Optimization of Fermentation Conditions for 2,3,5-Trimethylpyrazine Produced by Bacillus amyloliquefaciens from Daqu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Culture Medium
2.2. Screening and Identification of TMP-Producing Strains
2.3. Extraction and Detection Conditions for Volatile Substances
2.4. Single-Factor Analysis
2.5. Box–Behnken Design
3. Results
3.1. Screening and Identification of TMP-Producing Strains
3.2. Single-Factor Analysis
3.2.1. Effect of Temperature on TMP Production
3.2.2. Effect of Bottling Capacity on TMP Production
3.2.3. Effect of Water Addition on TMP Production
3.3. Response Surface Testing
3.4. Response Surface Interaction
3.5. Verification Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Zhang, R.; Yang, F.; Xie, Y.; Guo, Y.; Yao, W.; Zhou, W. Control strategies of pyrazines generation from Maillard reaction. Trends Food Sci. Technol. 2021, 112, 795–807. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Y.; Tong, J.; Xu, Y. An alkylpyrazine synthesis mechanism involving L-threonine-3-dehydrogenase describes the production of 2,5-dimethylpyrazine and 2,3,5-trimethylpyrazine by Bacillus subtilis. Appl. Environ. Microbiol. 2019, 85, e01807-19. [Google Scholar] [CrossRef]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.L.; Bories, G.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; Kolar, B.; et al. Safety and efficacy of pyrazine derivatives including saturated ones belonging to chemical group 24 when used as flavourings for all animal species. EFSA J. 2017, 15, e04671. [Google Scholar] [PubMed]
- Liang, D.; Dirndorfer, S.; Somoza, V.; Krautwurst, D.; Lang, R.; Hofmann, T. Metabolites of Key Flavor Compound 2,3,5-Trimethylpyrazine in Human Urine. J. Agric. Food Chem. 2022, 70, 15134–15142. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chen, S.; Nie, Y.; Xu, Y. Quantitative Analysis of Pyrazines and Their Perceptual Interactions in Soy Sauce Aroma Type Baijiu. Foods 2021, 10, 441. [Google Scholar] [CrossRef]
- Wu, J.-F.; Xu, Y. Comparison of pyrazine compounds in seven Chinese liquors using headspace solid-phase micro-extraction and GC-nitrogen phosphourus detection. Food Sci. Biotechnol. 2013, 22, 1–6. [Google Scholar] [CrossRef]
- Shibamoto, T.; Akiyama, T.; Sakaguchi, M.; Enomoto, Y.; Masuda, H. A study of pyrazine formation. J. Agric. Food Chem. 1979, 27, 1027–1031. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, X.; Ma, Y.; Du, M.; Wu, C.; Xu, X. Mechanism of Carbon Skeleton Formation of 2,3,5-Trimethylpyrazine via a Conversion Reaction between Methylglyoxal and Glyoxal. J. Agric. Food Chem. 2023, 71, 5337–5344. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Sun, B.; Wang, L.; Zhang, G.; Li, X.; Guo, G.; Chen, X.; Lu, P.; Zhang, K. Advances in synthesis of 2, 3, 5-trimethylpyrazine. Shandong Chem. Ind. 2014, 43, 32–34. [Google Scholar]
- Tang, Q.; Chen, X.; Huang, J.; Zhang, S.; Qin, H.; Dong, Y.; Wang, C.; Wang, X.; Wu, C.; Jin, Y.; et al. Mechanism of Enhancing Pyrazines in Daqu via Inoculating Bacillus licheniformis with Strains Specificity. Foods 2023, 12, 304. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Shi, D.; Sun, J.; Li, A.; Sun, B.; Zhao, M.; Chen, F.; Sun, X.; Li, H.; Huang, M.; et al. Characterization of key aroma compounds in Gujinggong Chinese Baijiu by gas chromatography-olfactometry, quantitative measurements, and sensory evaluation. Food Res. Int. 2018, 105, 616–627. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Wang, L.; Chen, S.; Xu, Y. Optimization and validation of a head space solid-phase microextraction-arrow gas chromatography-mass spectrometry method using central composite design for determination of aroma compounds in Chinese liquor (Baijiu). J. Chromatogr. A 2020, 1610, 460584. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y.; Li, J.; Wang, D.; Song, S.; Dong, F.; He, Z. Efficient degradation of 2,3,5-trimethylpyrazine by catalytic ozonation over MnOx supported on biochar derived from waste tea leaves. Chem. Eng. J. 2023, 464, 142525. [Google Scholar] [CrossRef]
- Zhang, Y.-A.; Yan, C.-M.; Chen, C.; Zhao, X.-Q.; Li, T.; Sun, B.-W. Three new cocrystals derived from liquid pyrazine spices: X-ray structures and Hirshfeld surface analyses. Res. Chem. Intermed. 2019, 45, 5745–5760. [Google Scholar] [CrossRef]
- Ren, A.; Zhang, Y.; Bian, Y.; Liu, Y.-J.; Zhang, Y.-X.; Ren, C.-J.; Zhou, Y.; Zhang, T.; Feng, X.-S. Pyrazines in food samples: Recent update on occurrence, formation, sampling, pretreatment and analysis methods. Food Chem. 2023, 430, 137086. [Google Scholar] [CrossRef]
- Lancker, F.V.; Adams, A.; Kimpe, N.D. Formation of pyrazines in Maillard model systems of lysine-containing dipeptides. J. Agric. Food Chem. 2010, 8, 2470–2478. [Google Scholar] [CrossRef]
- Cao, Y.L. The Study of 2,5-Dimethylpyrazine Biosynthetic Pathway by Bacillus subtilis and Construction of a High-Yield Strain; Jiangnan University: Wuxi, China, 2019. [Google Scholar]
- Ming, H.; Guo, Z.; Zhou, J.; Chen, M.; Xu, D.; Yao, X. Optimization of flavor components fermentation conditions of Bacillus licheniformis from Daqu by central composite design. Sci. Technol. Food Ind. 2015, 36, 182–186. [Google Scholar]
- Lin, H.; Liu, Y.; He, Q.; Liu, P.; Che, Z.; Wang, X.; Huang, J. Characterization of odor components of Pixian Douban (broad bean paste) by aroma extract dilute analysis and odor activity values. Int. J. Food Prop. 2019, 22, 1223–1234. [Google Scholar] [CrossRef]
- Kłosowski, G.; Mikulski, D.; Pielech-Przybylska, K. Pyrazines Biosynthesis by Bacillus Strains Isolated from Natto Fermented Soybean. Biomolecules 2021, 11, 1736. [Google Scholar] [CrossRef]
- Ren, L.; Ma, Y.; Xie, M.; Lu, Y.; Cheng, D. Rectal bacteria produce sex pheromones in the male oriental fruit fly. Curr. Biol. 2021, 31, 2220–2226. [Google Scholar] [CrossRef]
- Gu, F.; Xu, F.; Tan, L.; Wu, H.; Chu, Z.; Wang, Q. Optimization of enzymatic process for vanillin extraction using response sur-face methodology. Molecules 2012, 17, 8753–8761. [Google Scholar] [CrossRef]
- Nie, S.; Liu, K.; Liu, B.; Li, P.; Su, J. Optimization of Fermentation Conditions for Biocatalytic Conversion of Decanoic Acid to Trans-2-Decenoic Acid. Fermentation 2023, 9, 1001. [Google Scholar] [CrossRef]
- Liao, P.; Liu, Y.; Zhao, M.; Yang, Y.; Cui, X. The development of a Panax notoginseng medicinal liquor processing technology using the response surface method and a study of its antioxidant activity and its effects on mouse melanoma B16 cells. Food Funct. 2017, 8, 4251–4264. [Google Scholar]
- Tao, A.; Feng, X.; Sheng, Y.; Song, Z. Optimization of the Artemisia Polysaccharide Fermentation Process by Aspergillus niger. Front. Nutr. 2022, 9, 842766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, Q.; Wu, W.; Yang, J.; Zou, W. Wheat Qu and Its Production Technology, Microbiota, Flavor, and Metabolites. J. Food Sci. 2019, 84, 2373–2386. [Google Scholar] [CrossRef]
