The Application of Protective Cultures in Cheese: A Review
Abstract
:1. Introduction
2. Antimicrobial Mechanisms
2.1. Metabolites
2.2. Bacteriocins
2.3. Ecological Competition
3. Control of Pathogens
4. Control of Spoilage Microorganisms
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kindstedt, P.S. The history of cheese. In Global Cheesemaking Technology: Cheese Quality and Characteristics; Papademas, P., Bintsis, T., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2018; pp. 3–19. [Google Scholar]
- Bintsis, T.; Papademas, P. An Overview of the Cheesemaking Process. In Global Cheesemaking Technology: Cheese Quality and Characteristics; Papademas, P., Bintsis, T., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2018; pp. 120–156. [Google Scholar]
- Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef] [PubMed]
- Bintsis, T.; Athanasoulas, A. Dairy starter cultures. In Dairy Microbiology, A Practical Approach; Papademas, P., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 114–154. [Google Scholar]
- Montel, M.-C.; Buchin, S.; Mallet, A.; Delbes-paus, C.; Vuitton, D.A.; Desmasures, N.; Berthier, F. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 2014, 177, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Quigley, L.; O’Sallivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed]
- Picon, A. Cheese microbial ecology and safety. In Global Cheesemaking Technology: Cheese Quality and Characteristics; Papademas, P., Bintsis, T., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2018; pp. 71–99. [Google Scholar]
- Coolbear, T.; Crow, V.; Harnett, J.; Harvey, S.; Holland, R.; Martley, F. Developments in cheese microbiology in New Zealand—Use of starter and non-starter lactic acid bacteria and their enzymes in determining flavour. Int. Dairy J. 2008, 18, 705–713. [Google Scholar] [CrossRef]
- Hansen, E.B. Commercial bacterial starter cultures for fermented foods of the future. Int. J. Food Microbiol. 2002, 78, 119–131. [Google Scholar] [CrossRef]
- El Soda, M.; Madkor, S.A.; Tong, P.S. Adjunct cultures: Recent developments and potential significance to the cheese industry. J. Dairy Sci. 2000, 83, 609–619. [Google Scholar] [CrossRef]
- Bassi, D.; Puglisi, E.; Cocconcelli, P. S Comparing natural and selected starter cultures in meat and cheese fermentations. Curr. Opin. Food Sci. 2015, 2, 118–122. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Mancini, L.; Fox, P.F. Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci. Technol. 2015, 45, 167–178. [Google Scholar] [CrossRef]
- Sun, L.; D’Amico, D.J. Composition, succession, and source tracking of microbial communities throughout the traditional production of a farmstead cheese. mSystems 2021, 6, e00830-21. [Google Scholar] [CrossRef]
- Irlinger, F.; Mounier, J. Microbial interactions in cheese: Implications for cheese quality and safety. Curr. Opin. Biotechnol. 2009, 20, 142–148. [Google Scholar] [CrossRef]
- Feutry, F.; Oneca, M.; Berthier, F.; Torre, P. Biodiversity and growth dynamics of lactic acid bacteria in artisanal PDO Ossau-Iraty cheeses made from raw ewe’s milk with different starters. Food Microbiol. 2012, 29, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Gatti, M. Survey on the community and dynamics of lactic acid bacteria in Grana Padano cheese. Syst. Appl. Microbiol. 2013, 36, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Giraffa, G. The microbiota of Grana Padano cheese. A review. Foods 2021, 10, 2632. [Google Scholar] [CrossRef] [PubMed]
- Dugat-Bony, E.; Garnier, L.; Denonfoux, J.; Ferreira, S.; Sarthou, A.S.; Bonnarme, P.; Irlinger, F. Highlighting the microbial diversity of 12 French cheese varieties. Int. J. Food Microbiol. 2016, 238, 265–273. [Google Scholar] [CrossRef]
- Bourdichon, F.; Arias, E.; Babuchowski, A.; Bückle, A.; Bello, F.D.; Dubois, A.; Fontana, A.; Fritz, D.; Kemperman, R.; Laulund, S.; et al. The forgotten role of food cultures. FEMS Microbiol. Lett. 2021, 368, fnab085. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.P.; Stanton, C.; Hill, C.; Fitzgerald, G.F.; Coffey, A. Novel cultures for cheese improvement. Trends Food Sci. Technol. 2000, 11, 96–104. [Google Scholar] [CrossRef]
- Settani, L.; Moschetti, G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef]
- Chen, H.; Yan, X.; Du, G.; Guo, Q.; Shi, Y.; Chang, J.; Wang, X.; Yuan, Y.; Yue, T. Recent developments in antifungal lactic acid bacteria: Application, screening methods, separation, purification of antifungal compounds and antifungal mechanisms. Crit. Rev. Food Sci. Nutr. 2023, 63, 2544–2558. [Google Scholar] [CrossRef]
- Moula Ali, A.Μ.; Sant’Ana, A.S.; Bavisetty, S.C.B. Sustainable preservation of cheese: Advanced technologies, physicochemical properties and sensory attributes. Trends Food Sci. Technol. 2022, 129, 306–326. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Geisen, R.; Schillinger, U. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 1995, 24, 343–362. [Google Scholar] [CrossRef]
- Souza, L.V.; Martins, E.; Moreira, I.M.F.B.; de Carvalho, A.F. Strategies for the Development of Bioprotective Cultures in Food Preservation. Int. J. Microbiol. 2022, 2022, 6264170. [Google Scholar] [CrossRef] [PubMed]
- Devlieghere, F.; Vermeiren, L.; and Debevere, J. New preservation technologies: Possibilities and limitations. Int. Dairy J. 2004, 14, 273–285. [Google Scholar] [CrossRef]
