The Application of Protective Cultures in Cheese: A Review
Abstract
1. Introduction
2. Antimicrobial Mechanisms
2.1. Metabolites
2.2. Bacteriocins
2.3. Ecological Competition
3. Control of Pathogens
4. Control of Spoilage Microorganisms
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kindstedt, P.S. The history of cheese. In Global Cheesemaking Technology: Cheese Quality and Characteristics; Papademas, P., Bintsis, T., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2018; pp. 3–19. [Google Scholar]
- Bintsis, T.; Papademas, P. An Overview of the Cheesemaking Process. In Global Cheesemaking Technology: Cheese Quality and Characteristics; Papademas, P., Bintsis, T., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2018; pp. 120–156. [Google Scholar]
- Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef] [PubMed]
- Bintsis, T.; Athanasoulas, A. Dairy starter cultures. In Dairy Microbiology, A Practical Approach; Papademas, P., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 114–154. [Google Scholar]
- Montel, M.-C.; Buchin, S.; Mallet, A.; Delbes-paus, C.; Vuitton, D.A.; Desmasures, N.; Berthier, F. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 2014, 177, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Quigley, L.; O’Sallivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed]
- Picon, A. Cheese microbial ecology and safety. In Global Cheesemaking Technology: Cheese Quality and Characteristics; Papademas, P., Bintsis, T., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2018; pp. 71–99. [Google Scholar]
- Coolbear, T.; Crow, V.; Harnett, J.; Harvey, S.; Holland, R.; Martley, F. Developments in cheese microbiology in New Zealand—Use of starter and non-starter lactic acid bacteria and their enzymes in determining flavour. Int. Dairy J. 2008, 18, 705–713. [Google Scholar] [CrossRef]
- Hansen, E.B. Commercial bacterial starter cultures for fermented foods of the future. Int. J. Food Microbiol. 2002, 78, 119–131. [Google Scholar] [CrossRef]
- El Soda, M.; Madkor, S.A.; Tong, P.S. Adjunct cultures: Recent developments and potential significance to the cheese industry. J. Dairy Sci. 2000, 83, 609–619. [Google Scholar] [CrossRef]
- Bassi, D.; Puglisi, E.; Cocconcelli, P. S Comparing natural and selected starter cultures in meat and cheese fermentations. Curr. Opin. Food Sci. 2015, 2, 118–122. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Mancini, L.; Fox, P.F. Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci. Technol. 2015, 45, 167–178. [Google Scholar] [CrossRef]
- Sun, L.; D’Amico, D.J. Composition, succession, and source tracking of microbial communities throughout the traditional production of a farmstead cheese. mSystems 2021, 6, e00830-21. [Google Scholar] [CrossRef]
- Irlinger, F.; Mounier, J. Microbial interactions in cheese: Implications for cheese quality and safety. Curr. Opin. Biotechnol. 2009, 20, 142–148. [Google Scholar] [CrossRef]
- Feutry, F.; Oneca, M.; Berthier, F.; Torre, P. Biodiversity and growth dynamics of lactic acid bacteria in artisanal PDO Ossau-Iraty cheeses made from raw ewe’s milk with different starters. Food Microbiol. 2012, 29, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Gatti, M. Survey on the community and dynamics of lactic acid bacteria in Grana Padano cheese. Syst. Appl. Microbiol. 2013, 36, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Giraffa, G. The microbiota of Grana Padano cheese. A review. Foods 2021, 10, 2632. [Google Scholar] [CrossRef] [PubMed]
- Dugat-Bony, E.; Garnier, L.; Denonfoux, J.; Ferreira, S.; Sarthou, A.S.; Bonnarme, P.; Irlinger, F. Highlighting the microbial diversity of 12 French cheese varieties. Int. J. Food Microbiol. 2016, 238, 265–273. [Google Scholar] [CrossRef]
- Bourdichon, F.; Arias, E.; Babuchowski, A.; Bückle, A.; Bello, F.D.; Dubois, A.; Fontana, A.; Fritz, D.; Kemperman, R.; Laulund, S.; et al. The forgotten role of food cultures. FEMS Microbiol. Lett. 2021, 368, fnab085. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.P.; Stanton, C.; Hill, C.; Fitzgerald, G.F.; Coffey, A. Novel cultures for cheese improvement. Trends Food Sci. Technol. 2000, 11, 96–104. [Google Scholar] [CrossRef]
- Settani, L.; Moschetti, G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef]
- Chen, H.; Yan, X.; Du, G.; Guo, Q.; Shi, Y.; Chang, J.; Wang, X.; Yuan, Y.; Yue, T. Recent developments in antifungal lactic acid bacteria: Application, screening methods, separation, purification of antifungal compounds and antifungal mechanisms. Crit. Rev. Food Sci. Nutr. 2023, 63, 2544–2558. [Google Scholar] [CrossRef]
- Moula Ali, A.Μ.; Sant’Ana, A.S.; Bavisetty, S.C.B. Sustainable preservation of cheese: Advanced technologies, physicochemical properties and sensory attributes. Trends Food Sci. Technol. 2022, 129, 306–326. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Geisen, R.; Schillinger, U. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 1995, 24, 343–362. [Google Scholar] [CrossRef]
- Souza, L.V.; Martins, E.; Moreira, I.M.F.B.; de Carvalho, A.F. Strategies for the Development of Bioprotective Cultures in Food Preservation. Int. J. Microbiol. 2022, 2022, 6264170. [Google Scholar] [CrossRef] [PubMed]
- Devlieghere, F.; Vermeiren, L.; and Debevere, J. New preservation technologies: Possibilities and limitations. Int. Dairy J. 2004, 14, 273–285. [Google Scholar] [CrossRef]