- Du, C.; Lin, S.K.C.; Koutinas, A.; Wang, R.; Dorado, P.; Webb, C. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresour. Technol. 2008, 99, 8310–8315. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Z.; Xiang, H.; Zhang, X.; Yang, L. Characterization of feruloyl esterase from Klebsiella oxytoca Z28 and its ap-plication in the release of ferulic acid from de-starching wheat bran. Microorganisms 2023, 11, 989. [Google Scholar] [CrossRef]
- Carboué, Q.; Rébufa, C.; Hamrouni, R.; Roussos, S.; Bombarda, I. Statistical approach to evaluate effect of temperature and moisture content on the production of antioxidant naphtho-gamma-pyrones and hydroxycinnamic acids by Aspergillus tubingensis in solid-state fermentation. Bioprocess Biosyst. Eng. 2020, 43, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.R. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresour. Technol. 2021, 323, 124566. [Google Scholar] [CrossRef]
- Adnan, M.; Ashraf, S.A.; Khan, S.; Alshammari, E.; Awadelkareem, A.M. Effect of pH, temperature and incubation time on cordycepin production from Cordyceps militaris using solid-state fermentation on various substrates. CYTA J. Food 2017, 15, 617–621. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, S.K.; Kumar, J.; Ahluwalia, V. A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresour. Technol. 2020, 299, 122633. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Du, H.; Xu, Y. Daqu microbiota adaptability to altered temperature determines the formation of characteristic com-pounds. Int. J. Food Microbiol. 2023, 385, 109995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Du, H.; Xu, Y. Volatile organic compound-mediated antifungal activity of Pichia spp. and its effect on the metabolic profiles of fermentation communities. Appl. Environ. Microbiol. 2021, 87, e02992-20. [Google Scholar] [CrossRef]
- Han, R.; Xiang, R.; Li, J.; Wang, F.; Wang, C. High-level production of microbial prodigiosin: A review. J. Basic Microbiol. 2021, 61, 506–523. [Google Scholar] [CrossRef] [PubMed]
- Çalík, P.; Çalík, G.; Özdamar, T.H. Oxygen transfer effects in serine alkaline protease fermentation by Bacillus licheniformis: Use of citric acid as the carbon source. Enzym. Microb. Technol. 1997, 23, 451–461. [Google Scholar] [CrossRef]
- Li, Y.; Hugenholtz, J.; Chen, J.; Lun, S.Y. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy. Appl. Microbiol. Biotechnol. 2002, 60, 101–106. [Google Scholar] [PubMed]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent advances in solid-state fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Dong, S.; Zhou, Z.; Zhang, Z.; Huang, R.; Han, S.; Hou, J.; Pan, C. Dynamic changes and correlations of microbial communities, physicochemical properties, and volatile metabolite during Daqu fermentation of Taorong-type Baijiu. LWT 2023, 173, 114290. [Google Scholar] [CrossRef]
- Sreekumar, G.; Krishnan, S. Enhanced biomass production study on probiotic Bacillus subtilis SK09 by medium optimization using response surface methodology. Afr. J. Biotechnol. 2010, 9, 8078–8084. [Google Scholar]