- Chen, H.; Hoover, D.G. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf. 2003, 2, 82–100. [Google Scholar]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Grattepanche, F.; Miescher-Schwenninger, S.; Meile, L.; Lacroix, C. Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Sci. Technol. 2008, 88, 421–444. [Google Scholar] [CrossRef]
- Guinane, C.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Microbial solutions to microbial problems; lactococcal bacteriocins for the control of undesirable biota in food. J. Appl. Microbiol. 2005, 98, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- González-González, F.; Delgado, S.; Ruiz, L.; Margolles, A.; Ruas-Madiedo, P. Functional bacterial cultures for dairy applications: Towards improving safety, quality, nutritional and health benefit aspects. J. Appl. Microbiol. 2022, 133, 212–229. [Google Scholar] [CrossRef]
- del Carmen Rangel-Ortega, S.; Campos-Múzquiz, L.G.; Charles-Rodriguez, A.V.; Chávez-Gonzaléz, M.L.; Palomo-Ligas, L.; Contreras-Esquivel, J.C.; Solanilla-Duque, J.F.; Flores-Gallegos, A.C.; Rodríguez-Herrera, R. Biological control of pathogens in artisanal cheeses. Int. Dairy J. 2023, 140, 105612. [Google Scholar] [CrossRef]
- Ahansaz, N.; Tarrah, A.; Pakroo, S.; Corich, V.; Giacomini, A. Lactic Acid Bacteria in Dairy Foods: Prime Sources of Antimicrobial Compounds. Fermentation 2023, 9, 964. [Google Scholar] [CrossRef]
- Farid, N.; Waheed, A.; Motwani, S. Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon 2023, 9, e17021. [Google Scholar] [CrossRef]
- Favaro, L.; Penna, A.L.B.; Todorov, S.D. Bacteriocinogenic LAB from cheeses—Application in biopreservation? Trends Food Sci. Technol. 2015, 41, 37–48. [Google Scholar] [CrossRef]
- Garcia, P.; Rodríguez, L.; Rodríguez, A.; Martínez, B. Food biopreservation: Promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci. Technol. 2010, 21, 373–382. [Google Scholar] [CrossRef]
- Rendueles, C.; Duarte, A.C.; Escobedo, S.; Fernández, L.; Rodríguez, A.; García, P.; Martnez, B. Combined use of bacteriocins and bacteriophages as food biopreservatives. A review. Int. J. Food Microbiol. 2022, 368, 109611. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Young, N.W.G.; O’Sullivan, G.R. The influence of ingredients on product stability and shelf life. In Food and Beverage Stability and Shelf Life; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2011; pp. 132–183. [Google Scholar]
- Mayo, B.; Rodríguez, J.; Vázquez, L.; Flórez, A.B. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods 2021, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, X.; Zhang, X.; Wu, H.; Zou, Y.; Li, P.; Sun, C.; Xu, W.; Liu, F.; Wang, D. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. J. Ind. Microbiol. Biotechnol. 2018, 45, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Siedler, S.; Rau, M.H.; Bidstrup, S.; Vento, J.M.; Aunsbjerg, S.D.; Bosma, E.F.; McNair, L.M.; Beisel, C.L.; Neves, A.R. Competitive Exclusion Is a Major Bioprotective Mechanism of Lactobacilli against Fungal Spoilage in Fermented Milk Products. Appl. Environ. Microbiol. 2020, 86, e02312-19. [Google Scholar] [CrossRef]
- Kondrotiene, K.; Kasnauskyte, N.; Serniene, L.; Gölz, G.; Alter, T.; Kaskoniene, V.; Maruska, A.S.; Malakauskas, M. Characterization and application of newly isolated nisin producing Lactococcus lactis strains for control of Listeria monocytogenes growth in fresh cheese. LWT—Food Sci. Technol. 2018, 87, 507–514. [Google Scholar] [CrossRef]
- Pisano, M.B.; Fadda, M.E.; Viale, S.; Deplano, M.; Mereu, F.; Blaži’c, M.; Cosentino, S. Inhibitory effect of Lactiplantibacillus plantarum and Lactococcus lactis autochtonous strains against Listeria monocytogenes in a laboratory cheese model. Foods 2022, 11, 715. [Google Scholar] [CrossRef]
- Bockelman, W.; Koslowsky, M.; Georges, S.; Scherer, S.; Franz, C.M.A.P.; Heller, K.J. Growth inhibition of Listeria monocytogenes by bacteriocin-producing Staphylococcus equorum SE3 in cheese models. Food Control 2017, 71, 50–56. [Google Scholar] [CrossRef]
- Engstrom, S.K.; Anderson, K.M.; Glass, K.A. Effect of commercial protective cultures and bacterial fermentates on Listeria monocytogenes growth in a refrigerated high-moisture model cheese. J. Food Prot. 2021, 84, 772–780. [Google Scholar] [CrossRef]
- Mills, S.; Griffin, C.; O’Connor, P.M.; Serrano, L.M.; Meijer, W.C.; Hill, C.; Ross, R.P. A multibacteriocin cheese starter system, comprising nisin and lacticin 3147 in Lactococcus lactis, in combination with plantaricin from Lactobacillus plantarum. Appl. Environ. Microbiol. 2017, 83, e00799-17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jiang, X.; Li, L.; Liu, D.; Zhao, F.; Liu, Y.; Wu, S.; Lü, X.; Wu, G.; Yi, Y. Bacteriocinogenic Lacticaseibacillus paracasei strains from Inner Mongolian fermented milk efficiently control pathogenic bacteria in model cheddar-like cheese. Food Biosci. 2024, 57, 103516. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Zhang, T.; Liu, Y.; Lü, X.; Kuipers, O.P.; Yi, Y. (Meta)genomics-assisted screening of novel antibacterial lactic acid bacteria strains from traditional fermented milk from Western China and their bioprotective effects on cheese. LWT 2023, 175, 114507. [Google Scholar] [CrossRef]