- Chen, H.; Hoover, D.G. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf. 2003, 2, 82–100. [Google Scholar]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Grattepanche, F.; Miescher-Schwenninger, S.; Meile, L.; Lacroix, C. Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Sci. Technol. 2008, 88, 421–444. [Google Scholar] [CrossRef]
- Guinane, C.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Microbial solutions to microbial problems; lactococcal bacteriocins for the control of undesirable biota in food. J. Appl. Microbiol. 2005, 98, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- González-González, F.; Delgado, S.; Ruiz, L.; Margolles, A.; Ruas-Madiedo, P. Functional bacterial cultures for dairy applications: Towards improving safety, quality, nutritional and health benefit aspects. J. Appl. Microbiol. 2022, 133, 212–229. [Google Scholar] [CrossRef]
- del Carmen Rangel-Ortega, S.; Campos-Múzquiz, L.G.; Charles-Rodriguez, A.V.; Chávez-Gonzaléz, M.L.; Palomo-Ligas, L.; Contreras-Esquivel, J.C.; Solanilla-Duque, J.F.; Flores-Gallegos, A.C.; Rodríguez-Herrera, R. Biological control of pathogens in artisanal cheeses. Int. Dairy J. 2023, 140, 105612. [Google Scholar] [CrossRef]
- Ahansaz, N.; Tarrah, A.; Pakroo, S.; Corich, V.; Giacomini, A. Lactic Acid Bacteria in Dairy Foods: Prime Sources of Antimicrobial Compounds. Fermentation 2023, 9, 964. [Google Scholar] [CrossRef]
- Farid, N.; Waheed, A.; Motwani, S. Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon 2023, 9, e17021. [Google Scholar] [CrossRef]
- Favaro, L.; Penna, A.L.B.; Todorov, S.D. Bacteriocinogenic LAB from cheeses—Application in biopreservation? Trends Food Sci. Technol. 2015, 41, 37–48. [Google Scholar] [CrossRef]
- Garcia, P.; Rodríguez, L.; Rodríguez, A.; Martínez, B. Food biopreservation: Promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci. Technol. 2010, 21, 373–382. [Google Scholar] [CrossRef]
- Rendueles, C.; Duarte, A.C.; Escobedo, S.; Fernández, L.; Rodríguez, A.; García, P.; Martnez, B. Combined use of bacteriocins and bacteriophages as food biopreservatives. A review. Int. J. Food Microbiol. 2022, 368, 109611. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Young, N.W.G.; O’Sullivan, G.R. The influence of ingredients on product stability and shelf life. In Food and Beverage Stability and Shelf Life; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2011; pp. 132–183. [Google Scholar]
- Mayo, B.; Rodríguez, J.; Vázquez, L.; Flórez, A.B. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods 2021, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, X.; Zhang, X.; Wu, H.; Zou, Y.; Li, P.; Sun, C.; Xu, W.; Liu, F.; Wang, D. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. J. Ind. Microbiol. Biotechnol. 2018, 45, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Siedler, S.; Rau, M.H.; Bidstrup, S.; Vento, J.M.; Aunsbjerg, S.D.; Bosma, E.F.; McNair, L.M.; Beisel, C.L.; Neves, A.R. Competitive Exclusion Is a Major Bioprotective Mechanism of Lactobacilli against Fungal Spoilage in Fermented Milk Products. Appl. Environ. Microbiol. 2020, 86, e02312-19. [Google Scholar] [CrossRef]
- Kondrotiene, K.; Kasnauskyte, N.; Serniene, L.; Gölz, G.; Alter, T.; Kaskoniene, V.; Maruska, A.S.; Malakauskas, M. Characterization and application of newly isolated nisin producing Lactococcus lactis strains for control of Listeria monocytogenes growth in fresh cheese. LWT—Food Sci. Technol. 2018, 87, 507–514. [Google Scholar] [CrossRef]
- Pisano, M.B.; Fadda, M.E.; Viale, S.; Deplano, M.; Mereu, F.; Blaži’c, M.; Cosentino, S. Inhibitory effect of Lactiplantibacillus plantarum and Lactococcus lactis autochtonous strains against Listeria monocytogenes in a laboratory cheese model. Foods 2022, 11, 715. [Google Scholar] [CrossRef]
- Bockelman, W.; Koslowsky, M.; Georges, S.; Scherer, S.; Franz, C.M.A.P.; Heller, K.J. Growth inhibition of Listeria monocytogenes by bacteriocin-producing Staphylococcus equorum SE3 in cheese models. Food Control 2017, 71, 50–56. [Google Scholar] [CrossRef]
- Engstrom, S.K.; Anderson, K.M.; Glass, K.A. Effect of commercial protective cultures and bacterial fermentates on Listeria monocytogenes growth in a refrigerated high-moisture model cheese. J. Food Prot. 2021, 84, 772–780. [Google Scholar] [CrossRef]
- Mills, S.; Griffin, C.; O’Connor, P.M.; Serrano, L.M.; Meijer, W.C.; Hill, C.; Ross, R.P. A multibacteriocin cheese starter system, comprising nisin and lacticin 3147 in Lactococcus lactis, in combination with plantaricin from Lactobacillus plantarum. Appl. Environ. Microbiol. 2017, 83, e00799-17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jiang, X.; Li, L.; Liu, D.; Zhao, F.; Liu, Y.; Wu, S.; Lü, X.; Wu, G.; Yi, Y. Bacteriocinogenic Lacticaseibacillus paracasei strains from Inner Mongolian fermented milk efficiently control pathogenic bacteria in model cheddar-like cheese. Food Biosci. 2024, 57, 103516. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Zhang, T.; Liu, Y.; Lü, X.; Kuipers, O.P.; Yi, Y. (Meta)genomics-assisted screening of novel antibacterial lactic acid bacteria strains from traditional fermented milk from Western China and their bioprotective effects on cheese. LWT 2023, 175, 114507. [Google Scholar] [CrossRef]
