal communities of Kefir grains were dominated by Kazachstania turicensis and T. delbruekii, although the ratio between the two varied significantly. These findings suggest that the microbial communities in Kefir grains change over time, highlighting the need for further studies investigating the effect these changes have on the production of flavor and aroma compounds in Kefir [193].”
A correction has been made to Section 4: Microbiology of Fermented Milk Products, Paragraph 3:
“Recently, Alraddadi et al. studied the microbiota of kefir grains and cow’s milk kefir, using high-throughput amplicon sequencing; greater diversity in the microbial composition in the kefir than in the kefir grains was found, and the relative abundance of the dominant species, that is Lb. kefiranofaciens and Lc. lactis and changes over time were observed [194].”

References Mis-Cited in the Text

There were some references mis-cited in the original publication. The corrections have been made to Section 3: The Expansion of Fermented Milk Products, Paragraphs 13, 14, 16, 17, and Section 4: Microbiology of Fermented Milk Products, Paragraphs 1, 2, 3:
“Probiotics are defined as “live microorganisms which when administered in adequate amounts confer a health benefit to the host” and fermented dairy products are probably the most important food probiotics category; probiotic fermented milks have been extensively studied [128–131,153–159]. Fermented dairy products are generally beneficial in the treatment and prevention of gastrointestinal disease, considering that different LAB strains show different efficacy across these diseases. Limdi et al. reviewed the therapeutic role of probiotics in gastroenterology and concluded that probiotics appear to have a potential role in the prevention and treatment of various gastrointestinal illnesses, such as irritable bowel syndrome, but it is likely that benefits are species and strains specific [160].”
“Several animal studies have shown that the administration of fermented milks is effective in lowering blood cholesterol levels, although studies in human subjects have shown conflicting results [161].”
“Although the mechanism for this protective effect is not clear, it has been shown that Lb. rhamnosus GG is able to bind to the mucosal surface of the intestine [155], possibly protecting against intestinal pathogens and associated infections through immunomodulation [163].”
“Ingestion of probiotic yogurt has been reported to stimulate cytokine production in blood cells and enhance the activities of macrophages [164]. Yakult is a Japanese commercial probiotic milk product that has several health-promoting benefits such as modulation of the immune system, maintenance of gut flora, regulation of bowel habits, alleviation of constipation, and curing of gastrointestinal infections [165,166]. The modulation of the gut microbiota by the administration of Lactobacillus kefiranofaciens has been studied in mice [167].”
“The most popular culture-independent technique being used in the isolation of microorganisms from fermented foods is a PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analysis to profile bacterial populations [176] and yeast populations in fermented foods [178–180]. Wolfe and Dutton reviewed the microbial communities of fermented foods and concluded that these communities offer a wide range of paradigms for community formation and provide opportunities to understand how to better design synthetic microbial communities for medicine, industry, and agriculture [181].”
“Liu et al., 2012 analyzed the bacterial composition of Kurut in Tibet using culture-independent methods, a bacterial 16S rRNA gene clone library containing 460 clones was constructed and the bacterial diversity in Kurut was systematically studied; the authors reported some novel sequences of unknown bacteria [62].”
“The use of culture-independent methodology has revealed the complex microbiota of kefir grains, which includes a mixture of bacteria such as Lc. lactis subsp. lactis, Lc. lactis subsp. lactis biovar. diacetylactis, and Lc. lactis subsp. cremoris, Lb. kefiranofaciens, Lentilactobacillus kefiri, Lentilactobacillus parakefiri, Lb. helveticus, Lb. delbrueckii, Lcb. casei, Levilactobacillus brevis, Lacticaseibacillus paracasei, Lpb. plantarum and Leuc. mesenteroides, Lactobacillus helveticus, Leuconostoc citreum, Leuconostoc gelidum, Leuconostoc kimchi, Acetobacter pasteurianus, and Acetobacter lovaniensis [26,182–186], and yeasts such as Kl. marxianus, Saccharomyces cerevisiae, Torulopsis kefir, Torulaspora delbrueckii, Candida kefir, Saccharomyces unisporus, Pichia fermentans, Yarrowia lipolytica, Debaryomyces spp., Galactomyces spp., Issatchenkia spp., Kazachstania spp., Kluyveromyces spp., Pichia spp., Saccharomyces spp., Wickerhamomyces spp. and Yarrowia spp. [26,187,188].”
“These methods were able to provide a broader view of the microbial composition and population dynamics of Kefir [107,192–194].”

Reference Correction

In the previous publication, the correct 17th reference was missing in the references section, resulting in an incorrect order of references thereafter. “17. Ibrahim, S.A.; Gyawali, R. Lactose Intolerance. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health, Park, Y.W.; Haenlein, G.F.W., Eds., John Wiley & Sons, Inc.: Oxford, UK, 2013; pp. 246–260.” With this correction, the order of some references has been adjusted accordingly.
The previous reference 193 was incorrectly cited in a previous publication. It was corrected from “Korsak, N.; Taminiau, B.; Leclercq, M.; Nezer, C.; Crevecoeur, S.; Ferauche, C.; Detry, E.; Delcenserie, V.; Daube, G. Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments. J. Dairy Sci. 2015, 98, 3684–3689.” to “Alraddadi, F.A.J.; Ross, T.; Powell, S.M. Evaluation of the microbial communities in kefir grains and kefir over time. Int. Dairy J. 2023, 136, 105490.”
There is some wrong information in the previous reference 62, reference 73, reference 84, and reference 162.
17.
Ibrahim, S.A.; Gyawali, R. Lactose Intolerance. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health, Park, Y.W.; Haenlein, G.F.W., Eds., John Wiley & Sons, Inc.: Oxford, UK, 2013; pp. 246–260.
18.