- Giannou, E.; Kakouri, A.; Matijasic, B.B.; Rogelj, I.; Samelis, J. Fate of Listeria monocytogenes on fully ripened Greek Graviera cheese stored at 4, 12, or 25 degrees C in air or vacuum packages: In situ PCR detection of a cocktail of bacteriocins potentially contributing to pathogen inhibition. J. Food Prot. 2009, 72, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Meloni, M.P.; Piras, F.; Siddi, G.; Migoni, M.; Cabras, D.; Cuccu, M.; Nieddu, G.; McAuliffe, O.; De Santis, E.P.L.; Scarano, C. Effect of Commercial and Autochthonous Bioprotective Cultures for Controlling Listeria monocytogenes Contamination of Pecorino Sardo Dolce PDO Cheese. Foods 2023, 12, 3797. [Google Scholar] [CrossRef] [PubMed]
- Callon, C.; Arliguie, C.; Montel, M.C. Control of Shigatoxin-producing Escherichia coli in cheese by dairy bacterial strains. Food Microbiol. 2016, 53, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Bello, B.D.; Zeppa, G.; Bianchi, D.M.; Decastelli, L.; Traversa, A.; Gallina, S.; Coisson, J.D.; Locatelli, M.; Travaglia, F.; Cocolin, L. Effect of nisin-producing Lactococcus lactis starter cultures on the inhibition of two pathogens in ripened cheeses. Int. J. Dairy Technol. 2013, 66, 468–477. [Google Scholar] [CrossRef]
- Rolim, F.R.L.; dos Santos, K.M.O.; de Barcelos, S.C.; do Egito, A.S.; Ribeiro, T.S.; da Conceição, M.L.; Magnani, M.; de Oliveira, M.E.G.; do Egypto, R.D.C.R. Survival of Lactobacillus rhamnosus EM1107 in simulated gastrointestinal conditions and its inhibitory effect against pathogenic bacteria in semi-hard goat cheese. LWT 2015, 63, 807–813. [Google Scholar] [CrossRef]
- de Oliveira, M.E.G.; Garcia, E.F.; de Oliveira, C.E.V.; Gomes, A.M.P.; Pintado, M.M.E.; Madureira, A.R.M.F.; da Conceição, M.L.; do EgyptoQueiroga, R.D.C.R.; de Souza, E.L. Addition of probiotic bacteria in a semi-hard goat cheese (coalho): Survival to simulated gastrointestinal conditions and inhibitory effect against pathogenic bacteria. Food Res. Int. 2014, 64, 241–247. [Google Scholar] [CrossRef]
- Langa, S.; Martín-Cabrejas, I.; Montiel, R.; Peirotén, Á.; Arqués, J.L.; Medina, M. Protective effect of reuterin-producing Lactobacillus reuteri against Listeria monocytogenes and Escherichia coli O157:H7 in semi-hard cheese. Food Control 2018, 84, 284–289. [Google Scholar] [CrossRef]
- Suárez, N.; Weckx, S.; Minahk, C.; Hebert, E.M.; Saavedra, L. Metagenomics-based approach for studying and selecting bioprotective strains from the bacterial community of artisanal cheeses. Int. J. Food Microbiol. 2020, 16, 108894. [Google Scholar] [CrossRef] [PubMed]
- Callon, C.; Retureau, E.; Didienne, R.; Montel, M.-C. Microbial biodiversity in cheese consortia and comparative Listeria growth on surfaces of uncooked pressed cheeses. Int. J. Food Microbiol. 2014, 174, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Campagnollo, F.B.; Margalho, L.P.; Kamimura, B.A.; Feliciano, M.D.; Freire, L.; Lopes, L.S.; Alvarenga, V.O.; Cadavez, V.A.P.; Gonzales-Barron, U.; Schaffner, D.W.; et al. Selection of indigenous lactic acid bacteria presenting anti-listerial activity, and their role in reducing the maturation period and assuring the safety of traditional Brazilian cheeses. Food Microbiol. 2018, 73, 288–297. [Google Scholar] [CrossRef]
- da Costa, W.K.A.; de Souza, G.T.; Brandão, L.R.; de Lima, R.C.; Garcia, E.F.; dos Santos Lima, M.; de Souza, E.L.; Saarela, M.; Magnani, M. Exploiting antagonistic activity of fruit-derived Lactobacillus to control pathogenic bacteria in fresh cheese and chicken meat. Food Res. Int. 2018, 108, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, F.; Giarratana, F.; Caridi, A.; Sidari, R.; De Bruno, A.; Giuffrida, A. Lactic acid bacteria isolated from traditional Italian dairy products: Activity against Listeria monocytogenes and modelling of microbial competition in soft cheese. LWT 2021, 137, 110446. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Kim, G.-B. Inhibition of Listeria monocytogenes in Fresh Cheese Using a Bacteriocin-Producing Lactococcus lactis CAU2013 Strain. Food Sci. Anim. Resour. 2022, 42, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.C.; Silva, C.C.G.; Ribeiro, S.C.; Dapkevicius, M.L.N.E.; Rosa, H.J.D. Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria. Int. J. Food Microbiol. 2014, 191, 53–59. [Google Scholar] [CrossRef]
- Ahmed, W.I.; Kamar, A.M.; Hamad, G.M.; Mehany, T.; El-Desoki, W.I.; Ali, E.; Simal-Gandara, J. Biocontrol of Bacillus cereus by Lactobacillus plantarum in Kareish cheese and yogurt. LWT 2023, 183, 114946. [Google Scholar] [CrossRef]
- Lawton, M.R.; Jencarelli, K.G.; Kozak, S.M.; Alcaine, S.D. Evaluation of commercial meat cultures to inhibit Listeria monocytogenes in a fresh cheese laboratory model. J. Dairy Sci. 2020, 103, 1269–1275. [Google Scholar] [CrossRef]
- Sanna, R.; Piras, F.; Siddi, G.; Meloni, M.P.; Demontis, M.; Spanu, V.; Nieddu, G.; Cuccu, M.; De Santis, E.P.L.; Scarano, C. Use of commercial protective cultures in portioned sheep milk cheeses to control Listeria monocytogenes. Ital. J. Food Saf. 2023, 12, 10484. [Google Scholar] [CrossRef] [PubMed]
- Martin, I.; Rodríguez, A.; Córdoba, J.J. Application of selected lactic-acid bacteria to control Listeria monocytogenes in soft-ripened “Torta del Casar” cheese. LWT—Food Sci. Technol. 2022, 168, 113873. [Google Scholar] [CrossRef]