- Giannou, E.; Kakouri, A.; Matijasic, B.B.; Rogelj, I.; Samelis, J. Fate of Listeria monocytogenes on fully ripened Greek Graviera cheese stored at 4, 12, or 25 degrees C in air or vacuum packages: In situ PCR detection of a cocktail of bacteriocins potentially contributing to pathogen inhibition. J. Food Prot. 2009, 72, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Meloni, M.P.; Piras, F.; Siddi, G.; Migoni, M.; Cabras, D.; Cuccu, M.; Nieddu, G.; McAuliffe, O.; De Santis, E.P.L.; Scarano, C. Effect of Commercial and Autochthonous Bioprotective Cultures for Controlling Listeria monocytogenes Contamination of Pecorino Sardo Dolce PDO Cheese. Foods 2023, 12, 3797. [Google Scholar] [CrossRef] [PubMed]
- Callon, C.; Arliguie, C.; Montel, M.C. Control of Shigatoxin-producing Escherichia coli in cheese by dairy bacterial strains. Food Microbiol. 2016, 53, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Bello, B.D.; Zeppa, G.; Bianchi, D.M.; Decastelli, L.; Traversa, A.; Gallina, S.; Coisson, J.D.; Locatelli, M.; Travaglia, F.; Cocolin, L. Effect of nisin-producing Lactococcus lactis starter cultures on the inhibition of two pathogens in ripened cheeses. Int. J. Dairy Technol. 2013, 66, 468–477. [Google Scholar] [CrossRef]
- Rolim, F.R.L.; dos Santos, K.M.O.; de Barcelos, S.C.; do Egito, A.S.; Ribeiro, T.S.; da Conceição, M.L.; Magnani, M.; de Oliveira, M.E.G.; do Egypto, R.D.C.R. Survival of Lactobacillus rhamnosus EM1107 in simulated gastrointestinal conditions and its inhibitory effect against pathogenic bacteria in semi-hard goat cheese. LWT 2015, 63, 807–813. [Google Scholar] [CrossRef]
- de Oliveira, M.E.G.; Garcia, E.F.; de Oliveira, C.E.V.; Gomes, A.M.P.; Pintado, M.M.E.; Madureira, A.R.M.F.; da Conceição, M.L.; do EgyptoQueiroga, R.D.C.R.; de Souza, E.L. Addition of probiotic bacteria in a semi-hard goat cheese (coalho): Survival to simulated gastrointestinal conditions and inhibitory effect against pathogenic bacteria. Food Res. Int. 2014, 64, 241–247. [Google Scholar] [CrossRef]
- Langa, S.; Martín-Cabrejas, I.; Montiel, R.; Peirotén, Á.; Arqués, J.L.; Medina, M. Protective effect of reuterin-producing Lactobacillus reuteri against Listeria monocytogenes and Escherichia coli O157:H7 in semi-hard cheese. Food Control 2018, 84, 284–289. [Google Scholar] [CrossRef]
- Suárez, N.; Weckx, S.; Minahk, C.; Hebert, E.M.; Saavedra, L. Metagenomics-based approach for studying and selecting bioprotective strains from the bacterial community of artisanal cheeses. Int. J. Food Microbiol. 2020, 16, 108894. [Google Scholar] [CrossRef] [PubMed]
- Callon, C.; Retureau, E.; Didienne, R.; Montel, M.-C. Microbial biodiversity in cheese consortia and comparative Listeria growth on surfaces of uncooked pressed cheeses. Int. J. Food Microbiol. 2014, 174, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Campagnollo, F.B.; Margalho, L.P.; Kamimura, B.A.; Feliciano, M.D.; Freire, L.; Lopes, L.S.; Alvarenga, V.O.; Cadavez, V.A.P.; Gonzales-Barron, U.; Schaffner, D.W.; et al. Selection of indigenous lactic acid bacteria presenting anti-listerial activity, and their role in reducing the maturation period and assuring the safety of traditional Brazilian cheeses. Food Microbiol. 2018, 73, 288–297. [Google Scholar] [CrossRef]
- da Costa, W.K.A.; de Souza, G.T.; Brandão, L.R.; de Lima, R.C.; Garcia, E.F.; dos Santos Lima, M.; de Souza, E.L.; Saarela, M.; Magnani, M. Exploiting antagonistic activity of fruit-derived Lactobacillus to control pathogenic bacteria in fresh cheese and chicken meat. Food Res. Int. 2018, 108, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, F.; Giarratana, F.; Caridi, A.; Sidari, R.; De Bruno, A.; Giuffrida, A. Lactic acid bacteria isolated from traditional Italian dairy products: Activity against Listeria monocytogenes and modelling of microbial competition in soft cheese. LWT 2021, 137, 110446. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Kim, G.-B. Inhibition of Listeria monocytogenes in Fresh Cheese Using a Bacteriocin-Producing Lactococcus lactis CAU2013 Strain. Food Sci. Anim. Resour. 2022, 42, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.C.; Silva, C.C.G.; Ribeiro, S.C.; Dapkevicius, M.L.N.E.; Rosa, H.J.D. Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria. Int. J. Food Microbiol. 2014, 191, 53–59. [Google Scholar] [CrossRef]
- Ahmed, W.I.; Kamar, A.M.; Hamad, G.M.; Mehany, T.; El-Desoki, W.I.; Ali, E.; Simal-Gandara, J. Biocontrol of Bacillus cereus by Lactobacillus plantarum in Kareish cheese and yogurt. LWT 2023, 183, 114946. [Google Scholar] [CrossRef]
- Lawton, M.R.; Jencarelli, K.G.; Kozak, S.M.; Alcaine, S.D. Evaluation of commercial meat cultures to inhibit Listeria monocytogenes in a fresh cheese laboratory model. J. Dairy Sci. 2020, 103, 1269–1275. [Google Scholar] [CrossRef]
- Sanna, R.; Piras, F.; Siddi, G.; Meloni, M.P.; Demontis, M.; Spanu, V.; Nieddu, G.; Cuccu, M.; De Santis, E.P.L.; Scarano, C. Use of commercial protective cultures in portioned sheep milk cheeses to control Listeria monocytogenes. Ital. J. Food Saf. 2023, 12, 10484. [Google Scholar] [CrossRef] [PubMed]
- Martin, I.; Rodríguez, A.; Córdoba, J.J. Application of selected lactic-acid bacteria to control Listeria monocytogenes in soft-ripened “Torta del Casar” cheese. LWT—Food Sci. Technol. 2022, 168, 113873. [Google Scholar] [CrossRef]