Itan, Y.; Powell, A.; Beaumont, M.A.; Burger, J.; Thomas, M.G. The origins of lactase persistence in Europe. PLoS Comput. Biol. 2009, 5, e1000491.
19.
Papademas, P.; Bintsis, T. Cheese from Non-Bovine Milk. In Encyclopedia of Dairy Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2021.
20.
Rai, A.K.; Kumar, R. Potential of microbial bio-resources of Sikkim Himalayan Region. ENVIS Bull. Himal. Ecol. 2015, 23, 99–105.
21.
Elemanova, R.; Musulmanova, M.; Ozbekova, Z.; Usubalieva, A.; Akai, R.A.; Deidiev, A.; Smanalieva, J. Rheological, microbiological and sensory properties of fermented khainak milk fermented with different starter cultures. Int. Dairy J. 2022, 134, 105453, in press.
22.
Walstra, P.; Geurts, T.J.; Noomen, A.; Jellema, A.; van Boekel, M.A.J.S. Milk Components. In Dairy Technology; Marcel Dekker Inc.: New York, NY, USA, 1999; pp. 27–105.
23.
Walstra, P.; Wouters, J.T.M.; Geurts, T.J. Milk Components. In Dairy Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 17–108.
24.
Tamime, A.Y.; Marshall, V.M.E. Microbiology and Technology of Fermented Milks. In Microbiology and Biochemistry of Cheese and Fermented Milk, 2nd ed.; Law, B.A., Ed.; Blackie Academic & Professional: Glasgow, UK, 1999; pp. 57–152.
25.
Robinson, R.K.; Tamime, A.Y. Microbiology of fermented milks. In Dairy Microbiology, 2nd ed.; Robinson, R.K., Ed.; Applied Sciences Publishers: London, UK, 1990; pp. 245–278.
26.
Mayo, B.; Ammor, M.S.; Delgado, S.; Alegrνa, A. Fermented Milk Products. In Fermented Foods and Beverages of the World; Tamang, J.P., Kailasapathy, K., Eds.; CRC Press–Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 263–288.
27.
Gebreselassie, N.; Abrahamsen, R.K.; Beyene, F.; Narvhus, J.A. A survey on spontaneously fermented buttermilk in Northern Ethiopia. Afr. J. Food Sci. Tech. 2012, 3, 78–89.
28.
Sudun, W.; Arakawa, K.; Miyamoto, M.; Miyamoto, T. Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk. Anim. Sci. J. 2013, 84, 66–74.
29.
Guo, L.; Xu, W.; Li, C.; Guo, Y.; Chagan, I. Comparative study of physicochemical composition and microbial community of Khoormog, Chigee, and Airag, traditionally fermented dairy products from Xilin Gol in China. Food Sci. Nutr. 2021, 9, 1564–1573.
30.
Gran, H.M.; Gadaga, H.T.; Narvhus, J.A. Utilization of various starter cultures in the production of Amasi, a Zimbabwean naturally fermented raw milk product. Int. J. Food Microbiol. 2003, 88, 19–28.
31.
Maleke, M.S.; Adefisoye, M.A.; Doorsamy, W.; Adebo, O.A. Processing, nutritional composition and microbiology of amasi: A Southern African fermented milk product. Sci. Afr. 2021, 12, e00795.
32.
Watanabe, K.; Fujimoto, J.; Sasamoto, M.; Dugersuren, J.; Tumursuh, T.; Demberel, S. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 2008, 24, 1313–1325.
33.
Konuspayeva, G.; Baubekova, A.; Akhmetsadykova, S.; Faye, B. Traditional dairy fermented products in Central Asia. Int. Dairy J. 2022, 137, 105514.
34.
Kocabaş, H.; Ergin, F.; Aktar, T.; Kücürketin, A. Effect of lactose hydrolysis and salt content on the physicochemical, microbiological, and sensory properties of ayran. Int. Dairy J. 2022, 129, 105360.
35.
Kücürketin, A.; Comak, E.M.; Asci, A.; Demir, M.; Sik, B. Effects of casein to whey protein ratio of skim milk on the physical properties of a yoghurt drink. Ayran. Milchwiss. 2012, 67, 274–276.
36.
Oberman, H.; Libudzisz, Z. Fermented Milks. In Microbiology of Fermented Foods, 2nd ed.; Wood, B.J.B., Ed.; Blackie Academic & Professional: London, UK, 2012; Volume 2, pp. 308–350.
37.
Baschali, A.; Tsakalidou, E.; Kyriacou, A.; Karavasiloglou, N.; Matalas, A.L. Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: A neglected food group. Nutr. Res. Rev. 2017, 30, 1–24.
38.
Yam, B.A.Z.; Khomeiri, M.; Mahounak, A.S.; Jafari, S.M. Hygienic quality of camel milk and fermented camel milk (Chal) in Golestan Province. Iran. J. Microbiol. Res. 2014, 4, 98–100.
39.
Hingmire, S.R.; Lembhe, A.F.; Zanjad, P.N.; Pawar, V.D.; Machewad, G.M. Production and quality evaluation of instant lassi. Int. J. Dairy Tech. 2009, 62, 80–84.
40.
Dewan, S.; Tamang, J.P. Microbial and analytical characterization of Chhu, a traditional fermented milk product of the Sikkim Himalayas. J. Sci. Ind. Res. 2006, 65, 747–752.
41.
Dewan, S.; Tamang, J.P. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products. Antonie Van Leeuwenhoek 2007, 92, 343–352.
42.
Güler, Z. Levels of 24 minerals in local goat milk, its strained yoghurt and salted yoghurt (tuzlu yogurt). Small Rumin. Res. 2007, 71, 130–137.
43.
Abesinghe, A.M.N.L.; Priyashantha, H.; Prasanna, P.H.P.; Kurukulasuriya, M.S.; Ranadheera, C.S.; Vidanarachchi, J.K. Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. Fermentation 2020, 6, 121.