- Ewida, R.M.; Hasan, W.S.; Elfaruk, M.S.; Alayouni, R.R.; Hammam, A.R.A.; Kamel, D.G. Occurrence of Listeria spp. in soft cheese and ice cream: Effect of probiotic Bifidobacterium spp. on survival of Listeria monocytogenes in soft cheese. Foods 2022, 11, 3443. [Google Scholar] [CrossRef]
- Ivanovic, M.; Mirkovic, N.; Mirkovic, M.; Miocinovic, J.; Radulovic, A.; Solevic Knudsen, T.; Radulovic, Z. Autochthonous Enterococcus durans PFMI565 and Lactococcus lactis subsp. lactis BGBU1–4 in Bio-Control of Listeria monocytogenes in Ultrafiltered Cheese. Foods 2021, 10, 1448. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; Serrano, L.M.; Griffin, C.; O’Connor, P.M.; Schaad, G.; Bruining, C.; Hill, C.; Ross, R.P.; Meijer, W.C. Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microb. Cell Fact. 2011, 10, S7. [Google Scholar] [CrossRef] [PubMed]
- Meral Aktas, H.; Erdogan, A.; Cetin, B. Bacteriocin characterization of autochtonous Lactococcus lactis L54 and its application as starter culture for Beyaz cheese. Food Biosci. 2023, 53, 102739. [Google Scholar] [CrossRef]
- Imrahim, A.; Awad, S. Selection and identification of protective culture for controlling Staphylococcus aureus in fresh Domiati like cheese. J. Food Saf. 2017, 38, e12418. [Google Scholar] [CrossRef]
- Khalil, N.; Kheadr, E.; El-Ziney, M.; Dabour, N. Lactobacillus plantarum protective cultures to improve safety and quality of wheyless Domiati-like cheese. J. Food Process. Preserv. 2022, 46, e16416. [Google Scholar] [CrossRef]
- Medvedova, A.; Konuchova, M.; Kvocikova, K.; Hatalova, I.; Valik, L. effect of lactic acid bacteria addition on the microbiological safety of pasta-filata types of cheeses. Front. Microbiol. 2020, 11, 612528. [Google Scholar] [CrossRef]
- O’Sullivan, L.; O’Connor, E.; Ross, R.; Hill, C. Evaluation of live-culture producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. J. Appl. Microbiol. 2006, 100, 135–143. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Battelli, G.; Brasca, M. Can lactic acid bacteria be an efficient tool for controlling Listeria monocytogenes contamination on cheese surface? The case of Gorgonzola cheese. Food Control. 2019, 96, 499–507. [Google Scholar] [CrossRef]
- Dal Bello, B.; Cocolin, L.; Zeppa, G.; Field, D.; Cotter, P.D.; Hill, C. Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. Int. J. Food Microbiol. 2012, 153, 58–65. [Google Scholar] [CrossRef] [PubMed]
- van Gijtenbeek, L.A.; Singer, Q.; Steffensen, L.E.; Neuens, S.; Guldager, H.S.; Bidstrup, S.; Høgholm, T.; Madsen, M.G.; Glass, K.; Siedler, S. Lacticaseibacillus rhamnosus impedes growth of Listeria spp. in Cottage cheese through manganese limitation. Foods 2021, 10, 1353. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Mun, D.; Ryu, S.; Kwak, M.J.; Kim, B.K.; Park, D.J.; Jeong, D.-Y.; Park, W.; Oh, S.; Kim, Y. Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subsp sakei 2a in a potentially synbiotic cheese spread. Food Microbiol. 2015, 48, 143–152. [Google Scholar]
- Sameli, N.; Samelis, J. Growth and biocontrol of Listeria monocytogenes in Greek Anthotyros whey cheese without or with a crude enterocin ABP extract: Interactive effects of the native spoilage microbiota during vacuum-packed storage at 4 °C. Foods 2022, 11, 334. [Google Scholar] [CrossRef] [PubMed]
- Aspri, M.; O’Connor, P.M.; Field, D.; Cotter, P.D.; Ross, P.; Hill, C.; Papademas, P. Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. Int. Dairy J. 2017, 73, 1–9. [Google Scholar] [CrossRef]
- Afzal, M.I.; Ariceaga, C.C.G.; Lhomme, E.; Ali, N.K.; Payot, S.; Burgain, J.; Gaiani, C.; Borges, F.; Revol-Junelles, A.M.; Delaunay, S.; et al. Characterization of Carnobacterium maltaromaticum LMA 28 for its positive technological role in soft cheese making. Food Microbiol. 2013, 36, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Morandi, S.; Silvetti, T.; Vezzini, V.; Morozzo, E.; Brasca, M. How we can improve the antimicrobial performances of lactic acid bacteria? A new strategy to control Listeria monocytogenes in Gorgonzola cheese. Food Microbiol. 2020, 90, 103488. [Google Scholar] [CrossRef]
- Gensler, C.A.; Bown, S.R.B.; Aljasir, S.F.; D’Amico, D.J. Compatibility of Commercially Produced Protective Cultures with Common Cheesemaking Cultures and Their Antagonistic Effect on Foodborne Pathogens. J. Food Prot. 2020, 83, 1010–1019. [Google Scholar] [CrossRef]
- Contessa, C.R.; De Souza, N.B.; Batt, G.; De Moura, C.M.; Silveira, G.; Moraes, C.C. Development of active packaging based on agar-agar incorporated with bacteriocin of Lactobacillus sakei. Biomolecules 2021, 11, 1869. [Google Scholar] [CrossRef]
- Renes, E.; Diezhandino, I.; Fernaandez, D.; Ferrazza, R.E.; Tornandijo, M.E.; Fresno, J.M. Effect of autochthonous starter cultures on the biogenic amine content of ewe’s milk cheese throughout ripening. Food Microbiol. 2014, 44, 271–277. [Google Scholar] [CrossRef]
- Hassan, H.; St-Gelais, D.; Gomaa, A.; Fliss, I. Impact of nisin and nisin-producing Lactococcus lactis ssp. lactis on Clostridium tyrobutyricum and bacterial ecosystem of cheese matrices. Foods 2021, 10, 898. [Google Scholar] [CrossRef] [PubMed]