- Ewida, R.M.; Hasan, W.S.; Elfaruk, M.S.; Alayouni, R.R.; Hammam, A.R.A.; Kamel, D.G. Occurrence of Listeria spp. in soft cheese and ice cream: Effect of probiotic Bifidobacterium spp. on survival of Listeria monocytogenes in soft cheese. Foods 2022, 11, 3443. [Google Scholar] [CrossRef]
- Ivanovic, M.; Mirkovic, N.; Mirkovic, M.; Miocinovic, J.; Radulovic, A.; Solevic Knudsen, T.; Radulovic, Z. Autochthonous Enterococcus durans PFMI565 and Lactococcus lactis subsp. lactis BGBU1–4 in Bio-Control of Listeria monocytogenes in Ultrafiltered Cheese. Foods 2021, 10, 1448. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; Serrano, L.M.; Griffin, C.; O’Connor, P.M.; Schaad, G.; Bruining, C.; Hill, C.; Ross, R.P.; Meijer, W.C. Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microb. Cell Fact. 2011, 10, S7. [Google Scholar] [CrossRef] [PubMed]
- Meral Aktas, H.; Erdogan, A.; Cetin, B. Bacteriocin characterization of autochtonous Lactococcus lactis L54 and its application as starter culture for Beyaz cheese. Food Biosci. 2023, 53, 102739. [Google Scholar] [CrossRef]
- Imrahim, A.; Awad, S. Selection and identification of protective culture for controlling Staphylococcus aureus in fresh Domiati like cheese. J. Food Saf. 2017, 38, e12418. [Google Scholar] [CrossRef]
- Khalil, N.; Kheadr, E.; El-Ziney, M.; Dabour, N. Lactobacillus plantarum protective cultures to improve safety and quality of wheyless Domiati-like cheese. J. Food Process. Preserv. 2022, 46, e16416. [Google Scholar] [CrossRef]
- Medvedova, A.; Konuchova, M.; Kvocikova, K.; Hatalova, I.; Valik, L. effect of lactic acid bacteria addition on the microbiological safety of pasta-filata types of cheeses. Front. Microbiol. 2020, 11, 612528. [Google Scholar] [CrossRef]
- O’Sullivan, L.; O’Connor, E.; Ross, R.; Hill, C. Evaluation of live-culture producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. J. Appl. Microbiol. 2006, 100, 135–143. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Battelli, G.; Brasca, M. Can lactic acid bacteria be an efficient tool for controlling Listeria monocytogenes contamination on cheese surface? The case of Gorgonzola cheese. Food Control. 2019, 96, 499–507. [Google Scholar] [CrossRef]
- Dal Bello, B.; Cocolin, L.; Zeppa, G.; Field, D.; Cotter, P.D.; Hill, C. Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. Int. J. Food Microbiol. 2012, 153, 58–65. [Google Scholar] [CrossRef] [PubMed]
- van Gijtenbeek, L.A.; Singer, Q.; Steffensen, L.E.; Neuens, S.; Guldager, H.S.; Bidstrup, S.; Høgholm, T.; Madsen, M.G.; Glass, K.; Siedler, S. Lacticaseibacillus rhamnosus impedes growth of Listeria spp. in Cottage cheese through manganese limitation. Foods 2021, 10, 1353. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Mun, D.; Ryu, S.; Kwak, M.J.; Kim, B.K.; Park, D.J.; Jeong, D.-Y.; Park, W.; Oh, S.; Kim, Y. Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subsp sakei 2a in a potentially synbiotic cheese spread. Food Microbiol. 2015, 48, 143–152. [Google Scholar]
- Sameli, N.; Samelis, J. Growth and biocontrol of Listeria monocytogenes in Greek Anthotyros whey cheese without or with a crude enterocin ABP extract: Interactive effects of the native spoilage microbiota during vacuum-packed storage at 4 °C. Foods 2022, 11, 334. [Google Scholar] [CrossRef] [PubMed]
- Aspri, M.; O’Connor, P.M.; Field, D.; Cotter, P.D.; Ross, P.; Hill, C.; Papademas, P. Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. Int. Dairy J. 2017, 73, 1–9. [Google Scholar] [CrossRef]
- Afzal, M.I.; Ariceaga, C.C.G.; Lhomme, E.; Ali, N.K.; Payot, S.; Burgain, J.; Gaiani, C.; Borges, F.; Revol-Junelles, A.M.; Delaunay, S.; et al. Characterization of Carnobacterium maltaromaticum LMA 28 for its positive technological role in soft cheese making. Food Microbiol. 2013, 36, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Morandi, S.; Silvetti, T.; Vezzini, V.; Morozzo, E.; Brasca, M. How we can improve the antimicrobial performances of lactic acid bacteria? A new strategy to control Listeria monocytogenes in Gorgonzola cheese. Food Microbiol. 2020, 90, 103488. [Google Scholar] [CrossRef]
- Gensler, C.A.; Bown, S.R.B.; Aljasir, S.F.; D’Amico, D.J. Compatibility of Commercially Produced Protective Cultures with Common Cheesemaking Cultures and Their Antagonistic Effect on Foodborne Pathogens. J. Food Prot. 2020, 83, 1010–1019. [Google Scholar] [CrossRef]
- Contessa, C.R.; De Souza, N.B.; Batt, G.; De Moura, C.M.; Silveira, G.; Moraes, C.C. Development of active packaging based on agar-agar incorporated with bacteriocin of Lactobacillus sakei. Biomolecules 2021, 11, 1869. [Google Scholar] [CrossRef]
- Renes, E.; Diezhandino, I.; Fernaandez, D.; Ferrazza, R.E.; Tornandijo, M.E.; Fresno, J.M. Effect of autochthonous starter cultures on the biogenic amine content of ewe’s milk cheese throughout ripening. Food Microbiol. 2014, 44, 271–277. [Google Scholar] [CrossRef]
- Hassan, H.; St-Gelais, D.; Gomaa, A.; Fliss, I. Impact of nisin and nisin-producing Lactococcus lactis ssp. lactis on Clostridium tyrobutyricum and bacterial ecosystem of cheese matrices. Foods 2021, 10, 898. [Google Scholar] [CrossRef] [PubMed]