44.
Harun-ur-Rashid, M.; Togo, K.; Ueda, M.; Miyamoto, T. Identification and characterization of dominant lactic acid bacteria isolated from traditional fermented milk Dahi in Bangladesh. World J. Microbiol. Biotechnol. 2007, 23, 125–133.
45.
Dehkordi, F.S.; Yazdani, F.; Mozafari, J.; Valizadeh, Y. Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products. BMC Res. Notes 2014, 7, 217.
46.
Admasu, M.A.; Cione, E.; Aquaro, S. Microbiological Characteristics and Physico-chemical Parameters of Fermented Milk Product Ergo-A Traditional Yogurt Product of Ethiopia. Food Sci. Qual. Manag. 2016, 49, 42–45.
47.
Papademas, P.; Bintsis, T. Microbiology of Ice Cream and Related Products. In Dairy Microbiology Handbook, 3rd ed.; Robinson, R.K., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2002; pp. 213–260.
48.
Shori, A.B. Comparative study of chemical composition, isolation and identification of micro-flora in traditional fermented camel milk products: Gariss, Suusac, and Shubat. J. Saudi Soc. Agric. Sci. 2012, 11, 79–88.
49.
Arrizza, S.; Ledda, A.; Sarra, P.G.; Dellaglio, F. Identification of lactic acid bacteria in Gioddu. Sci. E Tec. Latt. Casearia 1983, 34, 87–102.
50.
Maoloni, A.; Blaiotta, G.; Ferrocino, I.; Mangia, N.P.; Osimani, A.; Milanović, V.; Cardinali, F.; Cesaro, C.; Garofalo, C.; Clementi, F.; et al. Microbiological characterization of Gioddu, an Italian fermented milk. Int. J. Food Microbiol. 2020, 323, 108610.
51.
Farnworth, E.R. Kefir—A complex probiotic. Food Sci. Technol. Bull. Funct. Foods 2005, 2, 1–17.
52.
Farag, M.; Jomaa, S.; El-WAhed, A.; El-Seedi, H. The many faces of kefir fermented dairy products. Nutrients 2020, 12, 346.
53.
Mainville, I.; Robert, N.; Lee, B.; Farnworth, E.R. Polyphasic characterization of the lactic acid bacteria in kefir. Syst. Appl. Microbiol. 2006, 29, 59–68.
54.
Rosa, D.D.; Dias, M.M.S.; Grzeskowiak, Ł.M.; Reis, S.A.; Conceição, L.L.; Peluzio, M.D.C.G. Milk kefir: Nutritional, microbiological and health benefits. Nutr. Res. Rev. 2017, 30, 82–96.
55.
Tamime, A.Y.; Barclay, M.N.I.; Amarowicz, R.; McNulty, D. Kishk—A dried fermented milk/cereal mixture. 1. Composition of gross components, carbohydrates, organic acids and fatty acids. Lait 1999, 79, 331–339.
56.
Tamime, A.Y.; Barclay, M.N.I.; Law, A.J.R.; Leaver, J.; Anifantakis, E.M.; O’Connor, T.P. Kishk—A dried fermented milk/cereal mixture. 2. Assessment of a variety of protein analytical techniques for determining adulteration and proteolysis. Lait 1999, 79, 331–339.
57.
Kondybayev, A.; Loiseau, G.; Achir, N.; Mestres, C.; Konuspayeva, G. Fermented mare milk product (Qymyz, Koumiss). Int. Dairy J. 2021, 119, 105065.
58.
Guo, L.; Ya, M.; Guo, Y.-S.; Xu, W.-L.; Li, C.-D.; Sun, J.-P.; Zhu, J.-J.; Qian, J.-P. Study of bacterial and fungal community structures in traditional koumiss from Inner Mongolia. J. Dairy Sci. 2019, 102, 1972–1984.
59.
Dimov, S.G. The unusual microbiota of the traditional Bulgarian dairy product Krokmach—A pilot metagenomics study. Int. J. Dairy Tech. 2021, 75, 139–149.
60.
Mathara, J.M.; Schillinger, U.; Kutima, P.M.; Mbugua, S.K.; Holzapfel, W.H. Isolation, identification and characterisation of the dominant microorganisms of kule naoto: The Maasai traditional fermented milk in Kenya. Int. J. Food Microbiol. 2004, 94, 269–278.
61.
Patrignani, F.; Lanciotti, R.; Mathara, J.M.; Guerzoni, M.E.; Holzapfel, W.H. Potential of functional strains, isolated from traditional Maasai milk, as starters for the production of fermented milks. Int. J. Food Microbiol. 2006, 107, 1–11.
62.
Liu, W.J.; Sun, Z.H.; Zhang, Y.B.; Zhang, C.L.; Menghebilige; Yang, M.; Sun, T.S.; Bao, Q.H.; Chen, W.; Zhang, H.P. A survey of the bacterial composition of kurut from Tibet using a culture-independent approach. J. Dairy Sci. 2012, 95, 1064–1072.
63.
Zhang, H.; Xu, J.; Wang, J.; Menghebilige; Sun, T.; Li, H.; Guo, M. A survey on chemical and microbiological composition of kurut, naturally fermented yak milk from Qinghai in China. Food Control 2008, 19, 578–586.
64.
Dimassi, O.; Iskandarani, Y.; Afram, M.; Akiki, R.; Rached, M. Production and physicochemical properties of labneh anbaris, a traditional fermented cheese like product, in Lebanon. Int. J. Envir. Agric. Biotech. 2020, 5, 509–516. Available online: https://ijeab.com/ (accessed on 3 November 2022).
65.
Tamime, A.Y.; Robinson, R.K. Some aspects of the production of a concentrated yoghurt (labneh) popular in the Middle East. Milchwissenschaft 1978, 33, 209–212.