- Garde, S.; Avila, M.; Arias, R.; Gaya, P.; Nunez, M. Outgrowth inhibition of Clostridium beijerinckii spores by a bacteriocin-producing lactic culture in ovine milk cheese. Int. J. Food Microbiol. 2011, 150, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Garnier, L.; Salas, M.L.; Pinon, N.; Wiernasz, N.; Pawtowski, A.; Coton, E.; Mounier, J.; Valence, F. High-throughput method for antifungal activity screening in a cheese-mimicking model. J. Dairy Sci. 2018, 101, 4971–4976. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, S.; Viale, S.; Deplano, M.; Fadda, M.E.; Pisano, M.B. Application of autochthonous Lactobacillus strains as biopreservatives to control fungal spoilage in Caciotta cheese. BioMed Res. Int. 2018, 3915615. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.V.; da Silva, R.R.; Falqueto, A.; Fusieger, A.; Martins, E.; Caggia, C.; Randazzo, C.L.; de Carvalho, A.F. Evaluation of antifungal activity of lactic acid bacteria against fungi in simulated cheese matrix. LWT—Food Sci. Technol. 2023, 182, 114773. [Google Scholar] [CrossRef]
- Prabawati, E.K.; Turner, M.S.; Bansal, N. Lactiplantibacillus plantarum as an adjunct culture exhibits antifungal activity in shredded Cheddar cheese. Food Control 2023, 144, 109330. [Google Scholar] [CrossRef]
- Lynch, K.M.; Pawlowska, A.M.; Brosnan, B.; Coffey, A.; Zannini, E.; Furey, A.; McSweeney, P.L.; Waters, D.M.; Arendt, E.K. Application of Lactobacillus amylovorus as an antifungal adjunct to extend the shelf-life of Cheddar cheese. Int. Dairy J. 2014, 34, 167–173. [Google Scholar] [CrossRef]
- Settanni, L.; Gaglio, R.; Guarcello, R.; Francesca, N.; Carpino, S.; Sannino, C.; Todaro, M. Selected lactic acid bacteria as a hurdle to the microbial spoilage of cheese: Application on a traditional raw ewes’ milk cheese. Int. Dairy J. 2013, 32, 126–132. [Google Scholar] [CrossRef]
- Silva, S.P.M.; Teixeira, J.A.; Silva, C.C.G. Prevention of fungal contamination in semi-hard cheeses by whey-gelatin film incorporated with Levilactobacillus brevis SJC120. Foods 2023, 12, 1396. [Google Scholar] [CrossRef]
- Leyva Salas, M.; Thierry, A.; Lemaitre, M.; Garric, G.; Harel-Oger, M.; Chatel, M.; Le, S.; Mounier, J.; Valence, F.; Coton, E. Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Front. Microbiol. 2018, 9, 1787. [Google Scholar] [CrossRef] [PubMed]
- Garnier, L.; Mounier, J.; Lê, S.; Pawtowski, A.; Pinon, N.; Camier, B.; Chatel, M.; Garric, G.; Thierry, A.; Coton, E.; et al. Development of antifungal ingredients for dairy products: From in vitro screening to pilot scale application. Food Microbiol. 2019, 81, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Bassi, D.; Gazzola, S.; Sattin, E.; Dal Bello, F.; Simionati, B.; Cocconcelli, P.S. Lactic Acid Bacteria Adjunct Cultures Exert a Mitigation Effect against Spoilage Microbiota in Fresh Cheese. Microorganisms 2020, 8, 1199. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, H.; Eskandari, M.H.; Moosavi-Nasab, M.; Shekarforoush, S.S. Application of non-starter lactic acid bacteria as biopreservative agents to control fungal spoilage of fresh cheese. Int. Dairy J. 2016, 56, 87–91. [Google Scholar] [CrossRef]
- Makki, G.M.; Kozak, S.M.; Jencarelli, K.G.; Alcaine, S.D. Evaluation of the efficacy of commercial protective cultures against mold and yeast in Queso fresco. J. Dairy Sci. 2020, 103, 9946–9957. [Google Scholar] [CrossRef] [PubMed]
- Shaala, E.K.A.; Awad, S.A.; Nazem, A.M. Application of Natural Antimicrobial Additives and Protective Culture to Control Aerobic Spore Forming Bacteria in Low Salt Soft Cheese. World Vet. J. 2020, 10, 609–616. [Google Scholar] [CrossRef]
- Aljewicz, M.; Cichosz, G. Protective effects of Lactobacillus cultures in Dutch-type cheese-like products. LWT—Food Sci. Technol. 2015, 63, 52–56. [Google Scholar] [CrossRef]
- Delgado, J.; Rodríguez, A.; García, A.; Núnez, F.; Asensio, M.A. Inhibitory effect of PgAFP and protective cultures on Aspergillus parasiticus growth and aflatoxins production on dry-fermented sausage and cheese. Microorganisms 2018, 6, 69. [Google Scholar] [CrossRef]
- Eren-Vapur, U.; Cinar, A.; Altuntas, S. Protective culture: Is it a solution to improve quality of culture-free white cheese? J. Food Proc. Preserv. 2022, 46, e16432. [Google Scholar] [CrossRef]
- Natrella, G.; Gambacorta, G.; Faccia, M. Application of Commercial Biopreservation Starter in Combination with MAP for Shelf-Life Extension of Burrata Cheese. Foods 2023, 12, 1867. [Google Scholar] [CrossRef]
- Minevini, F.; Conte, A.; Del Nobile, M.A.; Gobbetti, M.; De Angelis, M. Dietary Fibers and Protective Lactobacilli Drive Burrata Cheese Microbiome. Appl. Environ. Microbiol. 2017, 83, e01494-17. [Google Scholar]
- Peruzy, M.F.; Blaiotta, G.; Aponte, M.; De Sena, M.; Murru, N. Late blowing defect in Grottone cheese: Detection of clostridia and control strategies. Ital. J. Food Saf. 2022, 11, 10162. [Google Scholar] [CrossRef] [PubMed]
- Demirbas¸, F.; Dertli, E.; Arıcı, M. Prevalence of Clostridium spp. in Kashar cheese and efficiency of Lactiplantibacillus plantarum and Lactococcus lactis subsp. lactis mix as a biocontrol agents for Clostridium spp. Food Biosci. 2022, 46, 101581. [Google Scholar] [CrossRef]
- Fernandez, B.; Vimont, A.; Desfossés-Foucault, E.; Daga, M.; Arora, G.; Fliss, I. Antifungal activity of lactic and propionic acid bacteria and their potential as protective culture in cottage cheese. Food Control 2017, 78, 350–356. [Google Scholar] [CrossRef]