- Garde, S.; Avila, M.; Arias, R.; Gaya, P.; Nunez, M. Outgrowth inhibition of Clostridium beijerinckii spores by a bacteriocin-producing lactic culture in ovine milk cheese. Int. J. Food Microbiol. 2011, 150, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Garnier, L.; Salas, M.L.; Pinon, N.; Wiernasz, N.; Pawtowski, A.; Coton, E.; Mounier, J.; Valence, F. High-throughput method for antifungal activity screening in a cheese-mimicking model. J. Dairy Sci. 2018, 101, 4971–4976. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, S.; Viale, S.; Deplano, M.; Fadda, M.E.; Pisano, M.B. Application of autochthonous Lactobacillus strains as biopreservatives to control fungal spoilage in Caciotta cheese. BioMed Res. Int. 2018, 3915615. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.V.; da Silva, R.R.; Falqueto, A.; Fusieger, A.; Martins, E.; Caggia, C.; Randazzo, C.L.; de Carvalho, A.F. Evaluation of antifungal activity of lactic acid bacteria against fungi in simulated cheese matrix. LWT—Food Sci. Technol. 2023, 182, 114773. [Google Scholar] [CrossRef]
- Prabawati, E.K.; Turner, M.S.; Bansal, N. Lactiplantibacillus plantarum as an adjunct culture exhibits antifungal activity in shredded Cheddar cheese. Food Control 2023, 144, 109330. [Google Scholar] [CrossRef]
- Lynch, K.M.; Pawlowska, A.M.; Brosnan, B.; Coffey, A.; Zannini, E.; Furey, A.; McSweeney, P.L.; Waters, D.M.; Arendt, E.K. Application of Lactobacillus amylovorus as an antifungal adjunct to extend the shelf-life of Cheddar cheese. Int. Dairy J. 2014, 34, 167–173. [Google Scholar] [CrossRef]
- Settanni, L.; Gaglio, R.; Guarcello, R.; Francesca, N.; Carpino, S.; Sannino, C.; Todaro, M. Selected lactic acid bacteria as a hurdle to the microbial spoilage of cheese: Application on a traditional raw ewes’ milk cheese. Int. Dairy J. 2013, 32, 126–132. [Google Scholar] [CrossRef]
- Silva, S.P.M.; Teixeira, J.A.; Silva, C.C.G. Prevention of fungal contamination in semi-hard cheeses by whey-gelatin film incorporated with Levilactobacillus brevis SJC120. Foods 2023, 12, 1396. [Google Scholar] [CrossRef]
- Leyva Salas, M.; Thierry, A.; Lemaitre, M.; Garric, G.; Harel-Oger, M.; Chatel, M.; Le, S.; Mounier, J.; Valence, F.; Coton, E. Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Front. Microbiol. 2018, 9, 1787. [Google Scholar] [CrossRef] [PubMed]
- Garnier, L.; Mounier, J.; Lê, S.; Pawtowski, A.; Pinon, N.; Camier, B.; Chatel, M.; Garric, G.; Thierry, A.; Coton, E.; et al. Development of antifungal ingredients for dairy products: From in vitro screening to pilot scale application. Food Microbiol. 2019, 81, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Bassi, D.; Gazzola, S.; Sattin, E.; Dal Bello, F.; Simionati, B.; Cocconcelli, P.S. Lactic Acid Bacteria Adjunct Cultures Exert a Mitigation Effect against Spoilage Microbiota in Fresh Cheese. Microorganisms 2020, 8, 1199. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, H.; Eskandari, M.H.; Moosavi-Nasab, M.; Shekarforoush, S.S. Application of non-starter lactic acid bacteria as biopreservative agents to control fungal spoilage of fresh cheese. Int. Dairy J. 2016, 56, 87–91. [Google Scholar] [CrossRef]
- Makki, G.M.; Kozak, S.M.; Jencarelli, K.G.; Alcaine, S.D. Evaluation of the efficacy of commercial protective cultures against mold and yeast in Queso fresco. J. Dairy Sci. 2020, 103, 9946–9957. [Google Scholar] [CrossRef] [PubMed]
- Shaala, E.K.A.; Awad, S.A.; Nazem, A.M. Application of Natural Antimicrobial Additives and Protective Culture to Control Aerobic Spore Forming Bacteria in Low Salt Soft Cheese. World Vet. J. 2020, 10, 609–616. [Google Scholar] [CrossRef]
- Aljewicz, M.; Cichosz, G. Protective effects of Lactobacillus cultures in Dutch-type cheese-like products. LWT—Food Sci. Technol. 2015, 63, 52–56. [Google Scholar] [CrossRef]
- Delgado, J.; Rodríguez, A.; García, A.; Núnez, F.; Asensio, M.A. Inhibitory effect of PgAFP and protective cultures on Aspergillus parasiticus growth and aflatoxins production on dry-fermented sausage and cheese. Microorganisms 2018, 6, 69. [Google Scholar] [CrossRef]
- Eren-Vapur, U.; Cinar, A.; Altuntas, S. Protective culture: Is it a solution to improve quality of culture-free white cheese? J. Food Proc. Preserv. 2022, 46, e16432. [Google Scholar] [CrossRef]
- Natrella, G.; Gambacorta, G.; Faccia, M. Application of Commercial Biopreservation Starter in Combination with MAP for Shelf-Life Extension of Burrata Cheese. Foods 2023, 12, 1867. [Google Scholar] [CrossRef]
- Minevini, F.; Conte, A.; Del Nobile, M.A.; Gobbetti, M.; De Angelis, M. Dietary Fibers and Protective Lactobacilli Drive Burrata Cheese Microbiome. Appl. Environ. Microbiol. 2017, 83, e01494-17. [Google Scholar]
- Peruzy, M.F.; Blaiotta, G.; Aponte, M.; De Sena, M.; Murru, N. Late blowing defect in Grottone cheese: Detection of clostridia and control strategies. Ital. J. Food Saf. 2022, 11, 10162. [Google Scholar] [CrossRef] [PubMed]
- Demirbas¸, F.; Dertli, E.; Arıcı, M. Prevalence of Clostridium spp. in Kashar cheese and efficiency of Lactiplantibacillus plantarum and Lactococcus lactis subsp. lactis mix as a biocontrol agents for Clostridium spp. Food Biosci. 2022, 46, 101581. [Google Scholar] [CrossRef]
- Fernandez, B.; Vimont, A.; Desfossés-Foucault, E.; Daga, M.; Arora, G.; Fliss, I. Antifungal activity of lactic and propionic acid bacteria and their potential as protective culture in cottage cheese. Food Control 2017, 78, 350–356. [Google Scholar] [CrossRef]