66.
Partidar, S.; Prajapati, J. Standardisation and evaluation of lassi prepared using Lactobacillus acidophilus and Streptococcus thermophilus. J. Food Sci. Technol. Mysore 1998, 35, 428–431.
67.
Bagal, S.G.; Chavan, K.D.; Kulkarni, M.B. Studies on preparation of lassi from high acid cow milk. J. Dairy. Foods Home Sci. 2007, 26, 80–84.
68.
Odunfa, S.A. African fermented foods: From art to science. MIRCEN J. Appl. Microbiol. Biotechnol. 1988, 4, 259–273.
69.
Tamime, A.Y.; Hickey, M.; Muir, D.D. Strained fermented milks—A review of existing legislative provisions, survey of nutritional labelling of commercial products in selected markets and terminology of products in some selected countries. Int. J. Dairy Technol. 2014, 67, 305–333.
70.
Moonga, H.B.; Shoustra, S.E.; Linnemann, A.R.; Kuntashula, E.; Shindano, J.; Smid, E.J. The art of mabisi production: A traditional fermented milk. PLoS ONE 2019, 14, e0213541.
71.
Moonga, H.B.; Schoustra, S.E.; Linnemann, A.R.; Shindano, J.; Smid, E.J. Towards valorisation of indigenous traditional fermented milk: Mabisi as a model. Curr. Opin. Food Sci. 2022, 46, 100835.
72.
Bokulich, N.A.; Amiranashvili, L.; Chitchyan, K.; Ghazanchyan, N.; Darbinyan, K.; Gagelidze, N.; Sadunishvili, T.; Goginyan, V.; Kvesitadze, G.; Torok, T.; et al. Microbial biogeography of the transnational fermented milk matsoni. Food Microbiol. 2015, 50, 12–19.
73.
Priyashantha, H.; Ranadheera, C.S.; Rasika, D.M.D.; Vidanarachchi, J.K. Traditional Sri Lankan fermented buffalo (Bubalus bubalis) milk gel (Meekiri): Technology, microbiology and quality characteristics. J. Ethn. Food 2021, 8, 27.
74.
El Zubeir, E.M.; Abdalla, W.M.; El Owni, O.A.O. Chemical composition of fermented milk (roub and mish) in Sudan. Food Control 2005, 16, 633–637.
75.
Sulieman, A.M.E.; Abd Elgadir, H.O.; Elkhalifa, E. Chemical and Microbiological Characteristics of Fermented Milk Product, Mish. Int. J. Food Sci. Nutrit. Engin. 2011, 1, 1–4.
76.
Digo, C.A.; Kamau-Mbuthia, E.; Matofari, J.W.; Ngétich, W.K. Potential probiotics from traditional fermented milk, Mursik of Kenya. Int. J. Nutr. Metabol. 2017, 9, 75–81.
77.
Fagbemigun, O.; Ho, G.-S.; Rösch, N.; Brinks, E.; Schrader, K.; Bockelmann, W.; Oguntoyinbo, F.A.; Franz, C.M.A.P. Isolation and Characterization of Potential Starter Cultures from the Nigerian Fermented Milk Product nono. Microorganisms 2021, 9, 640.
78.
Akabanda, F.; Owusu-Kwarteng, J.; Glover, R.L.K.; Tano-Debrah, K. Microbiological Characteristics of Ghanaian Traditional Fermented Milk Product, Nunu. Nat. Sci. 2010, 8, 178–187.
79.
Akabanda, F.; Owusu-Kwarteng, J.; Tano-Debrah, K.; Glover, R.L.K.; Nielsen, D.S.; Jespersen, L. Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product. Food Microbiol. 2013, 34, 277–283.
80.
Bille, P.G.; Buys, E.; Taylor, J.R.N. The technology and properties of Omashikwa, a traditional fermented buttermilk produced by small-holder milk producers in Namibia. Int. J. Food Sci. Technol. 2007, 42, 620–624.
81.
Abd El Gaward, I.A.; Abd El Fatah, A.M.; Al Rubayyi, K.A. Identification and Characterization of Dominant Lactic Acid Bacteria Isolated from Traditional Rayeb Milk in Egypt. J. Am. Sci. 2010, 6, 728–735.
82.
Abdelgadir, W.S.; Ahmed, T.K.; Dirar, H.A. The traditional fermented milk products of the Sudan. Int. J. Food Microbiol. 1998, 44, 1–13.
83.
Abdelgadir, W.S.; Hamad, S.H.; Møller, P.L.; Jakobsen, M. Characterisation of the dominant microbiota of Sudanese fermented milk Rob. Int. Dairy J. 2001, 11, 63–70.
84.
Abdalla, M.O.M.; Hussain, S.I.K. Enumeration and Identification of Microflora in Roub, A Sudanese Traditional Fermented Dairy Product. Br. J. Dairy Sci. 2010, 1, 30–33.
85.
Kochetkova, T.V.; Grabarnik, I.P.; Klyukina, A.A.; Zayulina, K.; Elizarov, I.M.; Shestakova, O.O.; Gavirova, L.A.; Malysheva, A.D.; Shcherbakova, P.A.; et al. Microbial Communities of Artisanal Fermented Milk Products from Russia. Microorganisms 2022, 10, 2140.
86.
Nehme, L.; Shalameh, C.; Tabet, E.; Nehme, M.; Hosri, C. Innovative improvement of Shanklish cheese production in Lebanon. Int. Dairy J. 2019, 90, 23–27.
87.
Akhmetsadykova, S.; Baubekova, A.; Konuspayeva, G.; Akhmetsadykov, N.; Faye, B.; Loiseau, G. Lactic acid bacteria biodiversity in raw and fermented camel milk. Afr. J. Food Sci. Technol. 2015, 6, 84–88.
88.