- Makki, G.M.; Kozak, S.M.; Jancarelli, K.G.; Alcaine, S.D. Evaluation of the efficacy of commercial protective cultures to inhibit mold and yeast in cottage cheese. J. Dairy Sci. 2021, 104, 2709–2718. [Google Scholar] [CrossRef] [PubMed]
- Cheong, E.Y.; Sandhu, A.; Jayabalan, J.; Le, T.T.K.; Nhiep, N.T.; Ho, H.T.M.; Zwielehner, J.; Bansal, N.; Turner, M.S. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control. 2014, 46, 91–97. [Google Scholar] [CrossRef]
- Spanu, C.; Scarano, C.; Piras, F.; Spanu, V.; Pala, C.; Casti, D.; Lamon, S.; Cossu, F.; Ibba, M.; Nieddu, G.; et al. Testing commercial biopreservative against spoilage microorganisms in MAP packed Ricotta fresca cheese. Food Microbiol. 2017, 66, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Spanu, C.; Piras, F.; Mocci, A.M.; Nieddu, G.; De Santis, E.P.L.; Scarano, C. Use of Carnobacterium spp protective culture in MAP packed Ricotta fresca cheese to control Pseudomonas spp. Food Microbiol. 2018, 74, 50–56. [Google Scholar] [CrossRef]
- Shi, C.; Maktabdar, M. Lactic acid bacteria as bioprotection against spoilage molds in dairy products—A review. Front. Microbiol. 2022, 12, 2021. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, X.; Fu, H.; Wang, X.; Guo, X. Lactiplantibacillus plantarum: A comprehensive review of its antifungal and anti-mycotoxic effects. Trends Food Sci. Technol. 2023, 136, 224–238. [Google Scholar] [CrossRef]
- Efrani, A.; Shakeri, G.; Moghimani, M.; Afshari, A. Specific species of probiotic bacteria as bio-preservative cultures for control of fungal contamination and spoilage in dairy products. Int. Dairy J. 2024, 151, 105863. [Google Scholar]
Cheese Category | Cheese | Protective Culture | Target Microorganism(s) | Main Findings | Reference |
---|---|---|---|---|---|
Model | Fresh cheese | Three nisin producing Lc. lactis strains | L. monocytogenes | Numbers of L. monocytogenes were reduced in model cheese by 2 Log units during 7 days of storage | [43] |
Model | Miniature fresh cheese | Lc. lactis 16FS16-9/20234-11FS16 and Lpb. plantarum 1/14537-4A/20045) | L. monocytogenes | Reduction in the growth of L. monocytogenes by 3–4 Log units | [44] |
Model | Model cheese | Staph. equorum SE3 | L. monocytogenes | Staph. equorum inhibited the growth of L. monocytogenes (<1 Log unit) | [45] |
Model | Model cheese | Commercial protective cultures and bacterial fermentates | L. monocytogenes | The growth of L. monocytogenes was delayed by the protective cultures | [46] |
Model | Laboratory-scale cheese | Lc. lactis CSK2775 and Lpb. plantarum LMG P-26358 | L. innocua | Combination of the two cultures was suggested for industrial use | [47] |
Model | Cheddar-like | Lcb. paracasei | B. cereus, L. monocytogenes | Lcb. paracasei inhibited both pathogens | [48] |
Hard | Cheddar | Autochthonous LAB | L. monocytogenes | C. crustorum, Lpb. plantarum and Lmb. fermentum decreased the levels of L. monocytogenes in cheese | [49] |
Hard | Graviera | Enterocin-producing E. faecium | L. monocytogenes | E. faecium KE82 is suggested as a protective culture, but the indigenous bacteriocin-producing LAB might contribute to the inhibition of L. monocytogenes in Graviera | [50] |
Hard | Pecorino Sardo PDO | Lpb. plantarum (commercial) and an autochthonous LAB (Lb. delbruekii ssp. sunkii). | Protection against L. monocytogenes | Lb. delbruekii ssp. sunkii was as effective as the commercial culture for the protection against L. monocytogenes | [51] |
Semi-hard | Uncooked pressed cheese | Single or combined cultures of 18 selected bacterial strains | E. coli O26:H11 and O157:H7 | H. alvei, Lpb. plantarum and Lc. lactis reduced the growth of STEC by 3 Log units | [52] |
Semi-hard | Semi-hard cheese | Lc.lactis nisin Z producers (44SGLL3, 29FL1 and 41FL1) | L. monocytogenes and Stap. aureus | Lc. lactis 41FL1 reduced Staph.aureus counts by 1.7–3.5 Log units; no effect on L.monocytogenes was observed | [53] |
Semi-hard | Coalho | Lcb. rhamnosus EM1107 | Staph. aureus, Salmonella enteritidis, L. monocytogenes and E. coli | Lcb. rhamnosus exhibited different inhibition rates against Staph. aureus, Salmonella enteritidis, L. monocytogenes and E. coli | [54] |
Semi-hard | Coalho | Lcb. paracasei | Staph. aureus and L. monocytogenes | Lcb. paracasei delayed the growth of Staph. aureus and L. monocytogenes in Coalho cheese | [55] |
Semi-hard | Pressed uncooked cheese | Lb. reuteri INIA P57 | L. monocytogenes and E. coli O157:H7 | Reuterin production was enhanced with glycerol and resulted in the control of the pathogenic bacteria | [56] |
Semi-hard | Artisanal cheese | E. faecium CRL1879 | L. monocytogenes | E. faecium CRL1879 ensured an efficient control of L. monocytogenes for up to 30 days without altering the organoleptic properties of the artisanal cheese | [57] |
Semi-hard | St. Nectaire | Complex cheese microbial consortium | L. monocytogenes | The species composition of the microbial consortium is the most important factor for the antimicrobial activity | [58] |
Semi-hard | Minas (semi-hard) | Lvb. brevis 2-392, Lpb. plantarum 1-399 and E. faecalis (1-37, 2-49, 2-388 and 1-400) | L. monocytogenes | L. monocytogenes was inactivated (reduction by 4–5.8 Log units) during the ripening of semi-hard cheeses by the mix of LAB added | [59] |