- Makki, G.M.; Kozak, S.M.; Jancarelli, K.G.; Alcaine, S.D. Evaluation of the efficacy of commercial protective cultures to inhibit mold and yeast in cottage cheese. J. Dairy Sci. 2021, 104, 2709–2718. [Google Scholar] [CrossRef] [PubMed]
- Cheong, E.Y.; Sandhu, A.; Jayabalan, J.; Le, T.T.K.; Nhiep, N.T.; Ho, H.T.M.; Zwielehner, J.; Bansal, N.; Turner, M.S. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control. 2014, 46, 91–97. [Google Scholar] [CrossRef]
- Spanu, C.; Scarano, C.; Piras, F.; Spanu, V.; Pala, C.; Casti, D.; Lamon, S.; Cossu, F.; Ibba, M.; Nieddu, G.; et al. Testing commercial biopreservative against spoilage microorganisms in MAP packed Ricotta fresca cheese. Food Microbiol. 2017, 66, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Spanu, C.; Piras, F.; Mocci, A.M.; Nieddu, G.; De Santis, E.P.L.; Scarano, C. Use of Carnobacterium spp protective culture in MAP packed Ricotta fresca cheese to control Pseudomonas spp. Food Microbiol. 2018, 74, 50–56. [Google Scholar] [CrossRef]
- Shi, C.; Maktabdar, M. Lactic acid bacteria as bioprotection against spoilage molds in dairy products—A review. Front. Microbiol. 2022, 12, 2021. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, X.; Fu, H.; Wang, X.; Guo, X. Lactiplantibacillus plantarum: A comprehensive review of its antifungal and anti-mycotoxic effects. Trends Food Sci. Technol. 2023, 136, 224–238. [Google Scholar] [CrossRef]
- Efrani, A.; Shakeri, G.; Moghimani, M.; Afshari, A. Specific species of probiotic bacteria as bio-preservative cultures for control of fungal contamination and spoilage in dairy products. Int. Dairy J. 2024, 151, 105863. [Google Scholar]
Cheese Category | Cheese | Protective Culture | Target Microorganism(s) | Main Findings | Reference |
---|---|---|---|---|---|
Model | Fresh cheese | Three nisin producing Lc. lactis strains | L. monocytogenes | Numbers of L. monocytogenes were reduced in model cheese by 2 Log units during 7 days of storage | [43] |
Model | Miniature fresh cheese | Lc. lactis 16FS16-9/20234-11FS16 and Lpb. plantarum 1/14537-4A/20045) | L. monocytogenes | Reduction in the growth of L. monocytogenes by 3–4 Log units | [44] |
Model | Model cheese | Staph. equorum SE3 | L. monocytogenes | Staph. equorum inhibited the growth of L. monocytogenes (<1 Log unit) | [45] |
Model | Model cheese | Commercial protective cultures and bacterial fermentates | L. monocytogenes | The growth of L. monocytogenes was delayed by the protective cultures | [46] |
Model | Laboratory-scale cheese | Lc. lactis CSK2775 and Lpb. plantarum LMG P-26358 | L. innocua | Combination of the two cultures was suggested for industrial use | [47] |
Model | Cheddar-like | Lcb. paracasei | B. cereus, L. monocytogenes | Lcb. paracasei inhibited both pathogens | [48] |
Hard | Cheddar | Autochthonous LAB | L. monocytogenes | C. crustorum, Lpb. plantarum and Lmb. fermentum decreased the levels of L. monocytogenes in cheese | [49] |
Hard | Graviera | Enterocin-producing E. faecium | L. monocytogenes | E. faecium KE82 is suggested as a protective culture, but the indigenous bacteriocin-producing LAB might contribute to the inhibition of L. monocytogenes in Graviera | [50] |
Hard | Pecorino Sardo PDO | Lpb. plantarum (commercial) and an autochthonous LAB (Lb. delbruekii ssp. sunkii). | Protection against L. monocytogenes | Lb. delbruekii ssp. sunkii was as effective as the commercial culture for the protection against L. monocytogenes | [51] |
Semi-hard | Uncooked pressed cheese | Single or combined cultures of 18 selected bacterial strains | E. coli O26:H11 and O157:H7 | H. alvei, Lpb. plantarum and Lc. lactis reduced the growth of STEC by 3 Log units | [52] |
Semi-hard | Semi-hard cheese | Lc.lactis nisin Z producers (44SGLL3, 29FL1 and 41FL1) | L. monocytogenes and Stap. aureus | Lc. lactis 41FL1 reduced Staph.aureus counts by 1.7–3.5 Log units; no effect on L.monocytogenes was observed | [53] |
Semi-hard | Coalho | Lcb. rhamnosus EM1107 | Staph. aureus, Salmonella enteritidis, L. monocytogenes and E. coli | Lcb. rhamnosus exhibited different inhibition rates against Staph. aureus, Salmonella enteritidis, L. monocytogenes and E. coli | [54] |
Semi-hard | Coalho | Lcb. paracasei | Staph. aureus and L. monocytogenes | Lcb. paracasei delayed the growth of Staph. aureus and L. monocytogenes in Coalho cheese | [55] |
Semi-hard | Pressed uncooked cheese | Lb. reuteri INIA P57 | L. monocytogenes and E. coli O157:H7 | Reuterin production was enhanced with glycerol and resulted in the control of the pathogenic bacteria | [56] |
Semi-hard | Artisanal cheese | E. faecium CRL1879 | L. monocytogenes | E. faecium CRL1879 ensured an efficient control of L. monocytogenes for up to 30 days without altering the organoleptic properties of the artisanal cheese | [57] |
Semi-hard | St. Nectaire | Complex cheese microbial consortium | L. monocytogenes | The species composition of the microbial consortium is the most important factor for the antimicrobial activity | [58] |
Semi-hard | Minas (semi-hard) | Lvb. brevis 2-392, Lpb. plantarum 1-399 and E. faecalis (1-37, 2-49, 2-388 and 1-400) | L. monocytogenes | L. monocytogenes was inactivated (reduction by 4–5.8 Log units) during the ripening of semi-hard cheeses by the mix of LAB added | [59] |