Fondén, R.; Leporanta, K.; Svensson, U. Nordic/Scandinavian Fermented Milk Products. In Fermented Milks; Tamime, A.Y., Ed.; Blackwell Publishing: Oxford, UK, 2006; pp. 156–173.
89.
Gudmundsson, G.; Kristbergsson, K. Modernization of Skyr Processing: Icelandic Acid-Curd Soft Cheese. In Modernization of Traditional Food Processes and Products; McElhatton, A., El Idrissi, M.M., Eds.; Springer: New York, NY, USA, 2016; pp. 45–53.
90.
Lore, T.A.; Mbugua, S.K.; Wangoh, J. Enumeration and identification of microflora in suusac, a Kenyan traditional fermented camel milk product. LWT Food Sci. Technol. 2005, 38, 125–130.
91.
Şanal, H.; Güler, Z. Changes in Non-essential Element Concentrations during Torba Yoghurt Production. Akad. Gida 2010, 8, 6–12.
92.
O’Callaghan, Y.C.; Shevade, A.V.; Guinee, T.P.; O’Connor, T.P.; O’Brien, N.M. Comparison of the nutritional composition of experimental fermented milk: Wheat bulgur blends and commercially available kishk and tarhana products. Food Chem. 2019, 278, 110–118.
93.
Lazos, E.S.; Aggelousis, G.; Bratakos, M. The fermentation of trahanas: A milk-wheat flour combination. Plant Foods Hum. Nutr. 1993, 44, 45–62.
94.
Kabak, B.; Dobson, A.D.W. An introduction to the traditional fermented foods and beverages of Turkey. Crit. Rev. Food Sci. Nutr. 2011, 51, 248–260.
95.
Kahala, M.; Mδki, M.; Lehtovaara, A.; Tapanainen, J.M.; Katiska, R.; Juuruskorpi, M.; Juhola, J.; Joutsjoki, V. Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili. J. Appl. Microbiol. 2008, 105, 1929–1938.
96.
El-Baradei, G.; Delacroix-Buchet, A.; Ogier, J.C. Bacterial biodiversity of traditional Zabady fermented milk. Int. J. Food Microbiol. 2008, 121, 295–301.
97.
Abou-Donia, S.A. Recent developments in Zababy and Egyptian Labneh research: A review. J. Dairy Sci. 2004, 32, 1–15.
98.
Mashak, Z.; Sodagari, H.; Mashak, B.; Niknafs, S. Chemical and microbial properties of two Iranian traditional fermented cereal-dairy based foods: Kashk-e Zard and Tarkhineh. Int. J. Biosci. 2014, 4, 124–133.
99.
Pakroo, S.; Tarrah, A.; da Silva Duarte, V.; Corich, V.; Giacomini, A. Microbial diversity and nutritional properties of Persian “Yellow Curd” (Kashk Zard), a promising functional fermented food. Microorganisms 2020, 8, 1658.
100.
Vasiee, A.; Falah, F.; Mortazavi, S.A. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product. J. Appl. Microbiol. 2022, 133, 3201–3214.
101.
CXS 243–2003; CODEX Standard for Fermented Milks. FAO: Rome, Italy; WHO: Geneva, Switzerland, 2003. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B243-2003%252FCXS_243e.pdf (accessed on 3 November 2022).
102.
Metchnikoff, E. The Prolongation of Life: Optimistic Studies; Heinemann: London, UK, 1907.
103.
Mannaa, M.; Han, G.; Seo, Y.-S.; Park, I. Evolution of Food Fermentation Processes and the Use of Multi-Omics in Deciphering the Roles of the Microbiota gut microbiome. Foods 2021, 10, 2861.
104.
Yakulk’s Beginnings. Available online: https://www.yakult.co.jp/english/inbound/history/ (accessed on 30 October 2022).
105.
Robinson, R.K.; Itsaranuwat, P. Properties of Yoghurt and their Appraisal. In Fermented Milks; Tamime, A.Y., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2006; pp. 76–94.
106.
Robinson, R.K.; Tamime, A.Y.; Wszolek, M. Microbiology of Fermented Milks. In Dairy Microbiology, 3rd ed.; Robinson, R.K., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 2002; pp. 367–430.
107.
Nejati, F.; Junne, S.; Neubauer, P. A big world in small grain: A review of natural milk Kefir starters. Microorganisms 2020, 8, 192.
108.
De Oliveira Leite, A.M.; Miguel, M.A.; Peixoto, R.S.; Rosado, A.S.; Silva, J.T.; Paschoalin, V.M.I. Microbiological, technological and therapeutic properties of kefir: A natural probiotic beverage. Braz. J. Microbiol. 2013, 44, 341–349.
109.
Nielsen, B.; Gűrakan, G.G.; Unlű, G. Kefir: A multifaceted fermented dairy product. Probiot. Antimicrob. Proteins 2014, 6, 123–135.
110.
Danova, S.; Petrov, K.; Pavlov, P.; Petrova, P. Isolation and characterization of Lactobacillus strains involved in koumiss fermentation. Int. J. Dairy Technol. 2005, 58, 100–105.
111.
Wang, J.; Chen, X.; Liu, W.; Yang, M.; Zhang, H. Identification of Lactobacillus from koumiss by conventional and molecular methods. Eur. Food Res. Technol. 2008, 227, 1555–1561.
112.
Carr, F.J.; Chill, D.; Maida, N. The lactic acid bacteria: A literature survey. Crit. Rev. Microbiol. 2002, 28, 281–370.
113.
Smit, G.; Smit, B.A.; Engels, E.J. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 2005, 29, 591–610.
114.
Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 2018, 9, 594.
115.
Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: Extending the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951.
116.
Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins–a viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105.
117.
De Vuyst, L.; Leroy, F. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 2007, 13, 194–199.
118.