Soft | Minas (soft) | Lvb. brevis 2-392, Lpb. plantarum 1-399 and E. faecalis (1-37, 2-49, 2-388 and 1-400) | L. monocytogenes | Selected LAB strains presented a bacteriostatic anti-listerial effect (reduction by 0.6–1.75 Log units) in Minas soft cheese | [59] |
Soft | Minas Frescal | Lpb. plantarum 49 and Lcb. paracasei 108 | L. monocytogenes | Lpb. plantarum 49 and Lcb. paracasei 108 reduced the counts of L. monocytogenes by 2.8 Log units | [60] |
Soft | Soft cheese | Lb. sakei and Lpb. plantarum | L. monocytogenes | Strains of LAB reduced the growth of L. monocytogenes by 1 Log unit in the soft cheese | [61] |
Soft | Fresh cheese | Lc. lactis (autochthonous) | L. monocytogenes | The application of Lc. lactis reduced the growth of L. monocytogenes by 1 Log unit in fresh cheese | [62] |
Soft | Fresh cheese | Autochthonous LAB | L. monocytogenes | Autochthonous LAB inhibited the growth of L. monocytogenes in the soft cheese | [63] |
Soft | Kareish | Lpb. plantarum | B. cereus | Lpb. plantarum decreased the counts of B. cereus in Kareish cheese | [64] |
Soft | Queso fresco | Lb. curvatus, Lb. sakei, P. acidilactici, and Leuc. carnosum (commercial) | L. monocytogenes | The LAB cultures did not show any inhibitory effect on L. monocytogenes | [65] |
Soft | Soft sheep milk cheese | Lpb. plantarum (commercial) | L. monocytogenes | Lpb. plantarum can control L. monocytogenes growth without affecting the characteristics of the cheese | [66] |
Soft | Torta del Casar | Lcpb. casei 116 and Lc. garvieae 151 | L. monocytogenes | Lcpb. casei 116 and Lc. garvieae 151 inhibited the growth of L. monocytogenes during the ripening of the cheese | [67] |
Soft | Soft cheese | Bif. breve and Bif. animalis | L. monocytogenes | Probiotic cultures resulted in the decrease in L. monocytogenes counts in soft cheese | [68] |
Soft | UF cheese | Lc. lactis ssp. lactis and E. durans | L. monocytogenes | E. durans and L. lactis were suggested for the control of L. monocytogenes in UF cheese | [69] |
Dutch-type | Gouda | Lpb. plantarum LMG P-26358 | L. innocua | The addition of Lpb. plantarum LMG P-26358 with a nisin producer was found to eliminate L. innocua in Gouda cheese | [70] |
White-brined | Beyaz | Lc. lactis L54 | L. monocytogenes | Lc. lactis L54 inhibited the growth of L. monocytogenes in Beyaz cheese | [71] |
White-brined | Domiati-type | Autochthonous LAB | Staph. aureus | Lcb. rahmnosus has antimicrobial activity against Staph. aureus and could be used as protective culture in soft cheese | [72] |
White-brined | Domiati-type | Lpb. plantarum | Staph. aureus | The mixed culture of Lpb. plantarum strains showed improvement of the safety and quality of Domiati-type cheese | [73] |
Pasta filata | Nite | Fresco DVS 1010, culture A, Lb. acidophilus LA145, Lcb. rhamnosus VT1 and Lcb. rhamnosus GG | Coagulase-positive staphylococci and E. coli | The best inhibitory effect for Nite cheese was observed with Fresco DVS 1010 and Lcb. rhamnosus GG | [74] |
Bacterial surface-ripened | Smear-ripened cheese | Lc. lactis DPC4275 | L. monocytogenes | The lacticin 3147 producer reduced the counts of L. monocytogenes by 3 Log units; regrowth was observed during the ripening | [75] |
Blue-veined | Gorgonzola | Autochthonous LAB | L. monocytogenes | Lc. lactis showed inhibition on the growth of L. monocytogenes at 4 °C | [76] |
Acid-coagulated | Cottage | Lc. lactis (nisin A, Z and lacticin 481 producers) | L. monocytogenes | Only weak abilities to reduce L. monocytogenes were reported from the bacteriocin-producers in Cottage cheese | [77] |
Acid-coagulated | Cottage | Lcb. rhamnosus (non-bacterio-cinogenic) | L. monocytogenes | Inhibition of L. monocytogenes was found to be caused through competitive exclusion, by depletion of manganese | [78] |
Acid-coagulated | Symbiotic cheese spread | Lb. sakei 2a and inulin | L. monocytogenes | Lb. sakei 2a has been suggested to control L. monocytogenes in the cheese spread | [79] |
Whey cheeses | Anthotyros | Crude enterocin ABP extract | L. monocytogenes | Enterocin ABP extract showed a decreasein L. monocytogenes counts, probably associated with the acidification of the cheese | [80] |
Whey cheeses | Anari | E. faecium DM 224, DM 270 and DM 33 | L. monocytogenes | E. faecium DM 33 was found to decrease L. monocytogenes counts by more than 4 Log units | [81] |
Cheese Category | Cheese | Protective Culture | Target Microorganism(s) | Main Findings | Reference |
---|---|---|---|---|---|
Model | Cheese slurries | Lc. lactis ssp. lactis 32 and encapsulated nisin-A | Cl. tyrobutyricum | Application of Lc. lactis was able to control the growth of Cl. tyrobutyricum | [87] |
Model | Model cheese | Lc. lactis ssp. lactis INIA 415 (nisin- and lacticin 481 producer) | Cl. beijerinckii INIA 63 | Bacteriocin producer Lc. lactis resulted in the prevention of late blowing in model cheese | [88] |
Model | Cheese-mimicking matrix | LAB | Fungi | The antifungal activity was found to be strain-dependent and the fermentation substrate had a strong effect | [89] |
Model | Miniature Caciotta | Lpb. plantarum, Lcb. paracasei, Lvb. brevis and Lb. sakei | Pen. chrysogenum ATCC 9179 and Asp. flavus ATCC 46283 | Single and combined adjunct cultures reduced the mould growth by more than 2 Log units after 15 and 30 days of ripening | [90] |