Soft | Minas (soft) | Lvb. brevis 2-392, Lpb. plantarum 1-399 and E. faecalis (1-37, 2-49, 2-388 and 1-400) | L. monocytogenes | Selected LAB strains presented a bacteriostatic anti-listerial effect (reduction by 0.6–1.75 Log units) in Minas soft cheese | [59] |
Soft | Minas Frescal | Lpb. plantarum 49 and Lcb. paracasei 108 | L. monocytogenes | Lpb. plantarum 49 and Lcb. paracasei 108 reduced the counts of L. monocytogenes by 2.8 Log units | [60] |
Soft | Soft cheese | Lb. sakei and Lpb. plantarum | L. monocytogenes | Strains of LAB reduced the growth of L. monocytogenes by 1 Log unit in the soft cheese | [61] |
Soft | Fresh cheese | Lc. lactis (autochthonous) | L. monocytogenes | The application of Lc. lactis reduced the growth of L. monocytogenes by 1 Log unit in fresh cheese | [62] |
Soft | Fresh cheese | Autochthonous LAB | L. monocytogenes | Autochthonous LAB inhibited the growth of L. monocytogenes in the soft cheese | [63] |
Soft | Kareish | Lpb. plantarum | B. cereus | Lpb. plantarum decreased the counts of B. cereus in Kareish cheese | [64] |
Soft | Queso fresco | Lb. curvatus, Lb. sakei, P. acidilactici, and Leuc. carnosum (commercial) | L. monocytogenes | The LAB cultures did not show any inhibitory effect on L. monocytogenes | [65] |
Soft | Soft sheep milk cheese | Lpb. plantarum (commercial) | L. monocytogenes | Lpb. plantarum can control L. monocytogenes growth without affecting the characteristics of the cheese | [66] |
Soft | Torta del Casar | Lcpb. casei 116 and Lc. garvieae 151 | L. monocytogenes | Lcpb. casei 116 and Lc. garvieae 151 inhibited the growth of L. monocytogenes during the ripening of the cheese | [67] |
Soft | Soft cheese | Bif. breve and Bif. animalis | L. monocytogenes | Probiotic cultures resulted in the decrease in L. monocytogenes counts in soft cheese | [68] |
Soft | UF cheese | Lc. lactis ssp. lactis and E. durans | L. monocytogenes | E. durans and L. lactis were suggested for the control of L. monocytogenes in UF cheese | [69] |
Dutch-type | Gouda | Lpb. plantarum LMG P-26358 | L. innocua | The addition of Lpb. plantarum LMG P-26358 with a nisin producer was found to eliminate L. innocua in Gouda cheese | [70] |
White-brined | Beyaz | Lc. lactis L54 | L. monocytogenes | Lc. lactis L54 inhibited the growth of L. monocytogenes in Beyaz cheese | [71] |
White-brined | Domiati-type | Autochthonous LAB | Staph. aureus | Lcb. rahmnosus has antimicrobial activity against Staph. aureus and could be used as protective culture in soft cheese | [72] |
White-brined | Domiati-type | Lpb. plantarum | Staph. aureus | The mixed culture of Lpb. plantarum strains showed improvement of the safety and quality of Domiati-type cheese | [73] |
Pasta filata | Nite | Fresco DVS 1010, culture A, Lb. acidophilus LA145, Lcb. rhamnosus VT1 and Lcb. rhamnosus GG | Coagulase-positive staphylococci and E. coli | The best inhibitory effect for Nite cheese was observed with Fresco DVS 1010 and Lcb. rhamnosus GG | [74] |
Bacterial surface-ripened | Smear-ripened cheese | Lc. lactis DPC4275 | L. monocytogenes | The lacticin 3147 producer reduced the counts of L. monocytogenes by 3 Log units; regrowth was observed during the ripening | [75] |
Blue-veined | Gorgonzola | Autochthonous LAB | L. monocytogenes | Lc. lactis showed inhibition on the growth of L. monocytogenes at 4 °C | [76] |
Acid-coagulated | Cottage | Lc. lactis (nisin A, Z and lacticin 481 producers) | L. monocytogenes | Only weak abilities to reduce L. monocytogenes were reported from the bacteriocin-producers in Cottage cheese | [77] |
Acid-coagulated | Cottage | Lcb. rhamnosus (non-bacterio-cinogenic) | L. monocytogenes | Inhibition of L. monocytogenes was found to be caused through competitive exclusion, by depletion of manganese | [78] |
Acid-coagulated | Symbiotic cheese spread | Lb. sakei 2a and inulin | L. monocytogenes | Lb. sakei 2a has been suggested to control L. monocytogenes in the cheese spread | [79] |
Whey cheeses | Anthotyros | Crude enterocin ABP extract | L. monocytogenes | Enterocin ABP extract showed a decreasein L. monocytogenes counts, probably associated with the acidification of the cheese | [80] |
Whey cheeses | Anari | E. faecium DM 224, DM 270 and DM 33 | L. monocytogenes | E. faecium DM 33 was found to decrease L. monocytogenes counts by more than 4 Log units | [81] |
Cheese Category | Cheese | Protective Culture | Target Microorganism(s) | Main Findings | Reference |
---|---|---|---|---|---|
Model | Cheese slurries | Lc. lactis ssp. lactis 32 and encapsulated nisin-A | Cl. tyrobutyricum | Application of Lc. lactis was able to control the growth of Cl. tyrobutyricum | [87] |
Model | Model cheese | Lc. lactis ssp. lactis INIA 415 (nisin- and lacticin 481 producer) | Cl. beijerinckii INIA 63 | Bacteriocin producer Lc. lactis resulted in the prevention of late blowing in model cheese | [88] |
Model | Cheese-mimicking matrix | LAB | Fungi | The antifungal activity was found to be strain-dependent and the fermentation substrate had a strong effect | [89] |
Model | Miniature Caciotta | Lpb. plantarum, Lcb. paracasei, Lvb. brevis and Lb. sakei | Pen. chrysogenum ATCC 9179 and Asp. flavus ATCC 46283 | Single and combined adjunct cultures reduced the mould growth by more than 2 Log units after 15 and 30 days of ripening | [90] |