Tamime, A.Y. Microbiology of Starter Cultures. In Dairy Microbiology, 3rd ed.; Robinson, R.K., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 2002; pp. 261–366.
119.
Tamime, A.Y.; Skriver, A.; Nilsson, L.-E. Starter cultures. In Fermented Milks; Tamime, A.Y., Ed.; Blackwell Publishing: Oxford, UK, 2006; pp. 11–52.
120.
Parente, E.; Cogan, T.M.; Powell, I.B. Starter Cultures: General Aspects. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; Fox, P.O., Ed.; Elsevier: Oxford, UK, 2017; pp. 201–226.
121.
Bintsis, T.; Athanasoulas, A. Dairy Starter Cultures. In Dairy Microbiology—A Practical Approach; Papademas, P., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 114–154.
122.
Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 2016, 7, 377.
123.
Tamang, J.P.; Shin, D.H.; Jung, S.J.; Chae, S.W. Functional properties of microorganisms in fermented foods. Front. Microbiol. 2016, 7, 578.
124.
FAO. The Future of Food and Agriculture. In Trends and Challenges; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i6583e.pdf (accessed on 15 November 2022).
125.
Alexandraki, V.; Tsakalidou, E.; Papadimitriou, K.; Holzapfel, W.H. Commission on Genetic Resources for Food and Agriculture. In Status and Trends of the Conservation and Sustainable Use of Microorganisms in Food Processes; FAO Background Study Paper; FAO: Rome, Italy, 2013; No. 65.
126.
Shiby, V.K.; Mishra, H.N. Fermented Milks and Milk Products as Functional Foods—A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 482–496.
127.
Watanabe, K.; Makino, H.; Sasamoto, M.; Kudo, Y.; Fujimoto, J.; Demberel, S. Biidobacterium mongoliense sp. nov., from airag, a traditional fermented mare’s milk product from Mongolia. Int. J. Syst. Evol. Microbiol. 2009, 59, 1535–1540.
128.
Mohammadi, R.; Sohrabvandi, S.; Mohammad Mortazavian, A. The starter culture characteristics of probiotic microorganisms in fermented milks. Engineer. Life Sci. 2012, 12, 399–409.
129.
Khorshidian, N.; Yousefi, M.; Mortazavian, A.M. Fermented milk: The Most Popular Probiotic Food Carrier. In Probiotic and Prebiotics in Foods: Challenges, Innovations and Advances; Gomes da Cruz, A., Prudencio, E.S., Esmerino, E.A., Cristina da Silva, M., Eds.; Academic Press: London, UK, 2020; Volume 94, pp. 91–114.
130.
Voidarou, C.; Antoniadou, M.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods 2021, 10, 69.
131.
Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 2018, 9, 1785.
132.
Melini, F.; Melini, V.; Luziatelli, F.; Ficca, A.G.; Ruzzi, M. Health-promoting components in fermented foods: An up-to-date systematic review. Nutrients 2019, 11, 1189.
133.
Shah, N.P. Functional cultures and health benefits. Int. Dairy J. 2007, 1, 1262–1277.
134.
Aiddo, K.; Naunt, M.J.R. Functional Yeasts and Molds in Fermented Foods and Beverages. In Fermented Foods and Beverages of the World; Tamang, J.P., Kailasapathy, K., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 127–148.
135.
Carpino, S.; Rapisarda, T.; Belvedere, G.; Papademas, P.; Neocleus, M.; Scadt, I.; Pasta, C.; Licitra, G. Effect of dehydration by sun or by oven on volatiles and aroma compounds of Trachanas. Dairy Sci. Technol. 2010, 90, 715–727.
136.
Georgala, A. The Nutritional Value of Two Fermented Milk/Cereal Foods Named ‘Greek Trahanas’ and ‘Turkish Tarhana’: A Review. J. Nutr. Disord. Ther. 2013, S11, 2161-0509.
137.
Ekinci, R. The effect of fermentation and drying on the water-soluble vitamin content of tarhana, a traditional Turkish cereal food. Food Chem. 2005, 90, 127–132.
138.
Ozdemir, S.; Gocmen, D.; Kumral, A.Y. A traditional Turkish fermented cereal food: Tarhana. Food Rev. Int. 2007, 23, 107–121.
139.
Ross, R.P.; Morgan, S.; Hill, C. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol. 2002, 79, 3–16.
140.
Reis, J.A.; Paula, A.T.; Casarotti, S.N.; Penna, A.L.B. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng. Rev. 2012, 4, 124–140.
141.
Powell, J.E.; Witthuhn, R.C.; Todorov, S.D.; Dicks, L.M.T. Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int. Dairy J. 2007, 17, 190–198.
142.
Todorov, S.D. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of adsorption of bacteriocin AMA-K to Listeria spp. Braz. J. Microbiol. 2008, 38, 178–187.
143.
Liu, W.; Zhang, L.; Yi, H.; Shi, J.; Xue, C.; Li, H.; Jiao, Y.;Shigwedha, N.; Du, M.; Han, X. Qualitative detection of class IIa bacteriocinogenic lactic acid bacteria from traditional Chinese fermented food using a YGNGV-motif-based assay. J. Microbiol. Methods 2014, 100, 121–127.
144.
Takono, T.; Yamamoto, N. Health Effects of Fermented Milks. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: Oxford, UK, 2011; pp. 483–488.
145.
Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. Donkey milk for the manufacture of novel functional fermented beverages. J. Food Sci. 2015, 80, S1352–S1359.
146.
Macouzet, M.; Lee, B.H.; Robert, N. Production of conjugated linoleic acid by probiotic Lactobacillus acidophilus La-5. J. Appl. Microbiol. 2009, 106, 1886–1891.
147.