- Saxena, R.; Singh, R. Contemporaneous Production of Amylase and Protease through CCD Response Surface Methodology by Newly Isolated Bacillus megaterium Strain B69. Enzym. Res. 2014, 2014, 601046. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cai, X. Optimization of the extraction of total flavonoids from Scutellaria baicalensis Georgi using the response surface methodology. J. Food Sci. Technol. 2015, 52, 2336–2343. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cui, S.W.; Tang, J.; Gu, X. Optimization of extraction process of rude polysaccharides from boat-fruited sterculia seeds by response surface methodology. Food Chem. 2007, 105, 1599–1605. [Google Scholar] [CrossRef]
Factor | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
(A) Temperature (°C) | 28 | 37 | 46 |
(B) Bottle capacity (g/250 mL) | 90 | 100 | 110 |
(C) Water addition (mL) | 30 | 40 | 50 |
Strains | TMP Production (mg/g) |
---|---|
LC-3 | 0.003 ± 0.001 |
LC-6 | 0.071 ± 0.011 |
LC-8 | 0.012 ± 0.003 |
Test Number | Independent Variables | TMP Production (mg/g) | ||
---|---|---|---|---|
Temperature (°C, A) | Bottle Capacity (g/250 mL, B) | Water Addition (mL, C) | ||
1 | 28 | 90 | 40 | 0.039 |
2 | 46 | 90 | 40 | 0.081 |
3 | 28 | 110 | 40 | 0.022 |
4 | 46 | 110 | 40 | 0.025 |
5 | 46 | 100 | 30 | 0.089 |
6 | 28 | 100 | 30 | 0.148 |
7 | 28 | 100 | 50 | 0.041 |
8 | 46 | 100 | 50 | 0.114 |
9 | 37 | 90 | 30 | 0.216 |
10 | 37 | 110 | 30 | 0.126 |
11 | 37 | 90 | 50 | 0.116 |
12 | 37 | 110 | 50 | 0.123 |
13 | 37 | 100 | 40 | 0.457 |
14 | 37 | 100 | 40 | 0.442 |
15 | 37 | 100 | 40 | 0.488 |
16 | 37 | 100 | 40 | 0.456 |
17 | 37 | 100 | 40 | 0.432 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.4929 | 9 | 0.0548 | 136.64 | <0.0001 | ** |
A-temperature | 0.0039 | 1 | 0.0039 | 9.77 | 0.0167 | * |
B-bottle capacity | 0.0030 | 1 | 0.0030 | 7.59 | 0.0283 | * |
C-water addition | 0.0043 | 1 | 0.0043 | 10.67 | 0.0137 | * |
AB | 0.0004 | 1 | 0.0004 | 0.9487 | 0.3625 | |
AC | 0.0000 | 1 | 0.0000 | 0.1222 | 0.7369 | |
BC | 0.0024 | 1 | 0.0024 | 5.87 | 0.0459 | * |
A2 | 0.2232 | 1 | 0.2232 | 556.91 | <0.0001 | ** |
B2 | 0.1410 | 1 | 0.1410 | 351.79 | <0.0001 | ** |
C2 | 0.0676 | 1 | 0.0676 | 168.76 | <0.0001 | ** |
Residual | 0.0028 | 7 | 0.0004 | |||
Lack of fit | 0.0010 | 3 | 0.0003 | 0.7543 | 0.5748 | |
Pure error | 0.0018 | 4 | 0.0004 | |||
Cor total | 0.4957 | 16 | ||||
R2 = 0.9943 | R2Adj = 0.9871 | R2Pred = 0.9616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Yang, W.; Gu, H.; Bughio, A.A.; Liu, J. Optimization of Fermentation Conditions for 2,3,5-Trimethylpyrazine Produced by Bacillus amyloliquefaciens from Daqu. Fermentation 2024, 10, 112. https://doi.org/10.3390/fermentation10020112
Liu X, Yang W, Gu H, Bughio AA, Liu J. Optimization of Fermentation Conditions for 2,3,5-Trimethylpyrazine Produced by Bacillus amyloliquefaciens from Daqu. Fermentation. 2024; 10(2):112. https://doi.org/10.3390/fermentation10020112
Chicago/Turabian StyleLiu, Xun, Weijie Yang, Hongyi Gu, Ayaz Ali Bughio, and Jun Liu. 2024. "Optimization of Fermentation Conditions for 2,3,5-Trimethylpyrazine Produced by Bacillus amyloliquefaciens from Daqu" Fermentation 10, no. 2: 112. https://doi.org/10.3390/fermentation10020112
APA StyleLiu, X., Yang, W., Gu, H., Bughio, A. A., & Liu, J. (2024). Optimization of Fermentation Conditions for 2,3,5-Trimethylpyrazine Produced by Bacillus amyloliquefaciens from Daqu. Fermentation, 10(2), 112. https://doi.org/10.3390/fermentation10020112