Model | Cheese matrix | W. confusa W5 and W8, W. paramesenteroides W9, W. cibaria W25 and Lpb. plantarum Q4C3 | Asp. niger IOC 207 and Pen. chrysogenum IOC 132 | The single LAB strains showed antifungal activities in the model cheese against both fungi targets; however, these activities were reduced when combined with a commercial culture | [91] |
Hard | Cheddar (shredded) | Autochthonous LAB | Fungi | All strains of Lpb. plantarum prolonged the shelf life of Cheddar | [92] |
Hard | Cheddar | Lb. amylovorus DSM 19280 | Pen. expansum | The inoculation of Lb. amylovorus adjunct delayed the growth of the mould on the surface | [93] |
Hard | Pecorino Siciliano | LAB | Pseudomonas spp. and Enterobacteriaceae | The levels of enterobacteria and pseudomonads were not detectable after five months of ripening | [94] |
Semi-hard | Cheddar (semi-hard) | Lvb. brevis SJC120 in whey gelatin film | Fungi | The active packaging showed antifungal activity in Cheddar | [95] |
Semi-hard | Experimental | 23 strains of Lactobacillus, Leuconostoc and Propionibacterium spp. | Pen. commune, M. racemosus, G. geotrichum, Y. lipolytica | The combination of different LAB and propionibacteria allowed the development of two antifungal combinations | [96] |
Semi-hard | Experimental | Fermentates from Lcb. rhamnosus CIRM-BIA1952, Pr. jensenii CIRM- BIA1774 and M. lanceolatus UBOCC-A-10919 | Fungi | The fermentate from Pr. jensenii CIRM-BIA1774 showed the greatest antifungal activity and most selected fermentates delayed the growth of spoilage moulds | [97] |
Soft | Fresh cheese | Autochthonous LAB | Gram-negative bacteria | C. maltaromaticum and Lcb. rhamnosus lowered psychotropic bacteria by almost 3 Log CFU/g in the soft cheese | [98] |
Soft | Fresh cheese | Autochthonous LAB | Asp. flavus, Asp. parasiticus | Lpb. plantarum PIN showed remarkable antifungal activity | [99] |
Soft | Queso fresco (soft cheese) | Lcb. rhamnosus species (commercial) | Fungi | Commercial protective cultures vary in performance against yeasts and moulds | [100] |
Soft | Soft cheese (low salt) | Lcb. rhamnosus | Aerobic spore-forming bacteria | Combination with nisin and lysozyme | [101] |
Dutch-type | Dutch-type | Lb. paracasei LPC37, Lb. acidophilus NCFM and Lcb. rhamnosus HN001 | Coliform bacteria, Enterococcus ssp., yeasts and moulds | The application of LAB protective cultures was suggested | [102] |
Dutch-type | Gouda | D. hansenii and/or P. acidilactici combined with cysteine-rich antifungal protein PgAFP | Asp. parasiticus | The combination of D. hansenii and the cysteine-rich antifungal protein PgAFP resulted in the inhibition of Asp. parasiticus | [103] |
White-brined | White-brined cheese | Lcb. rhamnosus and Lpb. plantarum (commercial) | Enterobacteriaceae and coliform bacteria | The use of Lcb. rhamnosus was recommended for white-brined cheese | [104] |
Pasta-filata | Burrata | Lcb. rhamnosus and Lpb. plantarum (commercial) | Spoilage bacteria | The combination of MAP and protective culture extended the shelf-life of Burrata cheese | [105] |
Pasta-filata | Burrata | Lpb. plantarum LPAL and Lcb. rhamnosus LRB | Staphylococci, coliforms and Pseudomonas spp. | The use of Lpb. plantarum LPAL and Lcb. rhamnosus LRB extended the shelf-life of Burrata cheese | [106] |
Pasta filata | Grottone | Lcpb. casei LC4P1 (commercial) | Cl. sporogenes | The protective culture resulted in an inhibition of the PAB starter development | [107] |
Pasta-filata | Kashar | Lpb. plantarum and Lc. lactis ssp. lactis | Clostridium spp. | The co-inoculum resulted in 1 Log unit reduction in Cl. sporogenes counts | [108] |
Acid-coagulated | Cottage | Lcb. rhamnosus, Bifid. animalis ssp. lactis | Fungi | Lcb. rhamnosus alone or in combination with Bif. animalis ssp. lactis inhibited mould growth | [109] |
Acid-coagulated | Cottage | Mix of Lacticaseibacillus spp. and Lactiplantibacillus spp., Lcb. rhamnosus | Fungi | The protective cultures were not very effective against yeast, whereas they delayed the spoilage of at least one mould strain | [110] |
Acid-coagulated | Cottage | Lpb. plantarum | Pen. commune | All Lpb. plantarum isolates were found to prevent the visible growth of Pen. commune on Cottage cheese | [111] |
Whey cheese | Ricotta fresca | Carnobacterium spp. (commercial) | Pseudomonas spp | Carnobacterium spp. inhibited the growth of Pseudomonas spp. | [112] |
Whey cheese | Ricotta fresca | E. faecium, Lpb. plantarum, Lcb. rhamnosus or Carnobacterium spp. or the fermentate MicroGARD 430 (commercial) | Pseudomonas spp. and Enterobacteriaceae | Different reduction rates were observed in the concentrations of Pseudomonas spp. and Enterobacteriaceae | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bintsis, T.; Papademas, P. The Application of Protective Cultures in Cheese: A Review. Fermentation 2024, 10, 117. https://doi.org/10.3390/fermentation10030117
Bintsis T, Papademas P. The Application of Protective Cultures in Cheese: A Review. Fermentation. 2024; 10(3):117. https://doi.org/10.3390/fermentation10030117
Chicago/Turabian StyleBintsis, Thomas, and Photis Papademas. 2024. "The Application of Protective Cultures in Cheese: A Review" Fermentation 10, no. 3: 117. https://doi.org/10.3390/fermentation10030117
APA StyleBintsis, T., & Papademas, P. (2024). The Application of Protective Cultures in Cheese: A Review. Fermentation, 10(3), 117. https://doi.org/10.3390/fermentation10030117