Manzo, N.; Pizzolongo, F.; Montefusco, I.; Aponte, M.; Blaiotta, G.; Romano, R. The effects of probiotics and prebiotics on the fatty acid profile and conjugated linoleic acid content of fermented cow milk. Int. J. Food Sci. Nutr. 2015, 66, 254–259.
148.
Moghdam, B.E.; Keivaninahr, F.; Nazemi, A.; Fouladi, M.; Mokarram, R.R.; Benis, K.Z. Optimization of conjugated linoleic acid production by Bifidobacterium animalis subsp. Lactis and its application in fermented milk. LWT 2019, 108, 344–352.
149.
Toba, T.; Kotani, T.; Adachi, S. Capsular polysaccharide of a slime-forming Lactococcus lactis ssp. cremoris LAPT 3001 isolated from Swedish fermented milk ‘långfil’. Int. J. Food Microbiol. 1991, 12, 167–171.
150.
Ruas-Madiedo, P.; Gueimonde, M.; Margolles, A.; de los Reyes-Gavilan, C.G.; Salminen, S. Short communication: Effect of exopolysaccharide isolated from “viili” on the adhesion of probiotics and pathogens to intestinal mucus. J. Dairy Sci. 2006, 89, 2355–2358.
151.
Ryan, P.M.; Ross, R.P.; Fitzgerald, G.F.; Caplice, N.M.; Stanton, C. Sugar-coated: Exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct. 2015, 6, 679–693.
152.
Tarakoli, M.; Najafi, M.B.H.; Mehebbi, M. Effect of the milk fat content and starter culture selection on proteolysis and antioxidant activity of probiotic yogurt. Heliyon 2019, 5, e01204.
153.
Tamang, J.P. Himalayan Fermented Foods: Microbiology, Nutrition, and Ethnic Values; CRC Press: Boca Raton, FL, USA; Taylor & Francis: New York, NY, USA, 2010.
154.
Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented Foods, Health and the Gut Microbiome. Nutrients 2022, 14, 1527.
155.
Gorbach, S.L. Probiotics and gastrointestinal health. Am. J. Gastroenterol. 2000, 95, S2–S4.
156.
Kort, R.; Sybesma, W. Probiotics for every body. Trends Biotech. 2012, 30, 613–615.
157.
Boyle, R.J.; Tang, M.L. The role of probiotics in the management of allergic disease. Clin. Experim. Allerg. 2006, 36, 568–576.
158.
Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806.
159.
Kaur, H.; Kaur, G.; Ali, S.A. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. Fermentation 2022, 8, 425.
160.
Limdi, K.J.; O’Neill, C.; McLaughlin, J. Do probiotics have a therapeutic role in gastroenterology? World J. Gastroenterol. 2006, 12, 5447–5457.
161.
Young, P.; Cash, D.B. Probiotic use in irritable bowel syndrome. Curr. Gastroenterol. Rep. 2006, 8, 321–326.
162.
Sudha, M.R.; Chauhan, P.; Dixit, K.; Babu, S.; Jamil, K. Probiotics as complementary therapy for hypercholesterolemia. Biol. Med. 2009, 1, 1–31.
163.
Kankainen, M.; Paulin, L.; Tynkkynen, S.; von Ossowski, I.; Reunanen, J.; Partanen, P.; Satokari, R.; Vesterlund, S.; Hendrickx, A.P.A.; et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a humanmucus binding protein. Proc. Natl. Acad. Sci. USA 2009, 106, 17193–17198.
164.
Segers, M.E.; Lebeer, S. Towards a better understanding of Lactobacillus rhamnosus GG–host interactions. Microb. Cell Factor. 2014, 13, S7.
165.
Solis-Pereyra, B.; Lemonnier, D. Induction of human cytokines by bacteria used in dairy foods. Nutr. Res. 1993, 13, 1127–1140.
166.
Chen, M.; Ye, X.; Shen, D.; Ma, C. Modulatory Effects of Gut Microbiota on Constipation: The Commercial Beverage Yakult Shapes Stool Consistency. J. Neurogastoenterol. Motil. 2019, 25, 475–477.
167.
Jeong, D.; Kim, D.-H.; Kang, I.-B.; Kim, H.; Song, K.-Y.; Kim, H.-S.; Seo, K.-H. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food Funct. 2017, 8, 680–686.
168.
Fernandez, M.A.; Marette, A. Novel perspectives on fermented milks and cardiometabolic health with a focus on type 2 diabetes. Nutr. Rev. 2018, 76, 16–28.
169.
Ayyash, M.; Al-Dhaheri, A.S.; Al Mahadin, S.; Kizhakkayil, J.; Abushelaibi, A. In vitro investigation of anticancer, antihypertensive, antidiabetic, and antioxidant activities of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. J. Dairy Sci. 2018, 101, 900–911.
170.
Park, S.-Y.; Seong, K.-S.; Lim, S.-D. Anti-obesity effect of yogurt fermented by Lactobacillus plantarum Q180 in diet-induced obese rats. Korean J. Food Sci. Anim. Res. 2016, 36, 77.
171.
Mofid, V.; Izadi, A.; Mojtahedi, S.Y.; Khedmat, L. Therapeutic and nutritional effects of Synbiotic yogurts in children and adults: A clinical review. Probiot. Antimicrob. Prot. 2019, 12, 851–859.
172.
Hsu, Y.-J.; Huang, W.-C.; Lin, J.-S.; Chen, Y.-M.; Ho, S.-T.; Huang, C.-C.; Tung, Y.-T. Kefir Supplementation Modifies Gut Microbiota Composition, Reduces Physical Fatigue, and Improves Exercise Performance in Mice. Nutrients 2018, 10, 862.
173.
Kim, D.H.; Jeong, D.; Kim, H.; Seo, K.H. Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 1782–1793.
174.
Kok, C.R.; Hutkins, R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr. Rev. 2018, 76, 4–15.
175.