Model | Cheese matrix | W. confusa W5 and W8, W. paramesenteroides W9, W. cibaria W25 and Lpb. plantarum Q4C3 | Asp. niger IOC 207 and Pen. chrysogenum IOC 132 | The single LAB strains showed antifungal activities in the model cheese against both fungi targets; however, these activities were reduced when combined with a commercial culture | [91] |
Hard | Cheddar (shredded) | Autochthonous LAB | Fungi | All strains of Lpb. plantarum prolonged the shelf life of Cheddar | [92] |
Hard | Cheddar | Lb. amylovorus DSM 19280 | Pen. expansum | The inoculation of Lb. amylovorus adjunct delayed the growth of the mould on the surface | [93] |
Hard | Pecorino Siciliano | LAB | Pseudomonas spp. and Enterobacteriaceae | The levels of enterobacteria and pseudomonads were not detectable after five months of ripening | [94] |
Semi-hard | Cheddar (semi-hard) | Lvb. brevis SJC120 in whey gelatin film | Fungi | The active packaging showed antifungal activity in Cheddar | [95] |
Semi-hard | Experimental | 23 strains of Lactobacillus, Leuconostoc and Propionibacterium spp. | Pen. commune, M. racemosus, G. geotrichum, Y. lipolytica | The combination of different LAB and propionibacteria allowed the development of two antifungal combinations | [96] |
Semi-hard | Experimental | Fermentates from Lcb. rhamnosus CIRM-BIA1952, Pr. jensenii CIRM- BIA1774 and M. lanceolatus UBOCC-A-10919 | Fungi | The fermentate from Pr. jensenii CIRM-BIA1774 showed the greatest antifungal activity and most selected fermentates delayed the growth of spoilage moulds | [97] |
Soft | Fresh cheese | Autochthonous LAB | Gram-negative bacteria | C. maltaromaticum and Lcb. rhamnosus lowered psychotropic bacteria by almost 3 Log CFU/g in the soft cheese | [98] |
Soft | Fresh cheese | Autochthonous LAB | Asp. flavus, Asp. parasiticus | Lpb. plantarum PIN showed remarkable antifungal activity | [99] |
Soft | Queso fresco (soft cheese) | Lcb. rhamnosus species (commercial) | Fungi | Commercial protective cultures vary in performance against yeasts and moulds | [100] |
Soft | Soft cheese (low salt) | Lcb. rhamnosus | Aerobic spore-forming bacteria | Combination with nisin and lysozyme | [101] |
Dutch-type | Dutch-type | Lb. paracasei LPC37, Lb. acidophilus NCFM and Lcb. rhamnosus HN001 | Coliform bacteria, Enterococcus ssp., yeasts and moulds | The application of LAB protective cultures was suggested | [102] |
Dutch-type | Gouda | D. hansenii and/or P. acidilactici combined with cysteine-rich antifungal protein PgAFP | Asp. parasiticus | The combination of D. hansenii and the cysteine-rich antifungal protein PgAFP resulted in the inhibition of Asp. parasiticus | [103] |
White-brined | White-brined cheese | Lcb. rhamnosus and Lpb. plantarum (commercial) | Enterobacteriaceae and coliform bacteria | The use of Lcb. rhamnosus was recommended for white-brined cheese | [104] |
Pasta-filata | Burrata | Lcb. rhamnosus and Lpb. plantarum (commercial) | Spoilage bacteria | The combination of MAP and protective culture extended the shelf-life of Burrata cheese | [105] |
Pasta-filata | Burrata | Lpb. plantarum LPAL and Lcb. rhamnosus LRB | Staphylococci, coliforms and Pseudomonas spp. | The use of Lpb. plantarum LPAL and Lcb. rhamnosus LRB extended the shelf-life of Burrata cheese | [106] |
Pasta filata | Grottone | Lcpb. casei LC4P1 (commercial) | Cl. sporogenes | The protective culture resulted in an inhibition of the PAB starter development | [107] |
Pasta-filata | Kashar | Lpb. plantarum and Lc. lactis ssp. lactis | Clostridium spp. | The co-inoculum resulted in 1 Log unit reduction in Cl. sporogenes counts | [108] |
Acid-coagulated | Cottage | Lcb. rhamnosus, Bifid. animalis ssp. lactis | Fungi | Lcb. rhamnosus alone or in combination with Bif. animalis ssp. lactis inhibited mould growth | [109] |
Acid-coagulated | Cottage | Mix of Lacticaseibacillus spp. and Lactiplantibacillus spp., Lcb. rhamnosus | Fungi | The protective cultures were not very effective against yeast, whereas they delayed the spoilage of at least one mould strain | [110] |
Acid-coagulated | Cottage | Lpb. plantarum | Pen. commune | All Lpb. plantarum isolates were found to prevent the visible growth of Pen. commune on Cottage cheese | [111] |
Whey cheese | Ricotta fresca | Carnobacterium spp. (commercial) | Pseudomonas spp | Carnobacterium spp. inhibited the growth of Pseudomonas spp. | [112] |
Whey cheese | Ricotta fresca | E. faecium, Lpb. plantarum, Lcb. rhamnosus or Carnobacterium spp. or the fermentate MicroGARD 430 (commercial) | Pseudomonas spp. and Enterobacteriaceae | Different reduction rates were observed in the concentrations of Pseudomonas spp. and Enterobacteriaceae | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bintsis, T.; Papademas, P. The Application of Protective Cultures in Cheese: A Review. Fermentation 2024, 10, 117. https://doi.org/10.3390/fermentation10030117
Bintsis T, Papademas P. The Application of Protective Cultures in Cheese: A Review. Fermentation. 2024; 10(3):117. https://doi.org/10.3390/fermentation10030117
Chicago/Turabian StyleBintsis, Thomas, and Photis Papademas. 2024. "The Application of Protective Cultures in Cheese: A Review" Fermentation 10, no. 3: 117. https://doi.org/10.3390/fermentation10030117
APA StyleBintsis, T., & Papademas, P. (2024). The Application of Protective Cultures in Cheese: A Review. Fermentation, 10(3), 117. https://doi.org/10.3390/fermentation10030117