Cocolin, L.; Alessandria, V.; Dolci, P.; Gorra, R.; Rantsiou, K. Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. Int. J. Food Microbiol. 2013, 167, 29–43.
176.
Tamang, J.P. Biochemical and Modern Identification Techniques—Microfloras of Fermented Foods. In Encyclopaedia of Food Microbiology, 2nd ed.; Batt, C., Tortorello, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 250–258.
177.
Ramos, C.L.; de Almeida, E.G.; de Melo Pereira, G.V.; Cardoso, P.G.; Dias, E.S.; Schwan, R.F. Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 2010, 140, 225–231.
178.
Cocolin, L.; Aggio, D.; Manzano, M.; Cantoni, C.; Comi, G. An application of PCR-DGGE analysis to profile the yeast populations in raw milk. Int. Dairy J. 2002, 12, 407–411.
179.
Jianzhonga, Z.; Xiaolia, L.; Hanhub, J.; Mingshengb, D. Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis. Food Microbiol. 2009, 26, 770–775.
180.
Geronikou, A.; Srimahaeak, T.; Rantsiou, K.; Triantafillidis, G.; Larsen, N.; Jespersen, L. Occurrence of yeasts in white-brined cheeses: Methodologies for identification, spoilage potential and good manufacturing practices. Front. Microbiol. 2020, 11, 582778.
181.
Wolfe, B.E.; Dutton, R.J. Fermented foods as experimentally tractable microbial ecosystems. Cell 2015, 161, 49–55.
182.
Beshkova, D.M.; Simova, E.D.; Simov, Z.I.; Frengova, G.I.; Spasov, Z.N. Pure cultures for making kefir. Food Microbiol. 2002, 19, 537–544.
183.
Yilmaz, B.; Elibol, E.; Shangpliang, H.N.J.; Ozogul, F.; Tamang, J.P. Microbial Communities in Home-Made and Commercial Kefir and Their Hypoglycemic Properties. Fermentation 2022, 8, 590.
184.
Kalamaki, M.S.; Angelidis, A.S. High-Throughput, Sequence-Based Analysis of the Microbiota of Greek Kefir Grains from Two Geographic Regions. Food Technol. Biotechnol. 2020, 58, 138–146.
185.
Rea, M.C.; Lennartsson, T.; Dillon, P.; Drinan, F.D.; Reville, W.J.; Heapes, M.; Cogan, T.M. Irish kefir-like grains: Their structure, microbial composition and fermentation kinetics. J. Appl. Bacteriol. 1996, 81, 83–94.
186.
Garrote, G.L.; Abraham, A.G.; de Antoni, G.L. Chemical and microbiological characterisation of kefir grains. J. Dairy Res. 2001, 68, 639–652.
187.
Kalamaki, M.S.; Angelidis, A.S. Isolation and molecular identification of yeasts in Greek kefir. Int. J. Dairy Technol. 2016, 70, 261–268.
188.
Simova, E.; Beshkova, D.; Angelov, A.; Hristozova, T.; Frengova, G.; Spasov, Z. Lactic acid bacteria and yeasts in kefir grains and kefir made from them. J. Ind. Microbiol. Biotechnol. 2002, 28, 1–6.
189.
Kesmen, Z.; Kacmaz, N. Determination of Lactic Microflora of Kefir Grains and Kefir Beverage by Using Culture-Dependent and Culture-Independent Methods. J. Food Sci. 2011, 76, M276–M283.
190.
Marsh, A.J.; O’Sullivan, O.; Hill, C.; Ross, R.P.; Cotter, P.D. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS ONE 2013, 8, e69371.
191.
Dobson, A.; O’Sullivan, O.; Cotter, P.D.; Ross, P.; Hill, C. High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiol. Lett. 2011, 320, 56–62.
192.
Zamberi, N.R.; Mohamad, N.E.; Yeap, S.K.; Ky, H.; Beh, B.K.; Liew, W.C.; Tan, S.W.; Ho, W.Y.; Boo, S.Y.; Chua, Y.H.; et al. 16S Metagenomic Microbial Composition Analysis of Kefir Grain using MEGAN and BaseSpace. Food Biotechnol. 2016, 30, 219–230.
193.
Gao, W.; Zhang, L. Comparative analysis of the microbial community composition between Tibetan kefir grains and milks. Food Res. Int. 2019, 116, 137–144.
194.
Alraddadi, F.A.J.; Ross, T.; Powell, S.M. Evaluation of the microbial communities in kefir grains and kefir over time. Int. Dairy J. 2023, 136, 105490.
The authors state that the scientific conclusions are unaffected. These corrections were approved by the Academic Editor. The original publication has also been updated.

Reference

  1. Bintsis, T.; Papademas, P. The Evolution of Fermented Milks, from Artisanal to Industrial Products: A Critical Review. Fermentation 2022, 8, 679. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bintsis, T.; Papademas, P. Correction: Bintsis, T.; Papademas, P. The Evolution of Fermented Milks, from Artisanal to Industrial Products: A Critical Review. Fermentation 2022, 8, 679. Fermentation 2024, 10, 171. https://doi.org/10.3390/fermentation10030171

AMA Style

Bintsis T, Papademas P. Correction: Bintsis, T.; Papademas, P. The Evolution of Fermented Milks, from Artisanal to Industrial Products: A Critical Review. Fermentation 2022, 8, 679. Fermentation. 2024; 10(3):171. https://doi.org/10.3390/fermentation10030171

Chicago/Turabian Style

Bintsis, Thomas, and Photis Papademas. 2024. "Correction: Bintsis, T.; Papademas, P. The Evolution of Fermented Milks, from Artisanal to Industrial Products: A Critical Review. Fermentation 2022, 8, 679" Fermentation 10, no. 3: 171. https://doi.org/10.3390/fermentation10030171

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop